1
|
Riitano G, Spinelli F, Manganelli V, Caissutti D, Capozzi A, Garufi C, Garofalo T, Misasi R, Sorice M, Conti F, Longo A, Alessandri C. Wnt signaling as a translational target in rheumatoid and psoriatic arthritis. J Transl Med 2025; 23:158. [PMID: 39905450 DOI: 10.1186/s12967-025-06174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) and Psoriatic arthritis (PsA) are chronic inflammatory diseases mainly affecting joints. RA primarily targets the synovial joints and is characterized by cartilage and bone erosion, whereas PsA is associated with skin and nail psoriasis and is characterized by erosive bone damage with an exuberant bone formation and soft tissue involvement. Recent evidence described the involvement of the Wnt pathway in the pathogenesis of these diseases. Thus, we aimed to analyze some components of Wnt signaling, i.e. DKK1, Wnt 5a and β-catenin, and their association with disease activity indices, investigating possible differences between the two diseases. METHODS Sera from 18 RA patients naïve for biological therapy, 18 PsA patients and 20 matched healthy donors (HD) were tested for DKK1 by ELISA, Wnt 5a and β-catenin by Immunoblotting. Values were correlated with CTX-1, detected by ELISA, and with disease activity indices: Disease Activity Score on 28 joints (DAS28-CRP) for RA and the Disease Activity in Psoriatic Arthritis (DAPSA) score for PsA. RESULTS This study highlights significant increase in DKK1, Wnt 5a, and β-catenin levels in RA and PsA patients compared to HD, with distinct patterns of correlation with disease activity indices. Indeed, in RA patients, DKK1 levels positively correlated with DAS28-CRP score, whereas in PsA patients, DKK1 levels negatively correlated with DAPSA score. Our findings showed a strong correlation between DKK1 and CTX-1 levels in RA patients, supporting the relationship between DKK1 levels and the presence of joint erosions. Furthermore, a significant positive correlation was found between β-catenin and IL-6 levels in RA, indicating that β-catenin may be involved in the inflammatory cascade. CONCLUSION This study compares the involvement of Wnt signaling in RA and PsA, suggesting that Wnt signaling may represent a possible mechanism of disease activity. In particular, it indicates that DKK1 levels are correlated with CTX-1, a marker of bone resorption, and with disease activity in RA patients. These findings underscore the importance of these biomarkers in the potential monitoring of patients, offering insights into disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Francesca Spinelli
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Cristina Garufi
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy.
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Cristiano Alessandri
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
2
|
Ebersberger A, Schaible HG. Do cytokines play a role in the transition from acute to chronic musculoskeletal pain? Pharmacol Res 2025; 212:107585. [PMID: 39778638 DOI: 10.1016/j.phrs.2025.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Musculoskeletal pain has a high prevalence of transition to chronic pain and/or persistence as chronic pain for years or even a lifetime. Possible mechanisms for the development of such pain states are often reflected in inflammatory or neuropathic processes involving, among others, cytokines and other molecules. Since biologics such as blockers of TNF or IL-6 can attenuate inflammation and pain in a subset of patients with rheumatoid arthritis, the question arises to what extent cytokines are involved in the generation of pain in human musculoskeletal diseases. In numerous experimental non-human studies, cytokines have been shown to alter neuronal sensitivity in the peripheral and central nociceptive systems. In this review, we addressed the involvement of cytokines in postoperative pain, complex regional pain syndrome, rheumatoid arthritis, osteoarthritis, temporomandibular joint disease, low back pain and fibromyalgia using PubMed searches including meta-analyses of data. There is evidence that certain pro- and anti-inflammatory cytokines are regulated in all of these diseases, often in both acute and chronic disease states. However, within these data, we found a great deal of heterogeneity in the association between cytokine levels and pain. Neutralization of cytokines showed antinociceptive effects in subgroups of patients with chronic pain (e.g., in a proportion of patients with rheumatoid arthritis), but failed to reduce chronic pain in other diseases (e.g., osteoarthritis). More systematic studies are needed to unravel the pathogenic role of cytokines in human musculoskeletal pain, taking into account the disease process and the mechanisms of pain initiation and maintenance.
Collapse
Affiliation(s)
- Andrea Ebersberger
- University Hospital of Jena, Institute of Physiology 1, Jena D-07740, Germany.
| | - Hans-Georg Schaible
- University Hospital of Jena, Institute of Physiology 1, Jena D-07740, Germany.
| |
Collapse
|
3
|
Azhdari M, Zur Hausen A. Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res 2025; 211:107565. [PMID: 39725339 DOI: 10.1016/j.phrs.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels. In the adult cardiovascular system, these pathways continue to maintain tissue homeostasis and arrange adaptive responses to various physiological and pathological stimuli. Dysregulation of Wnt and Notch signaling has been involved in the pathogenesis of numerous cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and heart failure. Abnormal activation or suppression of these pathways in specific cell types can contribute to endothelial dysfunction, vascular remodeling, cardiomyocyte hypertrophy, impaired cardiac contractility and dead. Understanding the complex interplay between Wnt and Notch signaling in the cardiovascular system has led to the investigation of these pathways as potential therapeutic targets in clinical trials. In conclusion, this review summarizes the current knowledge on the roles of Wnt and Notch signaling in the development and homeostasis of cardiomyocytes, endothelial cells, and smooth muscle cells. It further discusses the dysregulation of these pathways in the context of major cardiovascular diseases and the ongoing clinical investigations targeting Wnt and Notch signaling for therapeutic intervention.
Collapse
Affiliation(s)
- Manizheh Azhdari
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| | - Axel Zur Hausen
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| |
Collapse
|
4
|
Cheng HH, Luo M, Jiang JR, Wang CX. In Rheumatoid Arthritis, A Review of ncRNAs Related to NF-κB Signaling Pathways. Curr Pharm Biotechnol 2025; 26:319-327. [PMID: 38424418 DOI: 10.2174/0113892010262829240214061103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/22/2023] [Accepted: 11/24/2023] [Indexed: 03/02/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with no known cure that results in joint deformities and dysfunction, significantly impacting the quality of life of patients. The abnormal NF-κB signaling pathway in RA has emerged as a crucial research area for the development of RA therapies, with non-coding RNAs (ncRNAs) serving as a potentially meaningful avenue to regulate it. Thus, understanding the role of ncRNAs in RA and the identification of new therapeutic targets have become pressing issues in the field. In this review, we aim to summarize recent studies on ncRNAs that regulate the NF-κB signaling pathway in RA, including miRNAs, lncRNAs, and circRNAs, as well as the mechanisms by which drugs modulate NF-κB activity. By highlighting these recent advances, we hope to promote further research into targeted RA therapy and provide novel directions and ideas for researchers in the field.
Collapse
Affiliation(s)
- Hsiang-Hung Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Mei Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Jing-Rong Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Chun-Xia Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| |
Collapse
|
5
|
Zhang Y, Tao H, Zhang L, Li X, Shi Y, Sun W, Chen W, Zhao Y, Wang L, Yang X, Gu C. Battling pain from osteoarthritis: causing novel cell death. Acta Biochim Biophys Sin (Shanghai) 2024; 57:169-181. [PMID: 39463202 PMCID: PMC11877141 DOI: 10.3724/abbs.2024189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Osteoarthritis (OA) is a significant contributor to pain and disability worldwide. Pain is the main complaint of OA patients attending the clinic and has a large impact on their quality of life and economic standards. However, existing treatments for OA-related pain have not been shown to achieve good relief. The main focus is on preventing and slowing the progression of OA so that the problem of OA pain can be resolved. Pain caused by OA is complex, with the nature, location, duration, and intensity of pain changing as the disease progresses. Previous research has highlighted the role of various forms of cell death, such as apoptosis and necrosis, in the progression of pain in OA. Emerging studies have identified additional forms of novel cell death, such as pyroptosis, ferroptosis, and necroptosis that are linked to pain in OA. Different types of cell death contribute to tissue damage in OA by impacting inflammatory responses, reactive oxygen species (ROS) production, and calcium ion levels, ultimately leading to the development of pain. Evidence suggests that targeting novel types of cell death could help alleviate pain in OA patients. This review delves into the complex mechanisms of OA pain, explores the relationship between different modes of novel cell death and pain, and proposes novel cell death as a viable strategy for the treatment of these conditions, with the goal of providing scientific references for the development of future OA pain treatments and drugs.
Collapse
Affiliation(s)
- Yuheng Zhang
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Huaqiang Tao
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou226000China
| | - Liyuan Zhang
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Xueyan Li
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Yi Shi
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Wen Sun
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Wenlong Chen
- Orthopedics and Sports Medicine CenterSuzhou Municipal HospitalNanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Yuhu Zhao
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou226000China
| | - Liangliang Wang
- Department of Orthopedicsthe Affiliated Changzhou Second People’s Hospital of
Nanjing Medical UniversityChangzhou213003China
| | - Xing Yang
- Orthopedics and Sports Medicine CenterSuzhou Municipal HospitalNanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Chengyong Gu
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| |
Collapse
|
6
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
7
|
Zhou R, Yin L, Zhang X, Zhu K. SFRP1 reduces neutrophil infiltration and inhibits the Wnt/β-catenin pathway to alleviate oral submucous fibrosis. In Vitro Cell Dev Biol Anim 2024; 60:1034-1045. [PMID: 39017751 DOI: 10.1007/s11626-024-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Oral submucous fibrosis (OSF) is a precancerous condition characterized by oral mucosal atrophy with fibrosis of the submucosal tissue. OSF has a high prevalence, and treatment requires improvement. Our study aims to investigate the role and mechanism of secreted frizzled-related protein 1 (SFRP1) in OSF. We constructed an arecoline-induced OSF mice model. Through Pearson's correlation analysis, we investigated the association between SFRP1 levels and expressions of proteins related to the Wnt/β-catenin signaling pathway, as well as the correlation between SFRP1 levels and the degree of neutrophil infiltration. Moreover, neutrophil infiltration intensity, tissue fibrosis degree, and levels of β-catenin, Cyclin D1, and c-myc were evaluated after SFRP1 overexpression treatment through immunohistochemical and biochemical assays. A Wnt/β-catenin pathway activator was used to investigate the molecular mechanism of SFRP1 in the arecoline-induced OSF cell model. Compared with the control group, mice in the OSF group exhibited increased collagen deposition and more severe fibrosis in the oral mucosal tissue (OMT). In the OMT of OSF mice, the levels of SFRP1 were decreased. The levels of SFRP1 exhibited a negative correlation with the levels of Wnt/β-catenin proteins and neutrophil infiltration in the OMT. Upon SFRP1 overexpression, there was a reduction in neutrophil infiltration and fibrosis in the OMT, as well as inhibition of Wnt/β-catenin-related proteins. In vitro, the Wnt/β-catenin pathway activator further reversed the effect of SFRP1 overexpression on OSF. SFRP1 attenuates OSF by reducing neutrophil infiltration and inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Stomatology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Lin Yin
- Department of Stomatology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Xin Zhang
- Department of Stomatology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Keke Zhu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
8
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Scharr M, Hirt B, Neckel PH. Spatial gene expression profile of Wnt-signaling components in the murine enteric nervous system. Front Immunol 2024; 15:1302488. [PMID: 38322254 PMCID: PMC10846065 DOI: 10.3389/fimmu.2024.1302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Wnt-signaling is a key regulator of stem cell homeostasis, extensively studied in the intestinal crypt and other metazoan tissues. Yet, there is hardly any data available on the presence of Wnt-signaling components in the adult enteric nervous system (ENS) in vivo. Methods Therefore, we employed RNAscope HiPlex-assay, a novel and more sensitive in situ hybridization technology. By amplifying target specific signals, this technique enables the detection of low abundance, tightly regulated RNA content as is the case for Wnt-signaling components. Additionally, we compared our data to previously published physiological single cell RNA and RiboTag-based RNA sequencing analyses of enteric gliosis using data-mining approaches. Results Our descriptive analysis shows that several components of the multidi-mensional regulatory network of the Wnt-signaling pathway are present in the murine ENS. The transport and secretion protein for Wnt-ligands Wntless as well as canonical (Wnt3a and Wnt2b) and non-canonical Wnt-ligands (Wnt5a, Wnt7a, Wnt8b and Wnt11) are detectable within submucosal and myenteric plexus. Further, corresponding Frizzled receptors (Fzd1, Fzd3, Fzd6, and Fzd7) and regulatory signaling mediators like R-Spondin/DKK ligands are present in the ENS of the small and large intestine. Further, data mining approaches revealed, that several Wnt-related molecules are expressed by enteric glial cell clusters and are dynamically regulated during the inflammatory manifestation of enteric gliosis. Discussion Our results suggest, that canonical and non-canonical Wnt-signaling has a much broader impact on the mature ENS and its cellular homeostasis in health and inflammation, than previously anticipated.
Collapse
Affiliation(s)
| | | | - Peter H. Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|