1
|
Chen Y, Zhu X, Sun D, Yao L, Yang S, Wang L. EIF4A3-induced hsa_circ_0127071 promotes human glomerular mesangial cells senescence via JAK2/STAT5 signaling pathway. Sci Rep 2024; 14:29278. [PMID: 39587118 PMCID: PMC11589872 DOI: 10.1038/s41598-024-79284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Circular RNAs (circRNAs) have garnered attention for their potential involvement in the regulation of cellular aging processes. Exploring the role and mechanism of circRNAs in cellular senescence may help to identify new anti-aging therapeutic targets. In the present study, we investigated the role and regulatory mechanism of hsa_circ_0127071 in renal aging. We employed high-throughput sequencing to assess circRNA expression differences in kidney tissues from young and old groups. qRT-PCR confirmed that the expression of hsa_circ_0127071 in kidney tissue of the old group was significantly higher than that of the young group. Cellular senescence was evaluated using SA-β-Gal staining and Masson's trichrome staining. Using RNA Immunoprecipitation (RIP), RNA Pull-Down Assay (RNA pull down), and Western Blot (WB) to study the interaction between hsa_circ_0127071 and aging related pathway proteins. In this study, we found that the expression of hsa_circ_0127071 in kidney tissue of the old group was significantly higher than that of the young group. Silencing of EIF4A3, a protein involved in the JAK2/STAT5 signaling pathway, was found to delay the aging process. On the basis of silencing EIF4A3 expression, the JAK2/STAT5 signaling pathway was activated by Erythropoietin (EPO) processing, and the senescence of Human glomerular mesangial cells (HGMCs) increased. After treatment with Losartan (LOS), the activity of JAK2/STAT5 pathway was decreased and the aging process of HGMCs was delayed. Our findings demonstrate that hsa_circ_0127071 promotes renal aging through the EIF4A3/JAK2/STAT5 signaling axis, highlighting a novel potential therapeutic target for the management of renal aging and associated disorders.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Shenyang, Liaoning, China
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Shenyang, Liaoning, China
| | - Da Sun
- Department of Nephrology, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Shenyang, Liaoning, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Shenyang, Liaoning, China
| | - Shuang Yang
- Department of Nephrology, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Shenyang, Liaoning, China.
| | - Lining Wang
- Department of Nephrology, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Intraperitoneal Carbamylated erythropoietin improves memory and hippocampal apoptosis in beta amyloid rat model of Alzheimer’s disease through stimulating autophagy and inhibiting necroptosis. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
STAT5 as a Key Protein of Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22137109. [PMID: 34281163 PMCID: PMC8268974 DOI: 10.3390/ijms22137109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin (EPO) acts on multiple tissues through its receptor EPOR, a member of a cytokine class I receptor superfamily with pleiotropic effects. The interaction of EPO and EPOR triggers the activation of several signaling pathways that induce erythropoiesis, including JAK2/STAT5, PI3K/AKT, and MAPK. The canonical EPOR/JAK2/STAT5 pathway is a known regulator of differentiation, proliferation, and cell survival of erythroid progenitors. In addition, its role in the protection of other cells, including cancer cells, is under intense investigation. The involvement of EPOR/JAK2/STAT5 in other processes such as mRNA splicing, cytoskeleton reorganization, and cell metabolism has been recently described. The transcriptomics, proteomics, and epigenetic studies reviewed in this article provide a detailed understanding of EPO signalization. Advances in this area of research may be useful for improving the efficacy of EPO therapy in hematologic disorders, as well as in cancer treatment.
Collapse
|
4
|
Cytoprotective effects of erythropoietin: What about the lung? Biomed Pharmacother 2021; 139:111547. [PMID: 33831836 DOI: 10.1016/j.biopha.2021.111547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (Epo) is a pleiotropic cytokine, essential for erythropoiesis. Epo and its receptor (Epo-R) are produced by several tissues and it is now admitted that Epo displays other physiological functions than red blood cell synthesis. Indeed, Epo provides cytoprotective effects, which consist in prevention or fight against pathological processes. This perspective article reviews the various protective effects of Epo in several organs and tries to give a proof of concept about its effects in the lung. The tissue-protective effects of Epo could be a promising approach to limit the symptoms of acute and chronic lung diseases.
Collapse
|
5
|
Auzmendi J, Puchulu MB, Rodríguez JCG, Balaszczuk AM, Lazarowski A, Merelli A. EPO and EPO-Receptor System as Potential Actionable Mechanism for the Protection of Brain and Heart in Refractory Epilepsy and SUDEP. Curr Pharm Des 2020; 26:1356-1364. [PMID: 32072891 DOI: 10.2174/1381612826666200219095548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
The most important activity of erythropoietin (EPO) is the regulation of erythrocyte production by activation of the erythropoietin receptor (EPO-R), which triggers the activation of anti-apoptotic and proliferative responses of erythroid progenitor cells. Additionally, to erythropoietic EPO activity, an antiapoptotic effect has been described in a wide spectrum of tissues. EPO low levels are found in the central nervous system (CNS), while EPO-R is expressed in most CNS cell types. In spite of EPO-R high levels expressed during the hypoxicischemic brain, insufficient production of endogenous cerebral EPO could be the cause of determined circuit alterations that lead to the loss of specific neuronal populations. In the heart, high EPO-R expression in cardiac progenitor cells appears to contribute to myocardial regeneration under EPO stimulation. Several lines of evidence have linked EPO to an antiapoptotic role in CNS and in heart tissue. In this review, an antiapoptotic role of EPO/EPO-R system in both brain and heart under hypoxic conditions, such as epilepsy and sudden death (SUDEP) has been resumed. Additionally, their protective effects could be a new field of research and a novel therapeutic strategy for the early treatment of these conditions and avoid SUDEP.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - María B Puchulu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Julio C G Rodríguez
- CENPALAB, Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Ana M Balaszczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Amalia Merelli
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| |
Collapse
|
6
|
CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: considering Akt/GSK-3β and ERK signaling pathways. Mol Biol Rep 2020; 47:2097-2108. [DOI: 10.1007/s11033-020-05309-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
|
7
|
Effect of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) on learning and memory impairment and hippocampal apoptosis induced by intracerebroventricular administration of streptozotocin in rats. Behav Brain Res 2020; 384:112554. [PMID: 32057828 DOI: 10.1016/j.bbr.2020.112554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Intracerebroventricular (icv) administration of streptozotocin (STZ) has been used as a metabolic model of sporadic Alzheimer's disease (AD). Erythropoietin (EPO) possesses neuroprotective and memory-improving effects, which might be advantageous in treating different characteristics of AD. Nevertheless, the hematopoietic effect of EPO has hindered its application as a neuroprotective agent. Previous studies have shown that a new Epo derivative called carbamylated Erythropoietin-Fc (CEPO-Fc), yield noticeable neuroprotective effects without affecting hematopoiesis. In this study, the neuroprotective effects of CEPO-Fc on icv-STZ induced memory impairment and hippocampal apoptosis were examined. Adult male Wistar rats weighing 250-300 g were used. STZ was administered on days 1 and 3 (3 mg/kg in divided doses/icv), and CEPO-Fc was administered at the dose of 5000 IU/ip/daily during days 4-14. The animals were trained in Morris water maze during days 15-17, and the memory retention test was performed on the 18th day. Following behavioral studies, the animals were sacrificed and their hippocampi isolated to determine the amounts of cleaved caspase-3 (the landmark of apoptosis). The results showed that CEPO-Fc treatment at the dose of 5000 IU/kg/ip was able to prevent the learning and memory deficit induced by icv-STZ. Western blot analysis revealed that STZ prompted the cleavage of caspase-3 in the hippocampus while pretreatment with CEPO-Fc significantly reduced the cleavage of this protein. Collectively, our findings suggest that CEPO-Fc could restore STZ-induced learning and memory impairment as well as apoptosis in the hippocampal region in a rat model of sporadic AD induced by icv-STZ.
Collapse
|
8
|
Osato K, Sato Y, Osato A, Sato M, Zhu C, Leist M, Kuhn HG, Blomgren K. Carbamylated Erythropoietin Decreased Proliferation and Neurogenesis in the Subventricular Zone, but Not the Dentate Gyrus, After Irradiation to the Developing Rat Brain. Front Neurol 2018; 9:738. [PMID: 30258396 PMCID: PMC6143677 DOI: 10.3389/fneur.2018.00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Cranial radiotherapy for pediatric brain tumors causes progressive, debilitating late effects, including cognitive decline. Erythropoietin (EPO) has been shown to be neuroprotective and to promote neuroregeneration. Carbamylated erythropoietin (CEPO) retains the protective properties of EPO but is not erythrogenic. To study the effects of CEPO on the developing brain exposed to radiotherapy, a single irradiation (IR) dose of 6 Gy was administered to the brains of postnatal day 9 (P9) rats, and CEPO (40 μg/kg s.c.) was injected on P8, P9, P11, P13, and P15. To examine proliferation, 5-Bromo-2-deoxyuridine (BrdU) was injected on P15, P16, and P17. CEPO administration did not affect BrdU incorporation in the granule cell layer (GCL) of the hippocampus or in the subventricular zone (SVZ) as quantified 7 days after the last BrdU injection, whereas IR decreased BrdU incorporation in the GCL and SVZ by 63% and 18%, respectively. CEPO did not affect BrdU incorporation in the GCL of irradiated brains, although it was reduced even further (to 31%) in the SVZ. To evaluate the effect of CEPO on neurogenesis, BrdU/doublecortin double-positive cells were quantified. CEPO did not affect neurogenesis in non-irradiated brains, whereas IR decreased neurogenesis by 58% in the dentate gyrus (DG) but did not affect it in the SVZ. In the DG, CEPO did not affect the rate of neurogenesis following IR, whereas in the SVZ, the rate decreased by 30% following IR compared with the rate in vehicle-treated rats. Neither CEPO nor IR changed the number of microglia. In summary, CEPO did not promote neurogenesis in non-irradiated or irradiated rat brains and even aggravated the decreased neurogenesis in the SVZ. This raises concerns regarding the use of EPO-related compounds following radiotherapy.
Collapse
Affiliation(s)
- Kazuhiro Osato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Yoshiaki Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akari Osato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Machiko Sato
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Narita Hospital, Nagoya, Japan
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcel Leist
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hans G. Kuhn
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Liu F, Wen Y, Kang J, Wei C, Wang M, Zheng Z, Peng J. Regulation of TLR4 expression mediates the attenuating effect of erythropoietin on inflammation and myocardial fibrosis in rat heart. Int J Mol Med 2018; 42:1436-1444. [PMID: 29845292 PMCID: PMC6089778 DOI: 10.3892/ijmm.2018.3707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
The mechanism underlying the anti-inflammatory or antifibrotic activity of erythropoietin (EPO) in myocardial fibrosis (MF) remains elusive. In the current study, abdominal aortic constriction (AAC) was performed on rats and EPO and/or Toll-like receptor (TLR)4 were overexpressed in rat hearts through intramyocardial administration of lentivirus expressing the EPO and TLR4 genes. Hematoxylin and eosin staining and Masson's trichrome staining were performed on tissue sections from rat hearts for histopathological examination. ELISA was used to determine the levels of inflammatory mediators in serum. Gene expression levels were determined by quantitative polymerase chain reaction analysis and protein expression levels were determined by western blot analysis and immunofluorescence staining. The results indicated that EPO overexpression improved MF in rat hearts, by inhibiting the release of transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, IL-17A, matrix metalloproteinase (MMP)-9 and MMP-2. Moreover, EPO overexpression suppressed the expression of TLR4, while promoting phosphoinositide 3-kinase (PI3K) and phosphorylated AKT serine/threonine kinase 1 (Akt) expression levels. However, the beneficial effects of EPO were attenuated by overexpression of TLR4. In addition, inhibition of PI3K/Akt signaling activity by treatment with LY294002 markedly reversed the protective effect of EPO on the AAC-induced MF. Taken together, the present study demonstrated that EPO may have a critical role against MF by activating PI3K/Akt signaling and by down-regulating TLR4 expression, thereby inhibiting the release of TGF-β1, TNF-α, IL-6, IL-1β, IL-17A, MMP-9 and MMP-2. These findings suggest that the PI3K/Akt/TLR4 signaling pathway is associated with the anti-inflammatory effects of EPO and may play a role in attenuating AAC-induced MF.
Collapse
Affiliation(s)
- Fei Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuan Wen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinyuan Kang
- Department of Cardiovascular Medicine, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, P.R. China
| | - Chunying Wei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghong Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zeqi Zheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingtian Peng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|