1
|
Tsumita T, Takeda R, Maishi N, Hida Y, Sasaki M, Orba Y, Sato A, Toba S, Ito W, Teshirogi T, Sakurai Y, Iba T, Naito H, Ando H, Watanabe H, Mizuno A, Nakanishi T, Matsuda A, Zixiao R, Lee J, Iimura T, Sawa H, Hida K. Viral uptake and pathophysiology of the lung endothelial cells in age-associated severe SARS-CoV-2 infection models. Aging Cell 2024; 23:e14050. [PMID: 38098255 PMCID: PMC10861199 DOI: 10.1111/acel.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Thrombosis is the major cause of death in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the pathology of vascular endothelial cells (ECs) has received much attention. Although there is evidence of the infection of ECs in human autopsy tissues, their detailed pathophysiology remains unclear due to the lack of animal model to study it. We used a mouse-adapted SARS-CoV-2 virus strain in young and mid-aged mice. Only mid-aged mice developed fatal pneumonia with thrombosis. Pulmonary ECs were isolated from these infected mice and RNA-Seq was performed. The pulmonary EC transcriptome revealed that significantly higher levels of viral genes were detected in ECs from mid-aged mice with upregulation of viral response genes such as DDX58 and IRF7. In addition, the thrombogenesis-related genes encoding PLAT, PF4, F3 PAI-1, and P-selectin were upregulated. In addition, the inflammation-related molecules such as CXCL2 and CXCL10 were upregulated in the mid-aged ECs upon viral infection. Our mouse model demonstrated that SARS-CoV-2 virus entry into aged vascular ECs upregulated thrombogenesis and inflammation-related genes and led to fatal pneumonia with thrombosis. Current results of EC transcriptome showed that EC uptake virus and become thrombogenic by activating neutrophils and platelets in the aged mice, suggesting age-associated EC response as a novel finding in human severe COVID-19.
Collapse
Affiliation(s)
- Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Ryo Takeda
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Oral Diagnosis and Medicine, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yasuhiro Hida
- Department of Advanced Robotic and Endoscopic SurgeryFujita Health UniversityToyoakeJapan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- International Collaboration Unit, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
| | - Akihiko Sato
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- Drug Discovery and Disease Research LaboratoryShionogi and Co., Ltd.OsakaJapan
| | - Shinsuke Toba
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- Drug Discovery and Disease Research LaboratoryShionogi and Co., Ltd.OsakaJapan
| | - Wataru Ito
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Oral and Maxillofacial Surgery, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Takahito Teshirogi
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Dental Anesthesiology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yuya Sakurai
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Dental Anesthesiology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Tomohiro Iba
- Department of Vascular Physiology, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Hisamichi Naito
- Department of Vascular Physiology, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Amane Mizuno
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Toshiki Nakanishi
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Aya Matsuda
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Ren Zixiao
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Oral and Maxillofacial Surgery, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Ji‐Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- International Collaboration Unit, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- One Health Research CenterHokkaido UniversitySapporoJapan
- Institute for Vaccine Research and DevelopmentHokkaido UniversitySapporoJapan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
2
|
Takeda R, Sawa H, Sasaki M, Orba Y, Maishi N, Tsumita T, Ushijima N, Hida Y, Sano H, Kitagawa Y, Hida K. Antiviral effect of cetylpyridinium chloride in mouthwash on SARS-CoV-2. Sci Rep 2022; 12:14050. [PMID: 35982118 PMCID: PMC9386671 DOI: 10.1038/s41598-022-18367-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Cetylpyridinium chloride (CPC), a quaternary ammonium compound, which is present in mouthwash, is effective against bacteria, fungi, and enveloped viruses. This study was conducted to explore the antiviral effect of CPC on SARS-CoV-2. There are few reports on the effect of CPC against wild-type SARS-CoV-2 at low concentrations such as 0.001%–0.005% (10–50 µg/mL). Interestingly, we found that low concentrations of CPC suppressed the infectivity of human isolated SARS-CoV-2 strains (Wuhan, Alpha, Beta, and Gamma) even in saliva. Furthermore, we demonstrated that CPC shows anti-SARS-CoV-2 effects without disrupting the virus envelope, using sucrose density analysis and electron microscopic examination. In conclusion, this study provided experimental evidence that CPC may inhibit SARS-CoV-2 infection even at lower concentrations.
Collapse
Affiliation(s)
- Ryo Takeda
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Oral Diagnosis and Medicine, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Tsumita
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Community Service and Welfare Network, Hokkaido University Hospital, Sapporo, Japan
| | - Hidehiko Sano
- Restorative Dentistry, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity. mBio 2021; 12:e0141521. [PMID: 34425707 PMCID: PMC8406294 DOI: 10.1128/mbio.01415-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens.
Collapse
|
4
|
Host serine proteases TMPRSS2 and TMPRSS11D mediate proteolytic activation and trypsin-independent infection in group A rotaviruses. J Virol 2021; 95:JVI.00398-21. [PMID: 33762412 PMCID: PMC8139689 DOI: 10.1128/jvi.00398-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.ImportanceProteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
Collapse
|
5
|
Kishimoto M, Uemura K, Sanaki T, Sato A, Hall WW, Kariwa H, Orba Y, Sawa H, Sasaki M. TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein. Viruses 2021; 13:v13030384. [PMID: 33671076 PMCID: PMC8001073 DOI: 10.3390/v13030384] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) utilizes host proteases, including a plasma membrane-associated transmembrane protease, serine 2 (TMPRSS2) to cleave and activate the virus spike protein to facilitate cellular entry. Although TMPRSS2 is a well-characterized type II transmembrane serine protease (TTSP), the role of other TTSPs on the replication of SARS-CoV-2 remains to be elucidated. Here, we have screened 12 TTSPs using human angiotensin-converting enzyme 2-expressing HEK293T (293T-ACE2) cells and Vero E6 cells and demonstrated that exogenous expression of TMPRSS11D and TMPRSS13 enhanced cellular uptake and subsequent replication of SARS-CoV-2. In addition, SARS-CoV-1 and SARS-CoV-2 share the same TTSPs in the viral entry process. Our study demonstrates the impact of host TTSPs on infection of SARS-CoV-2, which may have implications for cell and tissue tropism, for pathogenicity, and potentially for vaccine development.
Collapse
Affiliation(s)
- Mai Kishimoto
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.O.); (H.S.)
| | - Kentaro Uemura
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan; (K.U.); (T.S.); (A.S.)
- Division of Anti-Virus Drug Research, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo 060-0812, Japan
| | - Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan; (K.U.); (T.S.); (A.S.)
- Division of Anti-Virus Drug Research, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan; (K.U.); (T.S.); (A.S.)
- Division of Anti-Virus Drug Research, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - William W. Hall
- National Virus Reference Laboratory, School of Medicine, University College Dublin, DO4V1W8 Dublin, Ireland;
- Centre for Research in Infectious Diseases, School of Medicine, University College Dublin, DO4V1W8 Dublin, Ireland
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- Global Virus Network, 725 West Lombard St, Room S413, Baltimore, MD 21201, USA
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan;
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.O.); (H.S.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.O.); (H.S.)
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- Global Virus Network, 725 West Lombard St, Room S413, Baltimore, MD 21201, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.O.); (H.S.)
- Correspondence: ; Tel.: +81-11-70-69513
| |
Collapse
|
6
|
Sasaki M, Uemura K, Sato A, Toba S, Sanaki T, Maenaka K, Hall WW, Orba Y, Sawa H. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021; 17:e1009233. [PMID: 33476327 PMCID: PMC7853460 DOI: 10.1371/journal.ppat.1009233] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/02/2021] [Accepted: 12/08/2020] [Indexed: 01/28/2023] Open
Abstract
The spike (S) protein of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) binds to a host cell receptor which facilitates viral entry. A polybasic motif detected at the cleavage site of the S protein has been shown to broaden the cell tropism and transmissibility of the virus. Here we examine the properties of SARS-CoV-2 variants with mutations at the S protein cleavage site that undergo inefficient proteolytic cleavage. Virus variants with S gene mutations generated smaller plaques and exhibited a more limited range of cell tropism compared to the wild-type strain. These alterations were shown to result from their inability to utilize the entry pathway involving direct fusion mediated by the host type II transmembrane serine protease, TMPRSS2. Notably, viruses with S gene mutations emerged rapidly and became the dominant SARS-CoV-2 variants in TMPRSS2-deficient cells including Vero cells. Our study demonstrated that the S protein polybasic cleavage motif is a critical factor underlying SARS-CoV-2 entry and cell tropism. As such, researchers should be alert to the possibility of de novo S gene mutations emerging in tissue-culture propagated virus strains.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kentaro Uemura
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Shionogi & Co., Ltd., Osaka, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Shionogi & Co., Ltd., Osaka, Japan
| | - Shinsuke Toba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Shionogi & Co., Ltd., Osaka, Japan
| | - Takao Sanaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Shionogi & Co., Ltd., Osaka, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - William W Hall
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Ireland
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Liu S, Li X, Li Q, Liu H, Shi Y, Zhuo H, Li C, Zhu H. Silencing Livin improved the sensitivity of colon cancer cells to 5-fluorouracil by regulating crosstalk between apoptosis and autophagy. Oncol Lett 2018; 15:7707-7715. [PMID: 29740490 PMCID: PMC5934728 DOI: 10.3892/ol.2018.8282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/13/2017] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-associated mortality worldwide. Currently, 5-fluorouracil (5-FU) remains a widely used chemotherapeutic drug in the treatment of CRC; however, 5-FU resistance during treatment has become a common problem. Livin, a member of the inhibitor of apoptosis protein family, is considered to be associated with tumor resistance to chemotherapy. In the present study, Livin-silenced cells were generated by introducing a lentivirus into HCT116 and SW620 colon cancer cell lines. Acridine orange/ethidium bromide staining was used as an indicator of cell death. Western blot analysis was performed to detect protein expression levels, and transmission electron microscopy was used to assess autophagy. The half-maximal inhibitory concentration of 5-FU in colon cancer cells was evaluated using a Cell Counting Kit-8 assay. The results of the present study confirmed that silencing Livin significantly enhanced colon cancer cell death in the presence of 5-FU, increased expression levels of various apoptosis- and autophagy-associated proteins and augmented chemotherapeutic sensitivity to 5-FU. Furthermore, the present study demonstrated that this effect may be reversed when autophagy or apoptosis was inhibited, indicating that apoptosis and autophagy were involved in this process. The protein kinase B signaling pathway and B-cell lymphoma-2 expression levels significantly decreased following Livin knockdown, suggesting they may contribute to the regulation of apoptosis and autophagy crosstalk, which caused the Livin knockdown-induced cell death observed.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Urology, Yucheng People's Hospital, Yucheng, Shandong 251200, P.R. China
| | - Hongjun Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongqing Zhuo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chensheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huijuan Zhu
- Department of Pharmacy Intravenous Admixture Services, Kaifeng Children's Hospital of Henan Province, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
8
|
Isolation of a simian immunodeficiency virus from a malbrouck (Chlorocebus cynosuros). Arch Virol 2016; 162:543-548. [PMID: 27804019 DOI: 10.1007/s00705-016-3129-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
To investigate the diversity of simian immunodeficiency virus (SIV) among nonhuman primates (NHPs) in Zambia, next-generation sequencing was performed to determine the complete genome sequence of a novel SIV recovered by co-culturing African green monkey (AGM) peripheral blood lymphocytes with human CD4+ T-cell lines. We report the first described SIV (SIVagmMAL-ZMB) from a malbrouck (Chlorocebus cynosuros). SIVagmMAL-ZMB was detected by real-time PCR analysis of splenic RNA in 3.2% (3/94) of AGMs and was undetectable in baboons (0/105). SIVagmMAL-ZMB possessed <80% nucleotide sequence identity to known SIV isolates and was located basally to vervet monkey SIV strains in all phylogenies.
Collapse
|
9
|
Alberghina D, De Pasquale A, Piccione G, Vitale F, Panzera M. Gene expression profile of cytokines in leukocytes from stereotypic horses. J Vet Behav 2015. [DOI: 10.1016/j.jveb.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Cury GCG, Pereira RFC, de Hollanda LM, Lancellotti M. Inflammatory response of Haemophilus influenzae biotype aegyptius causing Brazilian Purpuric Fever. Braz J Microbiol 2014; 45:1449-54. [PMID: 25763053 PMCID: PMC4323322 DOI: 10.1590/s1517-83822014000400040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
The Brazilian Purpuric Fever (BPF) is a systemic disease with many clinical features of meningococcal sepsis and is usually preceded by purulent conjunctivitis. The illness is caused by Haemophilus influenza biogroup aegyptius, which was associated exclusively with conjunctivitis. In this work construction of the las gene, hypothetically responsible for this virulence, were fusioned with ermAM cassette in Neisseria meningitidis virulent strains and had its DNA transfer to non BPF H. influenzae strains. The effect of the las transfer was capable to increase the cytokines TNFα and IL10 expression in Hec-1B cells line infected with these transformed mutants (in eight log scale of folding change RNA expression). This is the first molecular study involving the las transfer to search an elucidation of the pathogenic factors by horizontal intergeneric transfer from meningococci to H. influenzae.
Collapse
Affiliation(s)
- Gisele Cristiane Gentile Cury
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Rafaella Fabiana Carneiro Pereira
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Luciana Maria de Hollanda
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Marcelo Lancellotti
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
11
|
Kyama CM, Mihalyi A, Chai D, Simsa P, Mwenda JM, D'Hooghe TM. Baboon model for the study of endometriosis. ACTA ACUST UNITED AC 2012; 3:637-46. [PMID: 19804041 DOI: 10.2217/17455057.3.5.637] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endometriosis is a benign, estrogen-dependent disease and is now recognized as an enigmatic disease owing to its various clinical manifestations and locations. The lack of a reliable and specific method for the early detection of endometriosis often results in delayed diagnosis. So far, research has born inadequate findings regarding understanding the basic etiology or pathophysiology of endometriosis. Animal models that accurately represent the cellular and molecular changes associated with the initiation and progression of human endometriosis have significant potential to facilitate the development of better methods for the early detection and treatment of endometriosis. A number of animal model systems have been developed for the study of this disease. These models replicate many of the known salient features of human endometriosis. This review provides an insight into the use of the baboon model for studies focused on understanding human endometriosis.
Collapse
Affiliation(s)
- Cleophas M Kyama
- Leuven University Fertility Centre, Department of Obstetrics & Gynaecology, University Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
12
|
Jin G, Kawsar HI, Hirsch SA, Zeng C, Jia X, Feng Z, Ghosh SK, Zheng QY, Zhou A, McIntyre TM, Weinberg A. An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS One 2010; 5:e10993. [PMID: 20544025 PMCID: PMC2882331 DOI: 10.1371/journal.pone.0010993] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 05/17/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human beta-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown. METHODOLOGY The relationship between hBD-3, monocyte chemoattractant protein-1 (MCP-1), TAMs, and CCR2 was examined using immunofluorescence microscopy in normal and oral carcinoma in situ biopsy specimens. The ability of hBD-3 to chemoattract host macrophages in vivo using a nude mouse model and analysis of hBD-3 on monocytic cell migration in vitro, applying a cross-desensitization strategy of CCR2 and its pharmacological inhibitor (RS102895), respectively, was also carried out. CONCLUSIONS/FINDINGS MCP-1, the most frequently expressed tumor cell-associated chemokine, was not produced by tumor cells nor correlated with the recruitment of macrophages in oral carcinoma in situ lesions. However, hBD-3 was associated with macrophage recruitment in these lesions and hBD-3-expressing tumorigenic cells induced massive tumor infiltration of host macrophages in nude mice. HBD-3 stimulated the expression of tumor-promoting cytokines, including interleukin-1alpha (IL-1alpha), IL-6, IL-8, CCL18, and tumor necrosis factor-alpha (TNF-alpha) in macrophages derived from human peripheral blood monocytes. Monocytic cell migration in response to hBD-3 was inhibited by cross-desensitization with MCP-1 and the specific CCR2 inhibitor, RS102895, suggesting that CCR2 mediates monocyte/macrophage migration in response to hBD-3. Collectively, these results indicate that hBD-3 utilizes CCR2 to regulate monocyte/macrophage trafficking and may act as a tumor cell-produced chemoattractant to recruit TAMs. This novel mechanism is the first evidence of an hBD molecule orchestrating an in vivo outcome and demonstrates the importance of the innate immune system in the development of tumors.
Collapse
Affiliation(s)
- Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Livin gene plays a role in drug resistance of colon cancer cells. Clin Biochem 2010; 43:655-60. [PMID: 20171199 DOI: 10.1016/j.clinbiochem.2010.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the effect of knockdown of Livin expression on reversing drug resistance phenotype of colon cancer HCT-8/V cells. DESIGN AND METHODS Specific short hairpin RNA (shRNA) was chosen and transfected in human colon cancer HCT-8/V cell line. Cell apoptosis and chemosensitivity were evaluated following downregulation of Livin expression. RESULTS In the current study, Livin was found to be highly expressed in the HCT-8/V colon cancer cells, which were resistant to several anti-tumor drugs. Knocking down of Livin expression in HCT-8/V cells by specific RNAi facilitated the apoptosis of HCT-8/V cells in response to vincristine (VCR), etoposide (VP-16), and 5-flourouracil (5-FU). Chemosensitivity assay confirmed the results and demonstrated the reversal of drug resistance phenotype of HCT-8/V cells. CONCLUSION These data suggest that specific silencing of Livin gene expression could be a promising target for further research in clinical chemotherapy of colon cancer.
Collapse
|
14
|
Vartanian KB, Berny MA, McCarty OJT, Hanson SR, Hinds MT. Cytoskeletal structure regulates endothelial cell immunogenicity independent of fluid shear stress. Am J Physiol Cell Physiol 2009; 298:C333-41. [PMID: 19923423 DOI: 10.1152/ajpcell.00340.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cardiovascular disease atherosclerosis is directly linked to the functions of endothelial cells (ECs), which are affected by fluid shear stress (FSS). High, unidirectional FSS causes EC elongation with aligned cytoskeletal components and nonimmunogenic EC functions that protect against atherosclerosis. In contrast, low, oscillatory FSS is associated with cobblestone-shaped ECs with randomly oriented cytoskeletons and proinflammatory EC functions that promote atherosclerosis. Whether EC shape plays a role in EC immunogenic functions, independent of FSS, has not been previously determined. The goal of this study was to determine the effect of EC elongation and cytoskeletal alignment on the expression of inflammatory genes and functions. With the use of micropatterned lanes, EC elongation and cytoskeletal alignment were achieved in the absence of FSS. EC gene expression of key inflammation markers determined that the elongation and cytoskeletal alignment of micropattern-elongated ECs (MPECs) alone significantly downregulated VCAM-1 while having no effect on E-selectin and ICAM-1. The positive control of FSS-elongated ECs promoted E-selectin and VCAM-1 downregulation and upregulation of ICAM-1. Functionally, monocytic U937 cells formed weaker interactions on the surface of MPECs compared with cobblestone ECs. Interestingly, MPEC expression of the known FSS-dependent transcription factor krüppel-like factor 2 (KLF2), which promotes a nonimmunogenic EC phenotype, was significantly upregulated in MPECs compared with cobblestone ECs. Cytoskeletal regulation of KLF2 expression was shown to be dependent on microtubules. Therefore, the cellular elongation and cytoskeletal alignment of MPECs regulated immunogenic gene expression and functions and may act synergistically with FSS to create an EC surface with reduced inflammatory capability.
Collapse
Affiliation(s)
- Keri B Vartanian
- Division of Biomedical Engineering, Department of Science & Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
15
|
D'Hooghe TM, Kyama CM, Chai D, Fassbender A, Vodolazkaia A, Bokor A, Mwenda JM. Nonhuman primate models for translational research in endometriosis. Reprod Sci 2009; 16:152-61. [PMID: 19208783 DOI: 10.1177/1933719108322430] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endometriosis, defined as the ectopic presence of endometrial-like cells, is associated with infertility and pelvic pain in women. Whereas pathogenesis and spontaneous evolution of endometriosis are still poorly understood, recurrences after surgical therapy or after medical treatment are common. Spontaneous endometriosis occurs only in women and in nonhuman primates (NHPs). Inbred rhesus monkeys kept in colonies offer an attractive preclinical model to study the inheritance of spontaneous endometriosis. Baboons with spontaneous or induced endometriosis appear to be the best NHP model to study pathogenesis, pathophysiology, spontaneous evolution and new medical treatment options. In baboons, induction of endometriosis after intrapelvic injection of menstrual endometrium leads to biological changes in peritoneal cavity and in endometrium. This induction process may allows the study of cause-effect relationships which may lead to the discovery of new biomarkers for the development of new non-invasive diagnostic tests and drugs that may prevent or treat endometriosis.
Collapse
Affiliation(s)
- T M D'Hooghe
- Department of Obstetrics and Gynaecology, Leuven, University Fertility Center, University Hospital Gasthuisberg, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ahn K, Huh JW, Park SJ, Kim DS, Ha HS, Kim YJ, Lee JR, Chang KT, Kim HS. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol 2008; 9:78. [PMID: 18782457 PMCID: PMC2561044 DOI: 10.1186/1471-2199-9-78] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/10/2008] [Indexed: 11/28/2022] Open
Abstract
Background The rhesus monkey (Macaca mulatta) is a valuable and widely used model animal for biomedical research. However, quantitative analyses of rhesus gene expression profiles under diverse experimental conditions are limited by a shortage of suitable internal controls for the normalization of mRNA levels. In this study, we used a systematic approach for the selection of potential reference genes in the rhesus monkey and compared their suitability to that of the corresponding genes in humans. Results Eight housekeeping genes (HKGs) (GAPDH, SDHA, ACTB, RPL13A, RPL32, UBA52, PGK1Y, and YWHAZ) from rhesus monkeys and humans were selected to test for normalization of expression levels in six different tissue types (brain, colon, kidney, liver, lung, and stomach). Their stability and suitability as reference genes were validated by geNorm, NormFinder and BestKeeper programs. Intriguingly, RPL13A and RPL32 were selected as ideal reference genes only in rhesus monkeys. Conclusion The results clearly indicated the necessity of using different reference genes for normalization of expression levels between rhesus monkeys and humans in various tissues.
Collapse
Affiliation(s)
- Kung Ahn
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
D'Hooghe TM, Nyachieo A, Chai DC, Kyama CM, Spiessens C, Mwenda JM. Reproductive research in non-human primates at Institute of Primate Research in Nairobi, Kenya (WHO Collaborating Center): a platform for the development of clinical infertility services? ACTA ACUST UNITED AC 2008. [DOI: 10.1093/humrep/den164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Effect of recombinant human TNF–binding protein-1 and GnRH antagonist on mRNA expression of inflammatory cytokines and adhesion and growth factors in endometrium and endometriosis tissues in baboons. Fertil Steril 2008; 89:1306-13. [DOI: 10.1016/j.fertnstert.2006.11.205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 11/15/2022]
|
19
|
Tejero ME, Proffitt JM, Rodríguez IP, Hubbard G, Freeland-Graves JH, Peebles KW, Cole SA, Comuzzie A. Adipokine expression is associated with adipocyte volume in baboons. Cytokine 2008; 41:150-4. [PMID: 18164624 DOI: 10.1016/j.cyto.2007.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 06/06/2007] [Accepted: 11/16/2007] [Indexed: 12/27/2022]
Abstract
Baboons show significant variation in body weight and composition, coupled with insulin resistance and phenotypes associated with the metabolic syndrome. An omental adipose tissue biopsy and a fasting blood sample were collected from 40 unrelated adult baboons from the colony at Southwest Foundation for Biomedical Research in San Antonio, TX. Serum was separated for analyses of circulating levels of glucose, insulin, adiponectin, resistin, interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1 or CCL-2). Adipose tissue biopsies were analyzed for cell volume and number. Total RNA was isolated from adipose tissue and adiponectin, resistin, delta-resistin, MCP-1 and IL-6 mRNA abundance were measured using real time, quantitative RT-PCR. Partial correlation coefficients were calculated among adipokine expression, fat tissue cell volume, and circulating levels of proteins. Cell volume was significantly correlated with expression of MCP-1 (r=0.44, p<0.05) and IL-6 mRNA (r=0.47, p<0.01). A step wise regression analysis was conducted with adipose tissue cell volume as dependent variable. The model identified IL-6 mRNA levels in adipose tissue as the only predictor. These observations support the role of IL-6 as a possible paracrine regulator in adipose tissue.
Collapse
Affiliation(s)
- M E Tejero
- Department of Genetics, Southwest Foundation for Biomedical Research, 72 NW Loop 410, San Antonio, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|