1
|
Narita T, Murakami Y, Ishii T, Muroi M, Yamashita N. Glucocorticoid-induced TNF receptor family-related protein functions as a costimulatory molecule for murine eosinophils. J Leukoc Biol 2024; 115:771-779. [PMID: 38159043 DOI: 10.1093/jleuko/qiad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024] Open
Abstract
Eosinophils are typical effector cells associated with type 2 immune responses and play key roles in the pathogenesis of allergic diseases. These cells are activated by various stimuli, such as cytokines, chemokines, and growth factors, but the regulatory mechanisms of eosinophil effector functions remain unclear. Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), a transmembrane protein belonging to the tumor necrosis factor (TNF) receptor superfamily, is a well-known regulatory molecule for T cell activation. Here, we show that GITR is also constitutively expressed on eosinophils and functions as a costimulatory molecule for these cells. Although degranulation was unaffected by GITR engagement of murine bone marrow-derived eosinophils, secretion of inflammatory cytokines such as interleukin (IL)-4, IL-6, and IL-13 from IL-33-activated bone marrow-derived eosinophils was augmented by anti-mouse GITR agonistic antibody (DTA-1). In conclusion, our results provide a new regulatory pathway of cytokine secretion from eosinophils in which GITR functions as a costimulatory molecule.
Collapse
Affiliation(s)
- Tomoya Narita
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Yusuke Murakami
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Takashi Ishii
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Naomi Yamashita
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
2
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
4
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
5
|
Shi Y, Xu M, Pan S, Gao S, Ren J, Bai R, Li H, He C, Zhao S, Shi Z, Yu F, Xiang Z, Wang H. Induction of the apoptosis, degranulation and IL-13 production of human basophils by butyrate and propionate via suppression of histone deacetylation. Immunology 2021; 164:292-304. [PMID: 33999409 PMCID: PMC8442238 DOI: 10.1111/imm.13370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022] Open
Abstract
Allergic diseases are caused by dysregulated Th2 immune responses involving multiple effector cells including basophils. Short chain fatty acids (SCFAs), mainly acetate, propionate and butyrate, exert immunomodulatory functions via activation of its receptors GPR41 and GPR43, and inhibition of the histone deacetylases (HDACs) activity. In allergic diseases, SCFAs suppress the activity of mast cells, eosinophils and type 2 innate lymphoid cells (ILC2) but enhance the function of Th2 cells. Here, we aimed to elucidate the function of SCFAs on human basophils. Human basophils were purified from healthy donors by flow cytometric sorting. The surface proteins, apoptosis and degranulation of basophils were analyzed by flow cytometric analysis. The mRNA expression was assayed using real-time PCR. Interleukin 4 (IL-4) and IL-13 were measured by ELISA. Histone acetylation was examined by western blot. GPR41 was expressed by basophils and was enhanced by IL-3. Acetate induced intracellular calcium influx in basophils which was suppressed by blocking GPR41. Propionate and butyrate, but not acetate, induced the expression of CD69 and IL-13. In addition, propionate and butyrate enhanced IgE-mediated basophil degranulation but inhibited basophil survival and IL-4 secretion. Propionate and butyrate induced histone acetylation of basophils and suppression of HDACs activity mimicked the effects of propionate and butyrate on human basophils. Our findings demonstrate that propionate and butyrate may play a complex role in regulating basophil apoptosis, activation and degranulation via inhibiting HDACs activity. The in vivo effects of SCFAs on the regulation of basophil-associated allergic diseases need to be further explored.
Collapse
Affiliation(s)
- Yanbiao Shi
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Meizhen Xu
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Shuai Pan
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Sijia Gao
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jinfeng Ren
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ruixue Bai
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Hui Li
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| | - Shuli Zhao
- General Clinical Research CenterNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Zhixu Shi
- Xuzhou Red Cross Blood CenterXuzhouJiangsuChina
| | - Fang Yu
- Clinical Laboratory CenterAffiliated Hospital of Guizhou Medical UniversityGuiyang, GuizhouChina
| | - Zou Xiang
- Department of Health Technology and InformaticsFaculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
6
|
He C, Gao S, Zhao X, Shi Y, Tang Y, Cao Y, Bai R, Ren J, Zhao S, Shi Z, Wang H. An efficient and cost-effective method for the purification of human basophils. Cytometry A 2021; 101:150-158. [PMID: 34173319 DOI: 10.1002/cyto.a.24479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022]
Abstract
Human basophils are terminally differentiated granulocytes that are least abundant in the peripheral blood but play important roles in allergic diseases. Studies on human basophils are limited by the high cost on the isolation of human basophils by magnetic-activated cell sorting (MACS) for negative depletion of non-basophils, followed by CD123-based positive selection of basophils. Moreover, such CD123-based purification of basophils may be limited by blocking of the binding of IL-3/anti-CD123 to the surface CD123. Here we identified SSClow CD4- CD127- HLA-DR- CRTH2high as unique markers for the identification of human basophils through stringent flow cytometric analysis of leukocytes from buffy coat. We established an efficient and cost-effective method for isolating human basophils from buffy coat based on positive magnetic selection of CRTH2+ cells followed by flow cytometric sorting of SSClow CD4- CD127- HLA-DR- CRTH2high cells. Approximately 1 to 1.5 million basophils were isolated from one buffy coat with a purity of >97%. Basophils purified by this method were viable and efficiently responded to key regulators of basophils including IL-3 and anti-IgE. This method can be used for purifying human basophils for subsequent functional studies.
Collapse
Affiliation(s)
- Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sijia Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyi Zhao
- Department of Clinical Medicine, School of the first Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanbiao Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanyan Tang
- Department of Clinical Medicine, School of the first Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yiwei Cao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruixue Bai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinfeng Ren
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhixu Shi
- Xuzhou Red Cross Blood Center, Xuzhou, Jiangsu, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|