1
|
Martinez P, Grant WB. Vitamin D: What role in obesity-related cancer? Semin Cancer Biol 2025; 112:135-149. [PMID: 40194750 DOI: 10.1016/j.semcancer.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Obesity is an important risk factor for incidence and death for many types of cancer. Vitamin D reduces risk of incidence and death for many types of cancer. This review outlines the mechanisms by which obesity increases risk of cancer, how vitamin D reduces risk of cancer, and the extent to which vitamin D counters the effects of obesity in cancer. Vitamin D is a partial ally against some of obesity's pro-carcinogenic effects, notably by reducing inflammation and regulating sex hormone receptors, leptin resistance, cellular energy metabolism, the microbiome, and hypoxia. However, it can act stronger in against the renin-angiotensin system, insulin resistance, and oxidative stress in cancer. Additionally, excess fat tissue sequesters vitamin D and, along with its dilution in increased body volume, further reduces its bioavailability and serum concentration, limiting its protective effects against cancer. In conclusion, while vitamin D cannot reverse obesity, it plays a significant role in mitigating its pro-carcinogenic effects by targeting several mechanisms.
Collapse
Affiliation(s)
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, 1745 Pacific Ave., Ste. 504, San Francisco, CA 94109, USA.
| |
Collapse
|
2
|
Peilin Z, Wenqiang W, Yongzhen L, Xiang C, Yongjun M, Hongjie S, Xinyu N, Qikai H. Inflammatory cytokines, metabolites, and rheumatoid arthritis. Postgrad Med J 2025; 101:313-320. [PMID: 39475124 DOI: 10.1093/postmj/qgae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Indexed: 03/18/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation and joint destruction. Although the roles of inflammatory cytokines and metabolites in RA pathogenesis have caught a lot of attention, there is a lack of systematic studies, and their causal relationships remain unclear. METHODS We conducted a two-step mendelian randomization analysis utilizing genetic data from genome-wide association studies (GWAS) of inflammatory cytokines, metabolites, and RA. The first step assessed the causal effect of 91 inflammatory cytokines and 1400 metabolites on RA risk using inverse variance weighted method, complemented by MR-Egger, weighted median, simple mode and MR-PRESSO to ensure robustness and assess pleiotropy. The second step evaluated the mediation effects of selected metabolites on the relationship between cytokines and RA. RESULTS The analysis identified 9 inflammatory cytokines, including IL-1α and IL-10, which significantly increase RA risk, while TNF-β exhibited a protective effect. Additionally, 6 metabolites were associated with increased RA risk, including 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE and arachidonate (20:4n6). Conversely, 5 metabolites, such as docosatrienoate (22:3n3) and Cholesterol, were found to reduce RA risk. The mediation analysis revealed that TNF-β may exerts its protective effect through its influence on specific metabolites, and X-24949, which accounted for a -2.58% mediated effect in the TNF-β-RA causal pathway. CONCLUSION This study explores the complex interplay between inflammatory cytokines, metabolites, and RA. The findings suggest potential biomarkers for early diagnosis and novel therapeutic targets, particularly those related to lipid metabolites and specific cytokines like TNF-β. Key message What is already known on this topic Inflammatory factors and metabolites are considered to be related to the onset and progression of RA. What this study adds We conducted a MR analysis to identify all inflammatory factors and metabolites associated with RA and calculated the mediation effect of inflammatory cytokines on RA through metabolites. This study contributes to a comprehensive understanding of the pathophysiological processes of RA. How this study might affect research, practice or policy This has laid the groundwork for developing early diagnosis methods and future treatments.
Collapse
Affiliation(s)
- Zhou Peilin
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center/Research Centre for Regenerative Medicine), The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Wang Wenqiang
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center/Research Centre for Regenerative Medicine), The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Liu Yongzhen
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center/Research Centre for Regenerative Medicine), The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Chen Xiang
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center/Research Centre for Regenerative Medicine), The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Mo Yongjun
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center/Research Centre for Regenerative Medicine), The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Department of Orthopedics, Guigang People's Hospital, Guigang, No. 1 Zhongshan Middle Road, Gangbei District, Guangxi 537110, China
| | - Su Hongjie
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center/Research Centre for Regenerative Medicine), The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Nie Xinyu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Luyang District, Hefei 230002, China
| | - Hua Qikai
- Department of Bone and Joint Surgery, (Guangxi Diabetic Foot Salvage Engineering Research Center/Research Centre for Regenerative Medicine), The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Wan X, Zhang Y, Zhang K, Mou Y, Jin X, Huang X. The alterations of ocular surface metabolism and the related immunity inflammation in dry eye. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:1-12. [PMID: 39758836 PMCID: PMC11699629 DOI: 10.1016/j.aopr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/07/2025]
Abstract
Background Dry eye disease (DED) stands as a prominent ocular condition of global prevalence, emerging as a growing concern within public health. However, the underlying mechanisms involved in its pathogenesis remain largely unknown. In recent years, with the development of metabolomics, numerous studies have reported alterations in ocular surface metabolism in DED and offered fresh perspectives on the development of DED. Main text The metabolic changes of the ocular surface of DED patients are closely intertwined with the cellular metabolism process and immune inflammation changes. This article expounds upon the correlation between ocular surface metabolism and immune inflammation alterations in DED in terms of glycolysis, lipid metabolism, amino acid metabolism, cellular signaling pathways, and immune inflammation regulation. Conclusions The alterations in ocular surface metabolism of patients with dry eye are closely associated with their inflammatory status. Our work contributes novel insights into the pathogenesis of dry eye diseases and offers innovative molecular targets for diagnosing, detecting, and managing DED patients.
Collapse
Affiliation(s)
- Xiaojie Wan
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yujie Mou
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
4
|
Guo H, Wang M, Ni C, Yang C, Fu C, Zhang X, Chen X, Wu X, Hou J, Wang L. TREM2 promotes the formation of a tumor-supportive microenvironment in hepatocellular carcinoma. J Exp Clin Cancer Res 2025; 44:20. [PMID: 39838454 PMCID: PMC11748316 DOI: 10.1186/s13046-025-03287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells 2 (TREM2), a surface receptor predominantly expressed on myeloid cells, is a major hub gene in pathology-induced immune signaling. However, its function in hepatocellular carcinoma (HCC) remains controversial. This study aimed to evaluate the role of TREM2 in the tumor microenvironment in the context of HCC progression. METHODS HCC was experimentally induced in wild-type (WT) and Trem2-deficient (Trem2-/-) mice, and clinical sample analysis and in vitro studies on macrophages were conducted. HCC cells were treated with conditioned medium from WT or Trem2-/- macrophages, and their malignant phenotypes and underlying mechanisms were analyzed. RESULTS TREM2 deficiency reduced liver tumor burden in orthotopic and subcutaneous HCC models by altering CD8+ T cell infiltration. Trem2-deficient macrophages presented increased chemokine secretion. TGF-β1 was found to be positively correlated with TREM2 expression in HCC, and TGF-β blockade reversed TREM2 induction. On the other hand, TREM2+ macrophages were found to be associated with glycolysis and PKM2 expression in HCC cells; this association may be related to the secretion of IL-1β, which enhances the malignant phenotypes of HCC cells. CONCLUSIONS These results reveal that TREM2+ macrophages play a driving role in HCC progression by suppressing CD8+ T cell infiltration and promoting tumor cell glycolysis, providing a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Hanrui Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meiling Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Jinan Maternity and Child Care Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Caiya Ni
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Affiliated Tianfu Hospital of Southwest Medical University (Meishan Tianfu New Area People's Hospital), Meishan, Sichuan, China
| | - Chunxue Fu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaoman Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
5
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
6
|
Ji Y, Zhang Z, Zhao X, Li Z, Hu X, Zhang M, Pan X, Wang X, Chen W. IL-1α facilitates GSH synthesis to counteract oxidative stress in oral squamous cell carcinoma under glucose-deprivation. Cancer Lett 2024; 589:216833. [PMID: 38548217 DOI: 10.1016/j.canlet.2024.216833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Understanding the intrinsic mechanisms underpinning cancer metabolism and therapeutic resistance is of central importance for effective nutrition-starvation therapies. Here, we report that Interleukin 1A (IL1A) mRNA and IL-1α protein facilitate glutathione (GSH) synthesis to counteract oxidative stress and resistance against nutrition-starvation therapy in oral squamous cell carcinoma (OSCC). The expression of IL1A mRNA was elevated in the case of OSCC associated with unfavorable clinical outcomes. Both IL1A mRNA and IL-1α protein expression were increased under glucose-deprivation in vitro and in vivo. The transcription of IL1A mRNA was regulated in an NRF2-dependent manner in OSCC cell lines under glucose-deprivation. Moreover, the IL-1α conferred resistance to oxidative stress via GSH synthesis in OSCC cell lines. The intratumoral administration of siRNAs against IL1A mRNA markedly reversed GSH production and sensitized OSCC cells to Anlotinib in HN6 xenograft models. Overall, the current study demonstrates novel evidence that the autocrine IL-1α favors endogenous anti-oxidative process and confers therapeutic resistance to nutrition-starvation in OSCCs.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xinran Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Zhiyin Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xin Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Mi Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China.
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China.
| |
Collapse
|
7
|
Greyling CF, Ganguly A, Sardesai AU, Churcher NKM, Lin KC, Muthukumar S, Prasad S. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1912. [PMID: 37356818 DOI: 10.1002/wnan.1912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/11/2023] [Accepted: 05/27/2023] [Indexed: 06/27/2023]
Abstract
Growing interest over recent years in personalized health monitoring coupled with the skyrocketing popularity of wearable smart devices has led to the increased relevance of wearable sweat-based sensors for biomarker detection. From optimizing workouts to risk management of cardiovascular diseases and monitoring prediabetes, the ability of sweat sensors to continuously and noninvasively measure biomarkers in real-time has a wide range of applications. Conventional sweat sensors utilize external stimulation of sweat glands to obtain samples, however; this stimulation influences the expression profile of the biomarkers and reduces the accuracy of the detection method. To address this limitation, our laboratory pioneered the development of the passive sweat sensor subfield, which allowed for our progress in developing a sweat chemistry panel. Passive sweat sensors utilize nanoporous structures to confine and detect biomarkers in ultra-low sweat volumes. The ability of passive sweat sensors to use smaller samples than conventional sensors enable users with sedentary lifestyles who perspire less to benefit from sweat sensor technology not previously afforded to them. Herein, the mechanisms and strategies of current sweat sensors are summarized with an emphasis on the emerging subfield of passive sweat-based diagnostics. Prospects for this technology include discovering new biomarkers expressed in sweat and expanding the list of relevant detectable biomarkers. Moreover, the accuracy of biomarker detection can be enhanced with machine learning using prediction algorithms trained on clinical data. Applying this machine learning in conjunction with multiplex biomarker detection will allow for a more holistic approach to trend predictions. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
| | - Antra Ganguly
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA
| | - Abha Umesh Sardesai
- Department of Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Kai-Chun Lin
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Shalini Prasad
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
8
|
Brunetti G, Barile B, Nicchia GP, Onorati F, Luciani GB, Galeone A. The ST2/IL-33 Pathway in Adult and Paediatric Heart Disease and Transplantation. Biomedicines 2023; 11:1676. [PMID: 37371771 DOI: 10.3390/biomedicines11061676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
ST2 is a member of interleukin 1 receptor family with soluble sST2 and transmembrane ST2L isoforms. The ligand of ST2 is IL-33, which determines the activation of numerous intracytoplasmic mediators following the binding with ST2L and IL-1RAcP, leading to nuclear signal and cardiovascular effect. Differently, sST2 is released in the blood and works as a decoy receptor, binding IL-33 and blocking IL-33/ST2L interaction. sST2 is mainly involved in maintaining homeostasis and/or alterations of different tissues, as counterbalance/activation of IL-33/ST2L axis is typically involved in the development of fibrosis, tissue damage, inflammation and remodeling. sST2 has been described in different clinical reports as a fundamental prognostic marker in patients with cardiovascular disease, as well as marker for the treatment monitoring of patients with heart failure; however, further studies are needed to better elucidate its role. In this review we reported the current knowledge about its role in coronary artery disease, heart failure, heart transplantation, heart valve disease, pulmonary arterial hypertension, and cardiovascular interventions.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| |
Collapse
|
9
|
Ding Y, Yi J, Wang J, Sun Z. Interleukin-1 receptor antagonist: a promising cytokine against human squamous cell carcinomas. Heliyon 2023; 9:e14960. [PMID: 37025835 PMCID: PMC10070157 DOI: 10.1016/j.heliyon.2023.e14960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation, especially chronic inflammation, is closely linked to tumor development. As essential chronic inflammatory cytokines, the interleukin family plays a key role in inflammatory infections and malignancies. The interleukin-1 (IL-1) receptor antagonist (IL1RA), as a naturally occurring receptor antagonist, is the first discovered and can compete with IL-1 in binding to the receptor. Recent studies have revealed the association of the polymorphisms in IL1RA with an increased risk of squamous cell carcinomas (SCCs), including squamous cell carcinoma of the head and neck (SCCHN), cervical squamous cell carcinoma, cutaneous squamous cell carcinoma (cSCC), esophageal squamous cell carcinoma (ESCC), and bronchus squamous cell carcinoma. Here, we reviewed the antitumor potential of IL1RA as an IL-1-targeted inhibitor.
Collapse
Affiliation(s)
- Yujie Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhida Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding author. Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J Adv Res 2023; 45:15-29. [PMID: 35659923 PMCID: PMC10006530 DOI: 10.1016/j.jare.2022.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) are the most promising stem cells for the treatment of multiple inflammatory and immune diseases due to their easy acquisition and potent immuno-regulatory capacities. These immune functions mainly depend on the MSC secretion of soluble factors. Recent studies have shown that the metabolism of MSCs plays critical roles in immunomodulation, which not only provides energy and building blocks for macromolecule synthesis but is also involved in the signaling pathway regulation. AIM OF REVIEW A thorough understanding of metabolic regulation in MSC immunomodulatory properties can provide new sights to the enhancement of MSC-based therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC immune regulation can be affected by cellular metabolism (glucose, adenosine triphosphate, lipid and amino acid metabolism), which further mediates MSC therapy efficiency in inflammatory and immune diseases. The enhancement of glycolysis of MSCs, such as signaling molecule activation, inflammatory cytokines priming, or environmental control can promote MSC immune functions and therapeutic potential. Besides glucose metabolism, inflammatory stimuli also alter the lipid molecular profile of MSCs, but the direct link with immunomodulatory properties remains to be further explored. Arginine metabolism, glutamine-glutamate metabolism and tryptophan-kynurenine via indoleamine 2,3-dioxygenase (IDO) metabolism all contribute to the immune regulation of MSCs. In addition to the metabolism dictating the MSC immune functions, MSCs also influence the metabolism of immune cells and thus determine their behaviors. However, more direct evidence of the metabolism in MSC immune abilities as well as the underlying mechanism requires to be uncovered.
Collapse
Affiliation(s)
- Hanyue Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
11
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
12
|
Dinarello A, Mills TS, Tengesdal IW, Powers NE, Azam T, Dinarello CA. Dexamethasone and OLT1177 Cooperate in the Reduction of Melanoma Growth by Inhibiting STAT3 Functions. Cells 2023; 12:294. [PMID: 36672229 PMCID: PMC9856388 DOI: 10.3390/cells12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The NLRP3 inflammasome is a multimolecular complex that processes inactive IL-1β and IL-18 into proinflammatory cytokines. OLT1177 is an orally active small compound that specifically inhibits NLRP3. Here, B16F10 melanoma were implanted in mice and treated with OLT1177 as well as combined with the glucocorticoid dexamethasone. At sacrifice, OLT1177 treated mice had significantly smaller tumors compared to tumor-bearing mice treated with vehicle. However, the combined treatment of OLT1177 plus dexamethasone revealed a greater suppression of tumor growth. This reduction was accompanied by a downregulation of nuclear and mitochondrial STAT3-dependent gene transcription and by a significant reduction of STAT3 Y705 and S727 phosphorylations in the tumors. In vitro, the human melanoma cell line 1205Lu, stimulated with IL-1α, exhibited significantly lower levels of STAT3 Y705 phosphorylation by the combination treatment, thus affecting the nuclear functions of STAT3. In the same cells, STAT3 serine 727 phosphorylation was also lower, affecting the mitochondrial functions of STAT3. In addition, metabolic analyses revealed a marked reduction of ATP production rate and glycolytic reserve in cells treated with the combination of OLT1177 plus dexamethasone. These findings demonstrate that the combination of OLT1177 and dexamethasone reduces tumor growth by targeting nuclear as well as mitochondrial functions of STAT3.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Taylor S. Mills
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Isak W. Tengesdal
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicholas E. Powers
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Tania Azam
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
13
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
14
|
Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front Pharmacol 2022; 13:1091779. [PMID: 36588722 PMCID: PMC9795015 DOI: 10.3389/fphar.2022.1091779] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
It is well known that tumor cells rely mainly on aerobic glycolysis for energy production even in the presence of oxygen, and glycolysis is a known modulator of tumorigenesis and tumor development. The tumor microenvironment (TME) is composed of tumor cells, various immune cells, cytokines, and extracellular matrix, among other factors, and is a complex niche supporting the survival and development of tumor cells and through which they interact and co-evolve with other tumor cells. In recent years, there has been a renewed interest in glycolysis and the TME. Many studies have found that glycolysis promotes tumor growth, metastasis, and chemoresistance, as well as inhibiting the apoptosis of tumor cells. In addition, lactic acid, a metabolite of glycolysis, can also accumulate in the TME, leading to reduced extracellular pH and immunosuppression, and affecting the TME. This review discusses the significance of glycolysis in tumor development, its association with the TME, and potential glycolysis-targeted therapies, to provide new ideas for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Daoying Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Zhen Duan
- Function Examination Center, Anhui Chest Hospital, Hefei, China
| | - Zhenyu Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Fangfang Ge
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Ran Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Lingsuo Kong,
| |
Collapse
|
15
|
Involvement of Mitochondrial Dysfunction in the Inflammatory Response in Human Mesothelial Cells from Peritoneal Dialysis Effluent. Antioxidants (Basel) 2022; 11:antiox11112184. [DOI: 10.3390/antiox11112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies have related mitochondrial impairment with peritoneal membrane damage during peritoneal dialysis (PD) therapy. Here, we assessed the involvement of mitochondrial dysfunction in the inflammatory response in human mesothelial cells, a hallmark in the pathogenesis of PD-related peritoneal membrane damage. Our ex vivo studies showed that IL-1β causes a drop in the mitochondrial membrane potential in cells from peritoneal effluent. Moreover, when mitochondrial damage was induced by inhibitors of mitochondrial function, a low-grade inflammatory response was generated. Interestingly, mitochondrial damage sensitized mesothelial cells, causing a significant increase in the inflammatory response induced by cytokines, in which ROS generation and NF-κB activation appear to be involved, since inflammation was counteracted by both mitoTEMPO (mitochondrial ROS scavenger) and BAY-117085 (NF-κB inhibitor). Furthermore, the natural anti-inflammatory antioxidant resveratrol significantly attenuated the inflammatory response, by reversing the decline in mitochondrial membrane potential and decreasing the expression of IL-8, COX-2 and PGE2 caused by IL-1β. These findings suggest that IL-1β regulates mitochondrial function in mesothelial cells and that mitochondrial dysfunction could induce an inflammatory scenario that sensitizes these cells, causing significant amplification of the inflammatory response induced by cytokines. Resveratrol may represent a promising strategy in controlling the mesothelial inflammatory response to PD.
Collapse
|
16
|
Chen J, Xiao P, Song D, Song D, Chen Z, Li H. Growth stimulation expressed gene 2 (ST2): Clinical research and application in the cardiovascular related diseases. Front Cardiovasc Med 2022; 9:1007450. [PMID: 36407452 PMCID: PMC9671940 DOI: 10.3389/fcvm.2022.1007450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
As an interleukin (IL)-1 receptor family member, scientists found that when circulating soluble growth stimulation expressed gene 2 (sST2) is low, its ligand, IL-33, will bind to ST2L to exert protective effects on various types of cells. On the other hand, competitive binding of IL-33 occurs when sST2 concentrations are increased, followed by a reduction in the amount available for cell protection. Based on this mechanism, the usage of sST2 is to identify the population of high-risk patients with cardiovascular disease. In recent years, the role of serum sST2 in the occurrence, diagnosis, prognosis, and treatment of cardiovascular diseases has been gradually accepted by doctors. This manuscript systemically reviews the biological functions and applications of sST2 in disease diagnosis and treatment, especially for cardiovascular diseases. In clinical testing, since IL-33 can negatively impact sST2 measurement accuracy, the properties of current assay kits have been summarized and discussed to provide a clear view of the clinical chemistry results. Although sST2 is a promising biomarker, there are few quantitative approaches available for clinical testing. In this context, a mass spectrometry (MS)-based approach might be an option, as this is a powerful analytical tool to distinguish structurally related molecules in the matrix and decrease false-positive results in clinical testing. Moreover, approaches developed based on MS would be an ideal way to further study sST2 standardization.
Collapse
Affiliation(s)
- Jinchao Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- *Correspondence: Peng Xiao,
| | - Dan Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Dewei Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- Hongmei Li,
| |
Collapse
|
17
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Dantas WS, Zunica ERM, Heintz EC, Vandanmagsar B, Floyd ZE, Yu Y, Fujioka H, Hoppel CL, Belmont KP, Axelrod CL, Kirwan JP. Mitochondrial uncoupling attenuates sarcopenic obesity by enhancing skeletal muscle mitophagy and quality control. J Cachexia Sarcopenia Muscle 2022; 13:1821-1836. [PMID: 35304976 PMCID: PMC9178352 DOI: 10.1002/jcsm.12982] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sarcopenic obesity is a highly prevalent disease with poor survival and ineffective medical interventions. Mitochondrial dysfunction is purported to be central in the pathogenesis of sarcopenic obesity by impairing both organelle biogenesis and quality control. We have previously identified that a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 is orally available and selectively lowers respiratory coupling efficiency and protects against diet-induced obesity in mice. Here, we tested the hypothesis that mitochondrial uncoupling simultaneously attenuates loss of muscle function and weight gain in a mouse model of sarcopenic obesity. METHODS Eighty-week-old male C57BL/6J mice with obesity were randomized to 10 weeks of high fat diet (CTRL) or BAM15 (BAM15; 0.1% w/w in high fat diet) treatment. Body weight and food intake were measured weekly. Body composition, muscle function, energy expenditure, locomotor activity, and glucose tolerance were determined after treatment. Skeletal muscle was harvested and evaluated for histology, gene expression, protein signalling, and mitochondrial structure and function. RESULTS BAM15 decreased body weight (54.0 ± 2.0 vs. 42.3 ± 1.3 g, P < 0.001) which was attributable to increased energy expenditure (10.1 ± 0.1 vs. 11.3 ± 0.4 kcal/day, P < 0.001). BAM15 increased muscle mass (52.7 ± 0.4 vs. 59.4 ± 1.0%, P < 0.001), strength (91.1 ± 1.3 vs. 124.9 ± 1.2 g, P < 0.0001), and locomotor activity (347.0 ± 14.4 vs. 432.7 ± 32.0 m, P < 0.001). Improvements in physical function were mediated in part by reductions in skeletal muscle inflammation (interleukin 6 and gp130, both P < 0.05), enhanced mitochondrial function, and improved endoplasmic reticulum homeostasis. Specifically, BAM15 activated mitochondrial quality control (PINK1-ubiquitin binding and LC3II, P < 0.01), increased mitochondrial activity (citrate synthase and complex II activity, all P < 0.05), restricted endoplasmic reticulum (ER) misfolding (decreased oligomer A11 insoluble/soluble ratio, P < 0.0001) while limiting ER stress (decreased PERK signalling, P < 0.0001), apoptotic signalling (decreased cytochrome C release and Caspase-3/9 activation, all P < 0.001), and muscle protein degradation (decreased 14-kDa actin fragment insoluble/soluble ratio, P < 0.001). CONCLUSIONS Mitochondrial uncoupling by agents such as BAM15 may mitigate age-related decline in muscle mass and function by molecular and cellular bioenergetic adaptations that confer protection against sarcopenic obesity.
Collapse
Affiliation(s)
- Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Elizabeth C Heintz
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Bolormaa Vandanmagsar
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Z Elizabeth Floyd
- Ubiquitin Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Yongmei Yu
- Ubiquitin Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core, Case Western Reserve University, Cleveland, OH, USA.,Center for Mitochondrial Diseases, Case Western Reserve University of School of Medicine, Cleveland, OH, USA
| | - Charles L Hoppel
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.,Center for Mitochondrial Diseases, Case Western Reserve University of School of Medicine, Cleveland, OH, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Kathryn P Belmont
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
19
|
Eades L, Drozd M, Cubbon RM. Hypoxia signalling in the regulation of innate immune training. Biochem Soc Trans 2022; 50:413-422. [PMID: 35015075 PMCID: PMC9022967 DOI: 10.1042/bst20210857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Innate immune function is shaped by prior exposures in a phenomenon often referred to as 'memory' or 'training'. Diverse stimuli, ranging from pathogen-associated molecules to atherogenic lipoproteins, induce long-lasting training, impacting on future responses, even to distinct stimuli. It is now recognised that epigenetic modifications in innate immune cells, and their progenitors, underpin these sustained behavioural changes, and that rewired cellular metabolism plays a key role in facilitating such epigenetic marks. Oxygen is central to cellular metabolism, and cells exposed to hypoxia undergo profound metabolic rewiring. A central effector of these responses are the hypoxia inducible factors (or HIFs), which drive transcriptional programmes aiming to adapt cellular homeostasis, such as by increasing glycolysis. These metabolic shifts indirectly promote post-translational modification of the DNA-binding histone proteins, and also of DNA itself, which are retained even after cellular oxygen tension and metabolism normalise, chronically altering DNA accessibility and utilisation. Notably, the activity of HIFs can be induced in some normoxic circumstances, indicating their broad importance to cell biology, irrespective of oxygen tension. Some HIFs are implicated in innate immune training and hypoxia is present in many disease states, yet many questions remain about the association between hypoxia and training, both in health and disease. Moreover, it is now appreciated that cellular responses to hypoxia are mediated by non-HIF pathways, suggesting that other mechanisms of training may be possible. This review sets out to define what is already known about the topic, address gaps in our knowledge, and provide recommendations for future research.
Collapse
Affiliation(s)
- Lauren Eades
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Richard M. Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| |
Collapse
|
20
|
Sun F, Geng H, Sun Y, Feng W, Tian T, Ye L, Lei M. Exosomes derived from the blood of patients with sepsis regulate apoptosis and aerobic glycolysis in human myocardial cells via the hsa‑miR‑1262/SLC2A1 signaling pathway. Mol Med Rep 2022; 25:119. [PMID: 35137927 DOI: 10.3892/mmr.2022.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/03/2021] [Indexed: 11/05/2022] Open
Abstract
Myocardial injury occurs in the majority of patients with sepsis and is associated with early mortality. MicroRNAs (miRs) transported by exosomes have been implicated in numerous diseases, such as tumors, acute myocardial infarction and cardiovascular disease. Human serum albumin (hsa)‑miR‑1262 has been shown to serve a role in sepsis; however, its role in exosomes isolated from patients with sepsis and septic myocardial injury remains unclear. In the present study, serum exosomes were isolated via ultracentrifugation. Solute carrier family 2 member 1 (SLC2A1), an essential mediator in energy metabolism, was silenced and overexpressed in the human myocardial AC16 cell line using lentiviral plasmids containing either SLC2A1‑targeting short interfering RNAs or SLC2A1 cDNA, respectively. Cell apoptosis was analyzed using flow cytometry, and the extracellular acidification rate and oxygen consumption rate of AC16 cells were determined using an XFe24 Extracellular Flux Analyzer. Furthermore, the dual‑luciferase reporter assay was used to evaluate the interaction between hsa‑miR‑1262 and SLC2A1. Finally, reverse transcription‑quantitative PCR and western blotting were used to evaluate gene and protein expression levels, respectively. Exosomes isolated from the blood of patients with sepsis (Sepsis‑exo) markedly reduced aerobic glycolysis activity, but significantly promoted the apoptosis of human AC16 cells in a time‑dependent manner. Moreover, Sepsis‑exo significantly increased hsa‑miR‑1262 expression levels, but significantly decreased SLC2A1 mRNA expression levels in a time‑dependent manner. Bioinformatics analysis indicated that hsa‑miR‑1262 bound to the 3' untranslated region of SLC2A1 to negatively regulate its expression. The silencing of SLC2A1 promoted apoptosis and suppressed glycolysis in AC16 cells, whereas SLC2A1 overexpression resulted in the opposite effects. Therefore, the present study demonstrated that exosomes derived from patients with sepsis may inhibit glycolysis and promote the apoptosis of human myocardial cells through exosomal hsa‑miR‑1262 via its target SLC2A1. These findings highlighted the importance of the hsa‑miR‑1262/SLC2A1 signaling pathway in septic myocardial injury and provided novel insights into therapeutic strategies for septic myocardial depression.
Collapse
Affiliation(s)
- Fangyuan Sun
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Huan Geng
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yuxia Sun
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wentao Feng
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Tianning Tian
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Liang Ye
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ming Lei
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
21
|
Tan Q, Duan L, Huang Q, Chen W, Yang Z, Chen J, Jin Y. Interleukin -1β Promotes Lung Adenocarcinoma Growth and Invasion Through Promoting Glycolysis via p38 Pathway. J Inflamm Res 2021; 14:6491-6509. [PMID: 34880649 PMCID: PMC8648110 DOI: 10.2147/jir.s319433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background There is a close relationship among inflammation, glycolysis, and tumors. The IL-1 family includes important inflammatory cytokines, among which IL-1β has been widely studied. In this study, we focused on the effect of IL-1β on glycolysis of lung adenocarcinoma (LUAD) cells in vivo and in vitro and explored its possible mechanisms. Methods A bioinformatic database and quantitative real-time PCR were used to analyze the expression of glycolysis-related enzyme genes and their correlations with IL1β in human LUAD samples. The human LUAD cell line A549 and Lewis lung carcinoma LLC cell line were stimulated with IL-1β. In vitro treatment effects, including glycolysis level, migration, and invasion were evaluated with a glucose assay kit, lactate assay kit, Western blotting, wound healing, and the transwell method. We established a mouse model of subcutaneous tumors using LLC cells pretreated with IL-1β and analyzed in vivo treatment effects through positron-emission tomography-computed tomography and staining. Virtual screening and molecular dynamic simulation were used to screen potential inhibitors of IL-1β. Results Our results showed that IL1β was positively correlated with the expression of glycolysis-related enzyme genes in LUAD. Glycolysis, migration, and invasion significantly increased in A549 and LLC stimulated with IL-1β. In vivo, IL-1β increased growth, mean standard uptake value, and pulmonary tumor metastasis, which were inhibited by the glycolysis inhibitor 2-deoxy-D-glucose and p38-pathway inhibitors. Small molecular compound ZINC14610053 was suggested being a potential inhibitor of IL-1β. Conclusion IL-1β promotes glycolysis of LUAD cells through p38 signaling, further enhancing tumor-cell migration and invasion. These results show that IL-1β links inflammation to glycolysis in LUAD, and targeting IL-1β and the glycolysis pathway may be a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Wenjuan Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| |
Collapse
|
22
|
Piotrowski ER, Tift MS, Crocker DE, Pearson AB, Vázquez-Medina JP, Keith AD, Khudyakov JI. Ontogeny of Carbon Monoxide-Related Gene Expression in a Deep-Diving Marine Mammal. Front Physiol 2021; 12:762102. [PMID: 34744798 PMCID: PMC8567018 DOI: 10.3389/fphys.2021.762102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Marine mammals such as northern elephant seals (NES) routinely experience hypoxemia and ischemia-reperfusion events to many tissues during deep dives with no apparent adverse effects. Adaptations to diving include increased antioxidants and elevated oxygen storage capacity associated with high hemoprotein content in blood and muscle. The natural turnover of heme by heme oxygenase enzymes (encoded by HMOX1 and HMOX2) produces endogenous carbon monoxide (CO), which is present at high levels in NES blood and has been shown to have cytoprotective effects in laboratory systems exposed to hypoxia. To understand how pathways associated with endogenous CO production and signaling change across ontogeny in diving mammals, we measured muscle CO and baseline expression of 17 CO-related genes in skeletal muscle and whole blood of three age classes of NES. Muscle CO levels approached those of animals exposed to high exogenous CO, increased with age, and were significantly correlated with gene expression levels. Muscle expression of genes associated with CO production and antioxidant defenses (HMOX1, BVR, GPX3, PRDX1) increased with age and was highest in adult females, while that of genes associated with protection from lipid peroxidation (GPX4, PRDX6, PRDX1, SIRT1) was highest in adult males. In contrast, muscle expression of mitochondrial biogenesis regulators (PGC1A, ESRRA, ESRRG) was highest in pups, while genes associated with inflammation (HMOX2, NRF2, IL1B) did not vary with age or sex. Blood expression of genes involved in regulation of inflammation (IL1B, NRF2, BVR, IL10) was highest in pups, while HMOX1, HMOX2 and pro-inflammatory markers (TLR4, CCL4, PRDX1, TNFA) did not vary with age. We propose that ontogenetic upregulation of baseline HMOX1 expression in skeletal muscle of NES may, in part, underlie increases in CO levels and expression of genes encoding antioxidant enzymes. HMOX2, in turn, may play a role in regulating inflammation related to ischemia and reperfusion in muscle and circulating immune cells. Our data suggest putative ontogenetic mechanisms that may enable phocid pups to transition to a deep-diving lifestyle, including high baseline expression of genes associated with mitochondrial biogenesis and immune system activation during postnatal development and increased expression of genes associated with protection from lipid peroxidation in adulthood.
Collapse
Affiliation(s)
| | - Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Daniel E. Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, United States
| | - Anna B. Pearson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - José P. Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Anna D. Keith
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
23
|
Chen C, Rong P, Yang M, Ma X, Feng Z, Wang W. The Role of Interleukin-1β in Destruction of Transplanted Islets. Cell Transplant 2021; 29:963689720934413. [PMID: 32543895 PMCID: PMC7563886 DOI: 10.1177/0963689720934413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Islet transplantation is a promising β-cell replacement therapy for type 1 diabetes, which can reduce glucose lability and hypoglycemic episodes compared with standard insulin therapy. Despite the tremendous progress made in this field, challenges remain in terms of long-term successful transplant outcomes. The insulin independence rate remains low after islet transplantation from one donor pancreas. It has been reported that the islet-related inflammatory response is the main cause of early islet damage and graft loss after transplantation. The production of interleukin-1β (IL-1β) has considered to be one of the primary harmful inflammatory events during pancreatic procurement, islet isolation, and islet transplantation. Evidence suggests that the innate immune response is upregulated through the activity of Toll-like receptors and The NACHT Domain-Leucine-Rich Repeat and PYD-containing Protein 3 inflammasome, which are the starting points for a series of signaling events that drive excessive IL-1β production in islet transplantation. In this review, we show recent contributions to the advancement of knowledge of IL-1β in islet transplantation and discuss several strategies targeting IL-1β for improving islet engraftment.
Collapse
Affiliation(s)
- Cheng Chen
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhichao Feng
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Bodhale N, Ohms M, Ferreira C, Mesquita I, Mukherjee A, André S, Sarkar A, Estaquier J, Laskay T, Saha B, Silvestre R. Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine 2020; 147:155267. [PMID: 32917471 DOI: 10.1016/j.cyto.2020.155267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Leishmania, a protozoan parasite inflicting the complex of diseases called Leishmaniases, resides and replicates as amastigotes within mammalian macrophages. As macrophages are metabolically highly active and can generate free radicals that can destroy this parasite, Leishmania also devise strategies to modulate the host cell metabolism. However, the metabolic changes can also be influenced by the anti-leishmanial immune response mediated by cytokines. This bidirectional, dynamic and complex metabolic coupling established between Leishmania and its host is the result of a long co-evolutionary process. Due to the continuous alterations imposed by the host microenvironment, such metabolic coupling continues to be dynamically regulated. The constant pursuit and competition for nutrients in the host-Leishmania duet alter the host metabolic pathways with major consequences for its nutritional reserves, eventually affecting the phenotype and functionality of the host cell. Altered phenotype and functions of macrophages are particularly relevant to immune cells, as perturbed metabolic fluxes can crucially affect the activation, differentiation, and functions of host immune cells. All these changes can deterministically direct the outcome of an infection. Cytokines and metabolic fluxes can bidirectionally influence each other through molecular sensors and regulators to dictate the final infection outcome. Our studies along with those from others have now identified the metabolic nodes that can be targeted for therapy.
Collapse
Affiliation(s)
- Neelam Bodhale
- National Centre for Cell Science, 411007 Pune, India; Jagadis Bose National Science Talent Search (JBNSTS), Kolkata 700107 India
| | - Mareike Ohms
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM U1124, Université Paris Descartes, 75006 Paris, France
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Descartes, 75006 Paris, France; Centre de Recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
25
|
Li W, Li Y, Jin J. The essential function of IL-33 in metabolic regulation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:768-775. [PMID: 32445465 DOI: 10.1093/abbs/gmaa045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-33 (IL-33) is produced by various types of cells under physical or pathological conditions. As a multifunctional partner in health and disease, current evidence reveals that IL-33 also participates in several metabolic processes. IL-33 has been proven to contribute to regulating the activity of ST2+ group 2 innate lymphoid cells and regulatory T cells in adipose, which leads to the shift of insulin sensitivity and glucose clearance in glucose metabolism, thermogenesis, and adipocyte beiging in adipose metabolism. In this review, we briefly summarize the biological characteristics of Il-33 and discuss its regulatory function in glucose and adipose metabolism. By clarifying the underlying mechanism of IL-33, we highlight the crosstalk between immune response and metabolic processes mediated by IL-33.
Collapse
Affiliation(s)
- Wenping Li
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yiyuan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Han L, Cheng J, Li A. hsa_circ_0072387 Suppresses Proliferation, Metastasis, and Glycolysis of Oral Squamous Cell Carcinoma Cells by Downregulating miR-503-5p. Cancer Biother Radiopharm 2020; 36:84-94. [PMID: 32302508 DOI: 10.1089/cbr.2019.3371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral cavity. It was determined that circular RNAs were related to the development and progression of various cancers, including OSCC. The purpose of our study was to define the role and potential mechanism of hsa_circ_0072387 in OSCC progression. Materials and Methods: Thirty-five patients with OSCC were involved in this study. Real-time quantitative polymerase chain reaction was used to evaluate the expression levels of hsa_circ_0072387 and microRNA (miR)-503-5p. Cell proliferation, migration, and invasion abilities were assessed by Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. The abundance of cell proliferation marker Ki-67, epithelial-mesenchymal transition (EMT) markers E-cadherin, N-cadherin, and vimentin was analyzed by Western blot assay. Glycolysis was evaluated using commercial kits. The interaction between hsa_circ_0072387 and miR-503-5p was confirmed by bioinformatics analysis, RNA immunoprecipitation (RIP) assay, and dual-luciferase reporter assay. Results: hsa_circ_0072387 expression was significantly downregulated, and miR-503-5p was upregulated in OSCC cells and tissues. Gain of hsa_circ_0072387 or knockdown of miR-503-5p suppressed the cell proliferation, migration and invasion, EMT, and glycolysis in OSCC SCC-4 and HSC-3 cells. hsa_circ_0072387 targeted miR-503-5p and inversely regulated miR-503-5p expression. Moreover, upregulation of miR-503-5p could partially revert the tumor-suppressive effects of hsa_circ_0072387 on OSCC cells. Conclusion: hsa_circ_0072387 inhibited OSCC progression by downregulating miR-503-5p, explicating that hsa_circ_0072387 could function as a novel potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Long Han
- Department of Stomatology, The Third Hospital Affiliated to Qiqihar Medical College, Qiqihar, China
| | - Jian Cheng
- Department of Stomatology, The Shangluo Central Hospital, Shangluo, China
| | - Afeng Li
- Department of Stomatology, The Shangluo Central Hospital, Shangluo, China
| |
Collapse
|
27
|
Kawahara Y, Kaneko T, Yoshinaga Y, Arita Y, Nakamura K, Koga C, Yoshimura A, Sakagami R. Effects of Sulfonylureas on Periodontopathic Bacteria-Induced Inflammation. J Dent Res 2020; 99:830-838. [PMID: 32202959 DOI: 10.1177/0022034520913250] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin-1β (IL-1β) is an inflammatory cytokine produced by monocytes/macrophages and is closely associated with periodontal diseases. The NLRP3 inflammasome is involved in IL-1β activation through pro-IL-1β processing and pyroptotic cell death in bacterial infection. Recently, glyburide, a hypoglycemic sulfonylurea, has been reported to reduce IL-1β activation by suppressing activation of the NLRP3 inflammasome. Therefore, we evaluated the possibility of targeting the NLRP3 inflammasome pathway by glyburide to suppress periodontal pathogen-induced inflammation. THP-1 cells (a human monocyte cell line) were differentiated to macrophage-like cells by treatment with phorbol 12-myristate 13-acetate and stimulated by periodontopathic bacteria, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, or Fusobacterium nucleatum, in the presence of glyburide. IL-1β and caspase-1 expression in the cells and culture supernatants were analyzed by Western blotting and enzyme-linked immunosorbent assay, and cell death was analyzed by lactate dehydrogenase assay. Stimulation of THP-1 macrophage-like cells with every periodontopathic bacteria induced IL-1β secretion without cell death, which was suppressed by the NLRP3 inhibitor, MCC950, and caspase-1 inhibitor, z-YVAD-FMK. Glyburide treatment suppressed IL-1β expression in culture supernatants and enhanced intracellular IL-1β expression, suggesting that glyburide may have inhibited IL-1β secretion. Subsequently, a periodontitis rat model was generated by injecting periodontal bacteria into the gingiva, which was analyzed histologically. Oral administration of glyburide significantly suppressed the infiltration of inflammatory cells and the number of osteoclasts in the alveolar bone compared with the control. In addition to glyburide, glimepiride was shown to suppress the release of IL-1β from THP-1 macrophage-like cells, whereas other sulfonylureas (tolbutamide and gliclazide) or other hypoglycemic drugs belonging to the biguanide family, such as metformin, failed to suppress IL-1β release. Our results suggest that pharmacological targeting of the NLRP3 pathway may be a strategy for suppressing periodontal diseases.
Collapse
Affiliation(s)
- Y Kawahara
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - T Kaneko
- Center for Oral Diseases, Fukuoka Dental College, Fukuoka, Japan
| | - Y Yoshinaga
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Y Arita
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - K Nakamura
- Center for Oral Diseases, Fukuoka Dental College, Fukuoka, Japan
| | - C Koga
- Center for Oral Diseases, Fukuoka Dental College, Fukuoka, Japan
| | - A Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - R Sakagami
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
28
|
Chaweewannakorn C, Nyasha MR, Chen W, Sekiai S, Tsuchiya M, Hagiwara Y, Bouzakri K, Sasaki K, Kanzaki M. Exercise‐evoked intramuscular neutrophil‐endothelial interactions support muscle performance and GLUT4 translocation: a mouse gnawing model study. J Physiol 2019; 598:101-122. [DOI: 10.1113/jp278564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku University Sendai Japan
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Mazvita R. Nyasha
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Weijian Chen
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | - Shigenori Sekiai
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| | | | - Yoshihiro Hagiwara
- Department of Orthopaedic SurgeryGraduate School of MedicineTohoku University Sendai Japan
| | - Karim Bouzakri
- Centre Européen d'Etude du DiabèteDiabète et ThérapeutiqueUniversité de StrasbourgFédération de Médecine Translationnelle de Strasbourg EA7294 Strasbourg France
| | - Keiichi Sasaki
- Division of Advanced Prosthetic DentistryGraduate School of DentistryTohoku University Sendai Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical EngineeringTohoku University Sendai Japan
| |
Collapse
|
29
|
Patil P, Falabella M, Saeed A, Lee D, Kaufman B, Shiva S, Croix CS, Van Houten B, Niedernhofer LJ, Robbins PD, Lee J, Gwendolyn S, Vo NV. Oxidative stress-induced senescence markedly increases disc cell bioenergetics. Mech Ageing Dev 2019; 180:97-106. [PMID: 31002926 DOI: 10.1016/j.mad.2019.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a phenotype characterized by irreversible growth arrest, chronic elevated secretion of proinflammatory cytokines and matrix proteases, a phenomenon known as senescence-associated secretory phenotype (SASP). Biomarkers of cellular senescence have been shown to increase with age and degeneration of human disc tissue. Senescent disc cells in culture recapitulate features associated with age-related disc degeneration, including increased secretion of proinflammatory cytokines, matrix proteases, and fragmentation of matrix proteins. However, little is known of the metabolic changes that underlie the senescent phenotype of disc cells. To assess the metabolic changes, we performed a bioenergetic analysis of in vitro oxidative stress-induced senescent (SIS) human disc cells. SIS disc cells acquire SASP and exhibit significantly elevated mitochondrial content and mitochondrial ATP-linked respiration. The metabolic changes appear to be driven by the upregulated protein secretion in SIS cells as abrogation of protein synthesis using cycloheximide decreased mitochondrial ATP-linked respiration. Taken together, the results of the study suggest that the increased energy generation state supports the secretion of senescent associated proteins in SIS disc cells.
Collapse
Affiliation(s)
- Prashanti Patil
- Department of Orthopedic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Micol Falabella
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Amal Saeed
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dayeong Lee
- Department of Orthopedic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brett Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Claudette St Croix
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Center for Biological Imaging, Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Ben Van Houten
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Hillman Cancer Research Pavilion, Pittsburgh, PA, 15213, USA
| | - Laura J Niedernhofer
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455 USA
| | - Paul D Robbins
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455 USA
| | - Joon Lee
- Department of Orthopedic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sowa Gwendolyn
- Department of Orthopedic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nam V Vo
- Department of Orthopedic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Yuan X, Logan TM, Ma T. Metabolism in Human Mesenchymal Stromal Cells: A Missing Link Between hMSC Biomanufacturing and Therapy? Front Immunol 2019; 10:977. [PMID: 31139179 PMCID: PMC6518338 DOI: 10.3389/fimmu.2019.00977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are the most commonly-tested adult stem cells in cell therapy. While the initial focus for hMSC clinical applications was to exploit their multi-potentiality for cell replacement therapies, it is now apparent that hMSCs empower tissue repair primarily by secretion of immuno-regulatory and pro-regenerative factors. A growing trend in hMSC clinical trials is the use of allogenic and culture-expanded cells because they are well-characterized and can be produced in large scale from specific donors to compensate for the donor pathological condition(s). However, donor morbidity and large-scale expansion are known to alter hMSC secretory profile and reduce therapeutic potency, which are significant barriers in hMSC clinical translation. Therefore, understanding the regulatory mechanisms underpinning hMSC phenotypic and functional property is crucial for developing novel engineering protocols that maximize yield while preserving therapeutic potency. hMSC are heterogenous at the level of primary metabolism and that energy metabolism plays important roles in regulating hMSC functional properties. This review focuses on energy metabolism in regulating hMSC immunomodulatory properties and its implication in hMSC sourcing and biomanufacturing. The specific characteristics of hMSC metabolism will be discussed with a focus on hMSC metabolic plasticity and donor- and culture-induced changes in immunomodulatory properties. Potential strategies of modulating hMSC metabolism to enhance their immunomodulation and therapeutic efficacy in preclinical models will be reviewed.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States
| | - Timothy M Logan
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|