1
|
Koukoutzeli C, Trapani D, Ascione L, Kotteas E, Marra A, Criscitiello C, Curigliano G. Use of Antibody-Drug Conjugates in the Early Setting of Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549241260418. [PMID: 38894701 PMCID: PMC11185006 DOI: 10.1177/11795549241260418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are anticancer agents with the capacity to selectively deliver their payloads to cancer cells. Antibody-drug conjugates consist of a monoclonal antibody backbone connected by a linker to cytotoxic payloads. Antibody-drug conjugate effect occurs either by directly targeting cancer cells via membrane antigen or through "bystander effect." Antibody-drug conjugates have demonstrated efficacy against various types of tumors, including breast cancer. Ado-trastuzumab emtansine is presently the only approved ADC for the treatment of breast cancer in the early setting, while several ADCs are now approved for metastatic breast cancer. Due to the transformative impact that several ADCs have reported in the setting of advanced breast cancer, researchers are now testing more of such compounds in the early setting, to portend benefits to patients through highly potent anticancer drugs. Ongoing trials hold the potential to transform treatment protocols for early breast cancer in the near future. These trials are aiming at evaluating different treatment modulation approaches, as informed by breast cancer risk of recurrence, including toward treatment de-escalation. Efforts are provided in ongoing clinical trials to identify the patients who will benefit most, to pursue paradigms of precision medicine with the novel ADCs. This review focuses on the potential role of ADCs in early breast cancer, providing an overview of the latest progress in their development and how they are implemented in ongoing clinical trials.
Collapse
Affiliation(s)
- Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Internal Medicine, Sotiria General Hospital and Athens School of Medicine, Athens, Greece
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
2
|
Spring LM, Tolaney SM, Fell G, Bossuyt V, Abelman RO, Wu B, Maheswaran S, Trippa L, Comander A, Mulvey T, McLaughlin S, Ryan P, Ryan L, Abraham E, Rosenstock A, Garrido-Castro AC, Lynce F, Moy B, Isakoff SJ, Tung N, Mittendorf EA, Ellisen LW, Bardia A. Response-guided neoadjuvant sacituzumab govitecan for localized triple-negative breast cancer: results from the NeoSTAR trial. Ann Oncol 2024; 35:293-301. [PMID: 38092228 DOI: 10.1016/j.annonc.2023.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Sacituzumab govitecan (SG), a novel antibody-drug conjugate (ADC) targeting TROP2, is approved for pre-treated metastatic triple-negative breast cancer (mTNBC). We conducted an investigator-initiated clinical trial evaluating neoadjuvant (NA) SG (NCT04230109), and report primary results. PATIENTS AND METHODS Participants with early-stage TNBC received NA SG for four cycles. The primary objective was to assess pathological complete response (pCR) rate in breast and lymph nodes (ypT0/isN0) to SG. Secondary objectives included overall response rate (ORR), safety, event-free survival (EFS), and predictive biomarkers. A response-guided approach was utilized, and subsequent systemic therapy decisions were at the discretion of the treating physician. RESULTS From July 2020 to August 2021, 50 participants were enrolled (median age = 48.5 years; 13 clinical stage I disease, 26 stage II, 11 stage III). Forty-nine (98%) completed four cycles of SG. Overall, the pCR rate with SG alone was 30% [n = 15, 95% confidence interval (CI) 18% to 45%]. The ORR per RECIST V1.1 after SG alone was 64% (n = 32/50, 95% CI 77% to 98%). Higher Ki-67 and tumor-infiltrating lymphocytes (TILs) were predictive of pCR to SG (P = 0.007 for Ki-67 and 0.002 for TILs), while baseline TROP2 expression was not (P = 0.440). Common adverse events were nausea (82%), fatigue (76%), alopecia (76%), neutropenia (44%), and rash (48%). With a median follow-up time of 18.9 months (95% CI 16.3-21.9 months), the 2-year EFS for all participants was 95%. Among participants with a pCR with SG (n = 15), the 2-year EFS was 100%. CONCLUSIONS In the first NA trial with an ADC in localized TNBC, SG demonstrated single-agent efficacy and feasibility of response-guided escalation/de-escalation. Further research on optimal duration of SG as well as NA combination strategies, including immunotherapy, are needed.
Collapse
Affiliation(s)
- L M Spring
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - S M Tolaney
- Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | - G Fell
- Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | - V Bossuyt
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - R O Abelman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - B Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - S Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - L Trippa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | - A Comander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - T Mulvey
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - S McLaughlin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - P Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - L Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - E Abraham
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - A Rosenstock
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | | | - F Lynce
- Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | - B Moy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - S J Isakoff
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - N Tung
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - E A Mittendorf
- Brigham and Women's Hospital, Harvard Medical School, Boston
| | - L W Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; Ludwig Center, Harvard Medical School, Boston, USA
| | - A Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston.
| |
Collapse
|
3
|
Jeong JH, Kim SB. Antibody-drug conjugates targeting Trop-2: Clinical developments in early breast cancer therapy. Breast 2022; 66:199-203. [PMID: 36327625 PMCID: PMC9634352 DOI: 10.1016/j.breast.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although breast cancer has a good prognosis compared with various cancers, metastatic breast cancer has an aggressive disease course and remains incurable. Therefore, treatment of early breast cancer to prevent recurrence and metastasis is crucial. Recently, the development of anti-cancer drugs, such as targeted agents and immuno-oncology, has been accelerating. Antibody-drug conjugates (ADCs) are also building a new paradigm. Particularly, ADCs targeting Trop-2 were approved for their efficacy in metastatic triple-negative breast cancer patients who received ≥2 prior systemic therapies and showed significant results in heavily pretreated hormone receptor-positive/HER2-negative breast cancer. In this brief review, we provide an overview of ongoing clinical trials of ADCs targeting Trop-2 in early breast cancer, specifically sacituzumab govitecan.
Collapse
Affiliation(s)
- Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Yang R, Li Y, Wang H, Qin T, Yin X, Ma X. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. MOLECULAR BIOMEDICINE 2022; 3:8. [PMID: 35243562 PMCID: PMC8894518 DOI: 10.1186/s43556-022-00071-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer, with estrogen receptor, human epidermal growth factor receptor 2 and progesterone receptor negative. TNBC is characterized by high heterogeneity, high rates of metastasis, poor prognosis, and lack of therapeutic targets. Now the treatment of TNBC is still based on surgery and chemotherapy, which is effective only in initial stage but almost useless in advanced stage. And due to the lack of hormone target, hormonal therapies have little beneficial effects. In recent years, signaling pathways and receptor-specific targets have been reported to be effective in TNBC patients under specific clinical conditions. Now targeted therapies have been approved for many other cancers and even other subtypes of breast cancer, but treatment options for TNBC are still limited. Most of TNBC patients showed no response, which may be related to the heterogeneity of TNBC, therefore more effective treatments and predictive biomarkers are needed. In the present review, we summarize potential treatment opinions for TNBC based on the dysregulated receptors and signaling pathways, which play a significant role in multiple stages of TNBC development. We also focus on the application of immunotherapy in TNBC, and summarize the preclinical and clinical trials of therapy for patients with TNBC. We hope to accelerate the research and development of new drugs for TNBC by understanding the relevant mechanisms, and to improve survival.
Collapse
Affiliation(s)
- Ruoning Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.,Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Hang Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Taolin Qin
- West China Hospital, West China Medical School Sichuan University, Chengdu, PR, China
| | - Xiaomeng Yin
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy,Cancer Center, West China Hospital, 37 Guoxue Alley, Chengdu, 610041, PR, China.
| |
Collapse
|