1
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
2
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Jaiswal A, Kaushik N, Choi EH, Kaushik NK. Functional impact of non-coding RNAs in high-grade breast carcinoma: Moving from resistance to clinical applications: A comprehensive review. Biochim Biophys Acta Rev Cancer 2023; 1878:188915. [PMID: 37196783 DOI: 10.1016/j.bbcan.2023.188915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Suwon 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
4
|
Rebmann V, Schwich E, Michita RT, Grüntkemeier L, Bittner AK, Rohn H, Horn PA, Hoffmann O, Kimmig R, Kasimir-Bauer S. Systematic Evaluation of HLA-G 3'Untranslated Region Variants in Locally Advanced, Non-Metastatic Breast Cancer Patients: UTR-1, 2 or UTR-4 are Predictors for Therapy and Disease Outcome. Front Immunol 2022; 12:817132. [PMID: 35095919 PMCID: PMC8790528 DOI: 10.3389/fimmu.2021.817132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major improvements in diagnostics and therapy in early as well as in locally advanced breast cancer (LABC), metastatic relapse occurs in about 20% of patients, often explained by early micro-metastatic spread into bone marrow by disseminated tumor cells (DTC). Although neoadjuvant chemotherapy (NACT) has been a successful tool to improve overall survival (OS), there is growing evidence that various environmental factors like the non-classical human leukocyte antigen-G (HLA-G) promotes cancer invasiveness and metastatic progression. HLA-G expression is associated with regulatory elements targeting certain single-nucleotide polymorphisms (SNP) in the HLA-G 3’ untranslated region (UTR), which arrange as haplotypes. Here, we systematically evaluated the impact of HLA-G 3’UTR polymorphisms on disease status, on the presence of DTC, on soluble HLA-G levels, and on therapy and disease outcome in non-metastatic LABC patients. Although haplotype frequencies were similar in patients (n = 142) and controls (n = 204), univariate analysis revealed that the UTR-7 haplotype was related to patients with low tumor burden, whereas UTR-4 was associated with tumor sizes >T1. Furthermore, UTR-4 was associated with the presence of DTC, but UTR-3 and UTR-7 were related to absence of DTC. Additionally, increased levels of soluble HLA-G molecules were found in patients carrying UTR-7. Regarding therapy and disease outcome, univariate and multivariate analysis highlighted UTR-1 or UTR-2 as a prognostic parameter indicative for a beneficial course of disease in terms of complete response towards NACT or progression-free survival (PFS). At variance, UTR-4 was an independent risk factor for a reduced OS besides already known parameters. Taken into account the most common HLA-G 3’UTR haplotypes (UTR-1–UTR-7, UTR-18), deduction of the UTR-1/2/4 haplotypes to specific SNPs revealed that the +3003C variant, unique for UTR-4, seemed to favor a detrimental disease outcome, while the +3187G and +3196G variants, unique for UTR-1 or UTR-2, were prognostic parameters for a beneficial course of disease. In conclusion, these data suggest that the HLA-G 3’UTR variants +3003C, +3187G, and +3196G are promising candidates for the prediction of therapy and disease outcome in LABC patients.
Collapse
Affiliation(s)
- Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Medicine, Baylor College of Medicine (BCMC), Houston, TX, United States
| | - Lisa Grüntkemeier
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hana Rohn
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Zou X, Zhao Y, Liang X, Wang H, Zhu Y, Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front Immunol 2021; 12:641937. [PMID: 33868274 PMCID: PMC8047328 DOI: 10.3389/fimmu.2021.641937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is still the leading cause of death among all gynecological malignancies, despite the recent progress in cancer therapy. Immune escape and drug resistance, especially platinum-based chemotherapy, are significant factors causing disease progression, recurrence and poor prognosis in OC patients. MicroRNAs(miRNAs) are small noncoding RNAs, regulating gene expression at the transcriptional level. Accumulating evidence have indicated their crucial roles in platinum resistance. Importantly, they also act as mediators of tumor immune escape/evasion. In this review, we summarize the recent study of miRNAs involved in platinum resistance of OC and systematically analyses miRNAs involved in the regulation of OC immune escape. Further understanding of miRNAs roles and their possible mechanisms in platinum resistance and tumor escape may open new avenues for improving OC therapy.
Collapse
Affiliation(s)
- Xueqin Zou
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiuting Liang
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanling Zhu
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
6
|
He L, Wang J, Chang D, Lv D, Li H, Feng H. Effect of miRNA-200b on the proliferation and apoptosis of cervical cancer cells by targeting RhoA. Open Med (Wars) 2020; 15:1019-1027. [PMID: 33336057 PMCID: PMC7718623 DOI: 10.1515/med-2020-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
Objective This article aims to investigate the effect of miRNA-200b on the proliferation and apoptosis of cervical cancer cells by targeting RhoA. Methods HeLa cells of cervical cancer were divided into five groups: blank control group, negative control group (miRNA-200b mimic NC), miRNA-200b mimic group, RhoA-negative control group, and RhoA overexpression group. Cells were collected 48 h after transfection. The expression levels of miRNA-200b were detected by RT-PCR. Target relationship between miRNA-200b and RhoA was verified by the dual-luciferase reporter assay. RhoA mRNA and protein expression were detected by western blot and RT-PCR methods. Flow cytometry was used to detect the apoptosis of cells in each group, and the CCK8 method was used to detect the proliferation of cells in each group. The mRNA and protein expression of Bax and cyclin D1 were detected by RT-PCR and western blot. Results The results of the dual luciferase reporter assay showed that RhoA was the target gene of microRNA 200b. Compared with the blank control group and the miRNA-200b mimic-NC group, the proportion of apoptotic cells increased significantly in the miRNA-200b mimic group, and the proliferation of cells was inhibited (P < 0.05). After overexpression of RhoA, the percentage of apoptotic cells decreased and the ability of cell proliferation increased significantly (P < 0.05). Conclusion miRNA-200b can inhibit the proliferation and promote the apoptosis of cervical cancer cells by targeting the RhoA gene.
Collapse
Affiliation(s)
- Lijie He
- Departments of T Lymphocyte Subpopulation, Tianjin Fifth Central Hospital, Tianjin, 300450, People's Republic of China
| | - Jing Wang
- Departments of T Lymphocyte Subpopulation, Tianjin Fifth Central Hospital, Tianjin, 300450, People's Republic of China
| | - Dandan Chang
- Departments of Immunologic Fuction, Tianjin Fifth Central Hospital, Tianjin, 300450, People's Republic of China
| | - Dandan Lv
- Departments of Immunologic Fuction, Tianjin Fifth Central Hospital, Tianjin, 300450, People's Republic of China
| | - Haina Li
- Department of Biochemistry, Tianjin Fifth Central Hospital, 41 Zhejiang Road, Tianjin, 300450, People's Republic of China
| | - Heqiang Feng
- Department of Biochemistry, Tianjin Fifth Central Hospital, 41 Zhejiang Road, Tianjin, 300450, People's Republic of China
| |
Collapse
|
7
|
Lazaridou MF, Massa C, Handke D, Mueller A, Friedrich M, Subbarayan K, Tretbar S, Dummer R, Koelblinger P, Seliger B. Identification of microRNAs Targeting the Transporter Associated with Antigen Processing TAP1 in Melanoma. J Clin Med 2020; 9:jcm9092690. [PMID: 32825219 PMCID: PMC7563967 DOI: 10.3390/jcm9092690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The underlying molecular mechanisms of the aberrant expression of components of the HLA class I antigen processing and presentation machinery (APM) in tumors leading to evasion from T cell-mediated immune surveillance could be due to posttranscriptional regulation mediated by microRNAs (miRs). So far, some miRs controlling the expression of different APM components have been identified. Using in silico analysis and an miR enrichment protocol in combination with small RNA sequencing, miR-26b-5p and miR-21-3p were postulated to target the 3′ untranslated region (UTR) of the peptide transporter TAP1, which was confirmed by high free binding energy and dual luciferase reporter assays. Overexpression of miR-26b-5p and miR-21-3p in melanoma cells downregulated the TAP1 protein and reduced expression of HLA class I cell surface antigens, which could be reverted by miR inhibitors. Moreover, miR-26b-5p overexpression induced a decreased T cell recognition. Furthermore, an inverse expression of miR-26b-5p and miR-21-3p with TAP1 was found in primary melanoma lesions, which was linked with the frequency of CD8+ T cell infiltration. Thus, miR-26-5p and miR-21-3p are involved in the HLA class I-mediated immune escape and might be used as biomarkers or therapeutic targets for HLA class Ilow melanoma cells.
Collapse
Affiliation(s)
- Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Reinhard Dummer
- Institute of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital Salzburg, 5020 Salzburg, Austria;
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
8
|
Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol 2020; 13:25. [PMID: 32222150 PMCID: PMC7103070 DOI: 10.1186/s13045-020-00848-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
During malignant transformation, accumulated somatic mutations endow cancer cells with increased invasiveness and immunogenicity. Under selective pressure, these highly immunogenic cancer cells develop multiple strategies to evade immune attack. It has been well established that cancer cells could downregulate the expression of major histocompatibility complex, acquire alterations in interferon pathway, and upregulate the activities of immune checkpoint pathways. Besides, cancer cells secret numerous cytokines, exosomes, and microvesicles to regulate the functions and abundances of components in the tumor microenvironment including immune effector cells and professional antigen presentation cells. As the vital determinant of post-transcriptional regulation, microRNAs (miRNAs) not only participate in cancer initiation and progression but also regulate anti-cancer immune response. For instance, some miRNAs affect cancer immune surveillance and immune escape by interfering the expression of immune attack-associated molecules. A growing body of evidence indicated that cancer-derived immune modulatory miRNAs might be promising targets to counteract cancer immune escape. In this review, we summarized the role of some miRNAs in cancer immune escape and discussed their potential clinical application as treatment targets.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
9
|
HLA Class I Antigen Processing Machinery Defects in Cancer Cells-Frequency, Functional Significance, and Clinical Relevance with Special Emphasis on Their Role in T Cell-Based Immunotherapy of Malignant Disease. Methods Mol Biol 2020; 2055:325-350. [PMID: 31502159 DOI: 10.1007/978-1-4939-9773-2_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MHC class I antigen abnormalities have been shown to be one of the major immune escape mechanisms murine and human cancer cells utilize to avoid recognition and destruction by host immune system. This mechanism has clinical relevance, since it is associated with poor prognosis and/or reduced patients' survival in many types of malignant diseases. The recent impressive clinical responses to T cell-based immunotherapies triggered by checkpoint inhibitors have rekindled tumor immunologists and clinical oncologists' interest in the analysis of the human leukocyte antigen (HLA) class I antigen processing machinery (APM) expression and function in malignant cells. Abnormalities in the expression, regulation and/or function of components of this machinery have been associated with the development of resistances to T cell-based immunotherapies. In this review, following the description of the human leukocyte antigen (HLA) class I APM organization and function, the information related to the frequency of defects in HLA class I APM component expression in various types of cancer and the underlying molecular mechanisms is summarized. Then the impact of these defects on clinical response to T cell-based immunotherapies and strategies to revert this immune escape process are discussed.
Collapse
|
10
|
Zhang M, Gao D, Shi Y, Wang Y, Joshi R, Yu Q, Liu D, Alotaibi F, Zhang Y, Wang H, Li Q, Zhang ZX, Koropatnick J, Min W. miR-149-3p reverses CD8 + T-cell exhaustion by reducing inhibitory receptors and promoting cytokine secretion in breast cancer cells. Open Biol 2019; 9:190061. [PMID: 31594465 PMCID: PMC6833224 DOI: 10.1098/rsob.190061] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022] Open
Abstract
Blockade of inhibitory receptors (IRs) is one of the most effective immunotherapeutic approaches to treat cancer. Dysfunction of miRNAs is a major cause of aberrant expression of IRs and contributes to the immune escape of cancer cells. How miRNAs regulate immune checkpoint proteins in breast cancer remains largely unknown. In this study, downregulation of miRNAs was observed in PD-1-overexpressing CD8+ T cells using miRNA array analysis of mouse breast cancer homografts. The data reveal that miR-149-3p was predicted to bind the 3'UTRs of mRNAs encoding T-cell inhibitor receptors PD-1, TIM-3, BTLA and Foxp1. Treatment of CD8+ T cells with an miR-149-3p mimic reduced apoptosis, attenuated changes in mRNA markers of T-cell exhaustion and downregulated mRNAs encoding PD-1, TIM-3, BTLA and Foxp1. On the other hand, T-cell proliferation and secretion of effector cytokines indicative of increased T-cell activation (IL-2, TNF-α, IFN-γ) were upregulated after miR-149-3p mimic treatment. Moreover, the treatment with a miR-149-3p mimic promoted the capacity of CD8+ T cells to kill targeted 4T1 mouse breast tumour cells. Collectively, these data show that miR-149-3p can reverse CD8+ T-cell exhaustion and reveal it to be a potential antitumour immunotherapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yanmei Shi
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yifan Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Rakesh Joshi
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Daheng Liu
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Faizah Alotaibi
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Yujuan Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang 330006, People's Republic of China
| | - Hongmei Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
| | - Qing Li
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zhu-Xu Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - James Koropatnick
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Weiping Min
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
11
|
Seliger B. The Role of the Lymphocyte Functional Crosstalk and Regulation in the Context of Checkpoint Inhibitor Treatment-Review. Front Immunol 2019; 10:2043. [PMID: 31555274 PMCID: PMC6743269 DOI: 10.3389/fimmu.2019.02043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
During the last decade, the dynamics of the cellular crosstalk have highlighted the significance of the host vs. tumor interaction. This resulted in the development of novel immunotherapeutic strategies in order to modulate/inhibit the mechanisms leading to escape of tumor cells from immune surveillance. Different monoclonal antibodies directed against immune checkpoints, e.g., the T lymphocyte antigen 4 and the programmed cell death protein 1/ programmed cell death ligand 1 have been successfully implemented for the treatment of cancer. Despite their broad activity in many solid and hematologic tumor types, only 20–40% of patients demonstrated a durable treatment response. This might be due to an impaired T cell tumor interaction mediated by immune escape mechanisms of tumor and immune cells as well as alterations in the composition of the tumor microenvironment, peripheral blood, and microbiome. These different factors dynamically regulate different steps of the cancer immune process thereby negatively interfering with the T cell –mediated anti-tumoral immune responses. Therefore, this review will summarize the current knowledge of the different players involved in inhibiting tumor immunogenicity and mounting resistance to checkpoint inhibitors with focus on the role of tumor T cell interaction. A better insight of this process might lead to the development of strategies to revert these inhibitory processes and represent the rational for the design of novel immunotherapies and combinations in order to improve their efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
12
|
Friedrich M, Jasinski-Bergner S, Lazaridou MF, Subbarayan K, Massa C, Tretbar S, Mueller A, Handke D, Biehl K, Bukur J, Donia M, Mandelboim O, Seliger B. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunol Immunother 2019; 68:1689-1700. [PMID: 31375885 DOI: 10.1007/s00262-019-02373-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022]
Abstract
Immunotherapy aims to activate the immune system to fight cancer in a very specific and targeted manner. Despite the success of different immunotherapeutic strategies, in particular antibodies directed against checkpoints as well as adoptive T-cell therapy, the response of patients is limited in different types of cancers. This attributes to escape of the tumor from immune surveillance and development of acquired resistances during therapy. In this review, the different evasion and resistance mechanisms that limit the efficacy of immunotherapies targeting tumor-associated antigens presented by major histocompatibility complex molecules on the surface of the malignant cells are summarized. Overcoming these escape mechanisms is a great challenge, but might lead to a better clinical outcome of patients and is therefore currently a major focus of research.
Collapse
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Marco Donia
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany.
| |
Collapse
|
13
|
Tretbar US, Friedrich M, Lazaridou MF, Seliger B. Identification of Immune Modulatory miRNAs by miRNA Enrichment via RNA Affinity Purification. Methods Mol Biol 2019; 1913:81-101. [PMID: 30666600 DOI: 10.1007/978-1-4939-8979-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immune escape by cancer cells can be triggered by aberrant expression of immunological key players, which can be achieved by distinct molecular mechanisms including immune modulatory miRNAs. One suitable method to identify miRNAs that specifically target immune relevant molecules is the miRNA enrichment via RNA affinity purification method named miTRAP (miRNA trapping by RNA in vitro affinity purification). Here, we present a detailed protocol for construct preparation, RNA immobilization via MS2BP-MBP to beads, miRNA enrichment, and elution followed by analysis of the obtained miRNA candidates via qRT-PCR.
Collapse
Affiliation(s)
- Uta Sandy Tretbar
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
14
|
Emerging microRNAs in cancer diagnosis, progression, and immune surveillance. Cancer Lett 2018; 438:126-132. [DOI: 10.1016/j.canlet.2018.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
|
15
|
Exosomes: Definition, Role in Tumor Development and Clinical Implications. CANCER MICROENVIRONMENT 2018; 11:13-21. [PMID: 29721824 DOI: 10.1007/s12307-018-0211-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Exosomes are microvesicles released by cells in both physiological and pathological situations. They are surrounded by a lipid bilayer with proteins derived from the origin cell, and contain a variety of molecules, such as nucleic acids. They represent an emerging mechanism of intercellular communication, and they play an important role in the pathogenesis of cancer, stimulating proliferation and aggressiveness of cancer cells, inducing a microenvironment favorable to tumor development and controlling immune responses. Because of the growing understanding of the potential implications of extracellular vesicles in the development of malignancies, research on exosomes, and its role as a diagnostic and therapeutic tool, constitutes nowadays a very exciting and promising field.
Collapse
|
16
|
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19:3-12. [PMID: 29219656 PMCID: PMC5790373 DOI: 10.1080/15384047.2017.1394538] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022] Open
Abstract
The microenvironment in which cancer resides plays an important role in regulating cancer survival, progression, malignancy and drug resistance. Tumor microenvironment (TME) consists of heterogeneous number and types of cellular and non-cellular components that vary in relation to tumor phenotype and genotype. In recent, non-cellular secreted components of microenvironmental heterogeneity have been suggested to contain various growth factors, cytokines, RNA, DNA, metabolites, structural matrix and matricellular proteins. These non-cellular components have been indicated to orchestrate numerous ways to support cancer survival and progression by providing metabolites, energy, growth signals, evading immune surveillance, drug resistance environment, metastatic and angiogenesis cues. Thus, switching action from pro-cancer to anti-cancer activities of these secreted components of TME has been considered as a new avenue in cancer therapeutics and drug resistance. In this report, we summarize the recent pre-clinical and clinical evidences to emphasize the importance of non-cellular components of TME in achieving precision therapeutics and biomarker study.
Collapse
Affiliation(s)
- Himadri Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jayanta K. Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
17
|
Abstract
The HLA region is the most polymorphic genes in the human genome and is associated with an increasing number of disease states. Historically, HLA typing methodology has been governed by phenotypic determination. This practice has evolved into the use of molecular methods such as real-time PCR, sequence-specific oligonucleotides, and sequencing-based methods. Numerous studies have identified HLA matching as a key determinate to improve patient outcomes from transplantation. Solid-organ transplants focus on HLA-DRB1 in renal organ allocation while hematopoietic cell transplants focus on HLA-A, -B, -C, -DRB1 matching. The role of HLA typing in the future will be driven by HLA expression, understanding of HLA haplotypes, and rapid HLA typing.
Collapse
Affiliation(s)
- Claire H Edgerly
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric T Weimer
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|