1
|
Liu S, Chen L, Shang Y. CEACAM5 exacerbates asthma by inducing ferroptosis and autophagy in airway epithelial cells through the JAK/STAT6-dependent pathway. Redox Rep 2025; 30:2444755. [PMID: 39844719 PMCID: PMC11758806 DOI: 10.1080/13510002.2024.2444755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology. METHODS Bioinformatics was used to identify key asthmarelated genes. An ovalbumin-sensitized mouse model and an IL-13-stimulated Beas-2B cell model were established for further investigation. RESULTS Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a crucial gene in asthma. CEACAM5 expression was elevated in asthmatic mouse lung tissues and IL-13-stimulated Beas-2B cells, primarily in bronchial epithelial cells. CEACAM5 induced reactive oxygen species (ROS), lipid peroxidation, and ferroptosis. Interfering with CEACAM5 reduced ROS, malondialdehyde levels, and enhanced antioxidant capacity, while inhibiting iron accumulation and autophagy. Overexpression of CEACAM5 in IL-13-stimulated cells activated the JAK/STAT6 pathway, which was necessary for CEACAM5-induced autophagy, ROS accumulation, lipid peroxidation, and ferroptosis. CONCLUSION CEACAM5 promotes ferroptosis and autophagy in airway epithelial cells via the JAK/STAT6 pathway, exacerbating asthma symptoms. It represents a potential target for clinical treatment.
Collapse
Affiliation(s)
- Si Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Li Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Sugár SN, Molnár BA, Bugyi F, Kecskeméti G, Szabó Z, Laczó I, Harkó T, Moldvay J, Turiák L. Glycoproteomics Analysis of Triple Wild-Type Lung Adenocarcinoma Tissue Samples. J Proteome Res 2025. [PMID: 40175289 DOI: 10.1021/acs.jproteome.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Lung cancer has both high incidence and mortality, making it the leading cause of cancer-related mortality worldwide. It is a highly heterogeneous disease, with several histological subtypes and genetic alterations that influence prognosis and available treatment options. Here, we focus on the triple wild-type (TWT) subtype of lung adenocarcinoma (LUAD) that lacks the three most common actionable genetic alterations, subsequently making targeted therapies inaccessible. In this study, our aim was the mass spectrometry-based proteomic and N-glycoproteomic characterization of tumor and adjacent normal lung tissue regions from individuals (n = 12) with TWT LUAD. We found several proteins previously identified as potential prognostic or diagnostic biomarkers in LUAD and described dysregulated biological processes, giving an overview of the general differences between healthy and tumor tissue. Also, we highlight specific signatures detected using N-glycoproteomics and discuss their potential and importance based on data from databases and literature. To the best of our knowledge, this is the first N-glycoproteomics-focused study on TWT LUAD, and it could provide a valuable resource for further studies into this less well characterized subtype of lung cancer. For instance, we report altered N-glycosylation for several glycoproteins implicated in LUAD and other cancers that could have functional importance connected to the disease.
Collapse
Affiliation(s)
- Simon Nándor Sugár
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
| | - Balázs András Molnár
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
| | - Fanni Bugyi
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Square 8, Szeged H-6720, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Square 8, Szeged H-6720, Hungary
| | - Ibolya Laczó
- Békés County Central Hospital, Semmelweis Utca 1, Gyula, H-5700, Hungary
| | - Tünde Harkó
- National Korányi Institute of Pulmonology, Korányi Frigyes Street 1, Budapest, H-1121, Hungary
| | - Judit Moldvay
- National Korányi Institute of Pulmonology, Korányi Frigyes Street 1, Budapest, H-1121, Hungary
- Pulmonology Clinic, Albert Szent-Györgyi Medical School, University of Szeged, Alkotmány Street 36, Deszk H-6771, Hungary
| | - Lilla Turiák
- MTA-HUN-REN TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
3
|
Liu P, Sun C, Wang X, Han B, Sun Y, Liu Y, Zeng X. Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms. Front Med (Lausanne) 2025; 12:1498864. [PMID: 40115777 PMCID: PMC11922952 DOI: 10.3389/fmed.2025.1498864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with an idiopathic origin, characterized by persistent mucosal inflammation. Anoikis is a programmed cell death mechanism activated during carcinogenesis to eliminate undetected isolated cells from the extracellular matrix. Although existing evidence indicates that anoikis contributes to the modulation of immune response, the involvement of anoikis-related genes (ARGs) in UC pathogenesis and their interaction with infiltrating immune cells has not been thoroughly explored. The GSE75214, GSE92415, and GSE16879 datasets were acquired and integrated from the GEO database. Additionally, 58 ARGs were identified through the GSEA database. Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). Receiver operating characteristic (ROC) analysis was utilized to evaluate the diagnostic accuracy of each gene. Subsequently, Single sample GSEA (ssGSEA) was executed to explore the relationships within immune cell infiltration, UC subtypes, and key anoikis-DEGs. Besides, unsupervised cluster analysis was conducted to categorize the UC samples into distinct subgroups, followed by comparing subtype differences. Finally, the upstream regulatory network was constructed and visualized. A comprehensive analysis of the involvement of ARGs in UC was performed, revealing their expression profile, correlation with infiltrating immune cells, and enrichment analyses. We identified five key anoikis-DEGs (PDK4, CEACAM6, CFB, CX3CL1, and HLA-DMA) and demonstrated their high diagnostic accuracy for UC. Moreover, CEACAM6, CFB, CX3CL1, and HLA-DMA exhibited positive associations with infiltrating immune cells in UC, whereas PDK4 displayed a negative correlation with all immune cells. Unsupervised cluster analysis enabled the classification of UC patients into two clusters, both of which exhibited distinct gene expression profiles and immune signaling pathways. Further, based upon the upstream regulatory network, TP53, RARB, RXRB, and CTCF potentially exerted regulatory functions. Our analysis identified five key anoikis-DEGs as characteristic biomarkers of UC. These genes were strongly associated with the infiltration of both innate and adaptive immune cells, as well as immune pathways. This study highlights the role of anoikis genes in UC pathophysiology and offers valuable insights for further elucidating UC pathogenesis and individualized therapy.
Collapse
Affiliation(s)
- Peng Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojuan Wang
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuhao Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanbing Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
El-Magied MHA, Fawzy A, Mostafa MM, Elnaggar GN, Moselhy SS, Elhady MM. Alterations in expression of miRNA 497 and long non-coding RNAS (XIST-TSIX) and its significant role in colorectal cancer prediction. Sci Rep 2025; 15:7387. [PMID: 40032945 DOI: 10.1038/s41598-025-90110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Colorectal cancer (CRC) is a common type of malignancy in Western nations with high incidence related to different factors as genetic, foods and pollution. Long non-coding RNAs (LncRNAs) play a significant role in cellular processes, oncogensis and can be used as biomarkers for cancer progression. The rationale of this study was to quantify the expression levels of miRNA 497 and LncRNAs (XIST-TSIX) as a sensitive and accurate markers for CRC diagnosis and correlated with serum FOXK1, CA19.9 and CEA compared with normal subjects. This study was carried outon100 participants, they were divided into two equal groups: Group (1): Patients were diagnosed with CRC and Group (2): Normal subjects as control. Tumor size, type, TNM staging, differentiation, levels of FOXK1and, CEA, CA19.9 were evaluated in serum. The RNA was extracted from the tissue of CRC patients for quantification expression of miRNA 497 and LncRNAs (XIST and TSIX) using qRT-PCR. Data obtained showed that, the expression levels of tissue miRNA 497, XIST, TSIX in combination with serum FOXK1, CA19.9 and CEA are good confirmatory non-invasive markers for CRC diagnosis. Sensitivity and specificity tests showed higher AUC values of miRNA 497 + XIST + TSIX + FOXK1 significantly than those of CA19.9 + CAE. It was concluded that, a rigorous assessment of these parameters could facilitate the discovery of non-invasive biomarkers for the early detection and prognosis of CRC, ultimately enhancing the protocols for early treatment decision-making.
Collapse
Affiliation(s)
| | - Amal Fawzy
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Mohsen Mostafa
- Cardiovascular Hospital, Ain Shams University Hospitals, Ain Shams University, Cairo, Egypt
| | - Ghada Nabil Elnaggar
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Said Salama Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
5
|
Zhang L, Xie P, Li M, Zhang X, Fei S, Zhao N, Li L, Xie Q, Xu Z, Tang W, Zhu G, Zhu Z, Xu Z, Li J, Zhang C, Boyer JL, Chen W, Cai SY, Pan Q, Chai J. Hepatic GDP-fucose transporter SLC35C1 attenuates cholestatic liver injury and inflammation by inducing CEACAM1 N153 fucosylation. Hepatology 2025; 81:774-790. [PMID: 38985995 PMCID: PMC11825483 DOI: 10.1097/hep.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND AIMS Inflammatory response is crucial for bile acid (BA)-induced cholestatic liver injury, but molecular mechanisms remain to be elucidated. Solute Carrier Family 35 Member C1 (SLC35C1) can transport Guanosine diphosphate-fucose into the Golgi to facilitate protein glycosylation. Its mutation leads to the deficiency of leukocyte adhesion and enhances inflammation in humans. However, little is known about its role in liver diseases. APPROACH AND RESULTS Hepatic SLC35C1 mRNA transcripts and protein expression were significantly increased in patients with obstructive cholestasis and mouse models of cholestasis. Immunofluorescence revealed that the upregulated SLC35C1 expression mainly occurred in hepatocytes. Liver-specific ablation of Slc35c1 ( Slc35c1 cKO ) significantly aggravated liver injury in mouse models of cholestasis induced by bile duct ligation and 1% cholic acid-feeding, evidenced by increased liver necrosis, inflammation, fibrosis, and bile ductular proliferation. The Slc35c1 cKO increased hepatic chemokine Ccl2 and Cxcl2 expression and T cell, neutrophil, and F4/80 macrophage infiltration but did not affect the levels of serum and liver BA in mouse models of cholestasis. Liquid chromatography with tandem mass spectrometry analysis revealed that hepatic Slc35c1 deficiency substantially reduced the fucosylation of cell-cell adhesion protein CEACAM1 at N153. Mechanistically, cholestatic levels of conjugated BAs stimulated SLC35C1 expression by activating the STAT3 signaling to facilitate CEACAM1 fucosylation at N153, and deficiency in the fucosylation of CEACAM1 at N135 enhanced the BA-stimulated CCL2 and CXCL2 mRNA expression in primary mouse hepatocytes and Primary Liver Carcinoma/Poliomyelitis Research Foundation/5- ASBT cells. CONCLUSIONS Elevated hepatic SLC35C1 expression attenuates cholestatic liver injury by enhancing CEACAM1 fucosylation to suppress CCL2 and CXCL2 expression and liver inflammation.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Pingfan Xie
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingqiao Li
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuke Fei
- The Second Affiliated Hospital, Department of Hepatobiliary, Pancreatic and Splenic Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nan Zhao
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Li
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaoling Xie
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ziqian Xu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Wan Tang
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Guanyu Zhu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhixian Zhu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Zuzhi Xu
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengcheng Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - James L. Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wensheng Chen
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qiong Pan
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China
| |
Collapse
|
6
|
Shahbazlou SV, Vandghanooni S, Dabirmanesh B, Eskandani M, Hasannia S. Recent advances in surface plasmon resonance for the detection of ovarian cancer biomarkers: a thorough review. Mikrochim Acta 2024; 191:659. [PMID: 39382786 DOI: 10.1007/s00604-024-06740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Early detection of ovarian cancer (OC) is crucial for effective management and treatment, as well as reducing mortality rates. However, the current diagnostic methods for OC are time-consuming and have low accuracy. Surface plasmon resonance (SPR) biosensors offer a promising alternative to conventional techniques, as they enable rapid and less invasive screening of various circulating indicators. These biosensors are widely used for biomolecular interaction analysis and detecting tumor markers, and they are currently being investigated as a rapid diagnostic tool for early-stage cancer detection. Our main focus is on the fundamental concepts and performance characteristics of SPR biosensors. We also discuss the latest advancements in SPR biosensors that enhance their sensitivity and enable high-throughput quantification of OC biomarkers, including CA125, HE4, CEA, and CA19-9. Finally, we address the future challenges that need to be overcome to advance SPR biosensors from research to clinical applications. The ultimate goal is to facilitate the translation of SPR biosensors into routine clinical practice for the early detection and management of OC.
Collapse
Affiliation(s)
- Shahnam Valizadeh Shahbazlou
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Matsumoto H, Sudo R, Fujita Y, Onizawa M, Saito K, Sumichika Y, Yoshida S, Temmoku J, Matsuoka N, Asano T, Sato S, Suzuki E, Machida T, Migita K. Inhibition of CEACAM1 expression in cytokine-activated neutrophils using JAK inhibitors. BMC Immunol 2024; 25:63. [PMID: 39354368 PMCID: PMC11443749 DOI: 10.1186/s12865-024-00656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Carcinoembryonic-antigen-related cell-adhesion molecule 1 (CEACAM1) is an adhesion molecule that acts as a coinhibitory receptor in the immune system. We previously demonstrated that CEACAM1 is predominantly expressed on peripheral blood neutrophils in patients with RA. The aim of the present study was to investigate the effects of Janus kinase inhibitors (JAKi) on cytokine-activated human neutrophils and CEACAM1 expression. METHODS Peripheral blood neutrophils were obtained from healthy subjects. Isolated neutrophils were stimulated with tumor necrosis factor-alpha (TNF-α) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence or absence of JAKi. The expression of CEACAM1 in peripheral blood neutrophils was analyzed by flow cytometry. Protein phosphorylation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 was assessed by western blot using phospho-specific antibodies. RESULTS We found that TNF-α-induced CEACAM1 expression was marginally suppressed after pretreatment with pan-JAK inhibitor, tofacitinib. Moreover, TNF-α induced STAT1 and STAT3 phosphorylation at the late stimulation phase (4 to 16 h). The expressions of CEACAM1 on neutrophils were markedly up-regulated by GM-CSF not by interleukin (IL)-6 stimulation. All JAKi inhibited GM-CSF-induced CEACAM1 expressions on neutrophils, however, the inhibitory effects of baricitinib were larger compared to those of tofacitinib or filgotinib. Moreover, CEACAM1 was marginally upregulated in interferon (IFN)-γ stimulated neutrophils. Similarly, JAKi inhibited IFN-γ-induced CEACAM1 expressions on neutrophils. CONCLUSIONS We demonstrated that JAKi prevent GM-CSF-induced CEACAM1 expression in neutrophils, and JAKi-induced inhibition depends on their selectivity against JAK isoforms. These findings suggest that JAKi can modulate the expression of CEACAM1 in cytokine-activated neutrophils, thereby limiting their activation.
Collapse
Affiliation(s)
- Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Ryota Sudo
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Michio Onizawa
- Department of Gastroenterology and Hepatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Kenji Saito
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Yuya Sumichika
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shuhei Yoshida
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
- Department of Rheumatology, St Francis Hospital, 1-80 Komine, Nagasaki, 852-8125, Japan.
| |
Collapse
|
8
|
Bellini I, Scribano D, Ambrosi C, Chiovoloni C, Rondón S, Pronio A, Palamara AT, Pietrantoni A, Kashkanova A, Sandoghdar V, D'Amelio S, Cavallero S. Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids. Parasit Vectors 2024; 17:393. [PMID: 39285481 PMCID: PMC11406850 DOI: 10.1186/s13071-024-06471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, San Raffaele Open University, IRCCS, Rome, Italy
| | - Claudia Chiovoloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvia Rondón
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annamaria Pronio
- Digestive Endoscopy Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini", Sapienza University of Rome, Azienda Policlinico Umberto I, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Kashkanova
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
9
|
Lei J, Wu L, Zhang N, Liu X, Zhang J, Kuang L, Chen J, Chen Y, Li D, Li Y. Carcinoembryonic antigen potentiates non-small cell lung cancer progression via PKA-PGC-1ɑ axis. MOLECULAR BIOMEDICINE 2024; 5:19. [PMID: 38782774 PMCID: PMC11116303 DOI: 10.1186/s43556-024-00181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Carcinoembryonic antigen (CEA) is a tumor-associated antigen primarily produced by tumor cells. It has been implicated in various biological processes such as cell adhesion, proliferation, differentiation, and metastasis. Despite this, the precise molecular mechanisms through which CEA enhances tumor cell proliferation remain largely unclear. Our study demonstrates that CEA enhances the proliferation and migration of non-small cell lung cancer (NSCLC) while also inhibiting cisplatin-induced apoptosis in NSCLC cells. Treatment with CEA led to an increase in mitochondrial numbers and accumulation of lipid droplets in A549 and H1299 cells. Additionally, our findings indicate that CEA plays a role in regulating the fatty acid metabolism of NSCLC cells. Inhibiting fatty acid metabolism significantly reduced the CEA-mediated proliferation and migration of NSCLC cells. CEA influences fatty acid metabolism and the proliferation of NSCLC cells by activating the PGC-1α signaling pathway. This regulatory mechanism involves CEA increasing intracellular cAMP levels, which in turn activates PKA and upregulates PGC-1α. In NSCLC, inhibiting the PKA-PGC-1α signaling pathway reduces both fatty acid metabolism and the proliferation and migration induced by CEA, both in vitro and in vivo. These results suggest that CEA contributes to the promotion of proliferation and migration by modulating fatty acid metabolism. Targeting CEA or the PKA-PGC-1ɑ signaling pathway may offer a promising therapeutic approach for treating NSCLC.
Collapse
Affiliation(s)
- Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Nan Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Jiongming Chen
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Yijiao Chen
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Dairong Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Mustafa SK, Khan MF, Sagheer M, Kumar D, Pandey S. Advancements in biosensors for cancer detection: revolutionizing diagnostics. Med Oncol 2024; 41:73. [PMID: 38372827 DOI: 10.1007/s12032-023-02297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Cancer stands as the reigning champion of life-threatening diseases, casting a shadow with the highest global mortality rate. Unleashing the power of early cancer treatment is a vital weapon in the battle for efficient and positive outcomes. Yet, conventional screening procedures wield limitations of exorbitant costs, time-consuming endeavors, and impracticality for repeated testing. Enter bio-marker-based cancer diagnostics, which emerge as a formidable force in the realm of early detection, disease progression assessment, and ultimate cancer therapy. These remarkable devices boast a reputation for their exceptional sensitivity, streamlined setup requirements, and lightning fast response times. In this study, we embark on a captivating exploration of the most recent advancements and enhancements in the field of electrochemical marvels, targeting the detection of numerous cancer biomarkers. With each breakthrough, we inch closer to a future where cancer's grip on humanity weakens, guided by the promise of personalized treatment and improved patient outcomes. Together, we unravel the mysteries that cancer conceals and illuminate a path toward triumph against this daunting adversary. This study celebrates the relentless pursuit of progress, where electrochemical innovations take center stage in the quest for a world free from the clutches of carcinoma.
Collapse
Affiliation(s)
- Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Zip 71491, Tabuk, Saudi Arabia.
| | - Mohd Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, 202002, India
| | - Mehak Sagheer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sadanand Pandey
- Faculty of Applied Sciences and Biotechnology, School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
11
|
Lafzi A, Borrelli C, Baghai Sain S, Bach K, Kretz JA, Handler K, Regan-Komito D, Ficht X, Frei A, Moor A. Identifying Spatial Co-occurrence in Healthy and InflAmed tissues (ISCHIA). Mol Syst Biol 2024; 20:98-119. [PMID: 38225383 PMCID: PMC10897385 DOI: 10.1038/s44320-023-00006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Sequencing-based spatial transcriptomics (ST) methods allow unbiased capturing of RNA molecules at barcoded spots, charting the distribution and localization of cell types and transcripts across a tissue. While the coarse resolution of these techniques is considered a disadvantage, we argue that the inherent proximity of transcriptomes captured on spots can be leveraged to reconstruct cellular networks. To this end, we developed ISCHIA (Identifying Spatial Co-occurrence in Healthy and InflAmed tissues), a computational framework to analyze the spatial co-occurrence of cell types and transcript species within spots. Co-occurrence analysis is complementary to differential gene expression, as it does not depend on the abundance of a given cell type or on the transcript expression levels, but rather on their spatial association in the tissue. We applied ISCHIA to analyze co-occurrence of cell types, ligands and receptors in a Visium dataset of human ulcerative colitis patients, and validated our findings at single-cell resolution on matched hybridization-based data. We uncover inflammation-induced cellular networks involving M cell and fibroblasts, as well as ligand-receptor interactions enriched in the inflamed human colon, and their associated gene signatures. Our results highlight the hypothesis-generating power and broad applicability of co-occurrence analysis on spatial transcriptomics data.
Collapse
Affiliation(s)
- Atefeh Lafzi
- Roche Pharma Research and Early Development, Immunology Infectious Diseases and Ophthalmology Discovery and Translational Area, Grenzacherstrasse 124, 4070, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Simona Baghai Sain
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Karsten Bach
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Regan-Komito
- Roche Pharma Research and Early Development, Immunology Infectious Diseases and Ophthalmology Discovery and Translational Area, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Andreas Frei
- Roche Pharma Research and Early Development, Immunology Infectious Diseases and Ophthalmology Discovery and Translational Area, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
12
|
Marcellinaro R, Spoletini D, Grieco M, Avella P, Cappuccio M, Troiano R, Lisi G, Garbarino GM, Carlini M. Colorectal Cancer: Current Updates and Future Perspectives. J Clin Med 2023; 13:40. [PMID: 38202047 PMCID: PMC10780254 DOI: 10.3390/jcm13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer is a frequent neoplasm in western countries, mainly due to dietary and behavioral factors. Its incidence is growing in developing countries for the westernization of foods and lifestyles. An increased incidence rate is observed in patients under 45 years of age. In recent years, the mortality for CRC is decreased, but this trend is slowing. The mortality rate is reducing in those countries where prevention and treatments have been implemented. The survival is increased to over 65%. This trend reflects earlier detection of CRC through routine clinical examinations and screening, more accurate staging through advances in imaging, improvements in surgical techniques, and advances in chemotherapy and radiation. The most important predictor of survival is the stage at diagnosis. The screening programs are able to reduce incidence and mortality rates of CRC. The aim of this paper is to provide a comprehensive overview of incidence, mortality, and survival rate for CRC.
Collapse
Affiliation(s)
- Rosa Marcellinaro
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Domenico Spoletini
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Michele Grieco
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Pasquale Avella
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy; (P.A.); (M.C.)
- Hepatobiliary and Pancreatic Surgery Unit, Pineta Grande Hospital, Castel Volturno, 81030 Caserta, Italy
| | - Micaela Cappuccio
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy; (P.A.); (M.C.)
| | - Raffaele Troiano
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Giorgio Lisi
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Giovanni M. Garbarino
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Massimo Carlini
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| |
Collapse
|
13
|
Zou C, Zan X, Jia Z, Zheng L, Gu Y, Liu F, Han Y, Xu C, Wu A, Zhi Q. Crosstalk between alternative splicing and inflammatory bowel disease: Basic mechanisms, biotechnological progresses and future perspectives. Clin Transl Med 2023; 13:e1479. [PMID: 37983927 PMCID: PMC10659771 DOI: 10.1002/ctm2.1479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an omnipresent regulatory mechanism of gene expression that enables the generation of diverse splice isoforms from a single gene. Recently, AS events have gained considerable momentum in the pathogenesis of inflammatory bowel disease (IBD). METHODS Our review has summarized the complex process of RNA splicing, and firstly highlighted the potential involved molecules that target aberrant splicing events in IBD. The quantitative transcriptome analyses such as microarrays, next-generation sequencing (NGS) for AS events in IBD have been also discussed. RESULTS Available evidence suggests that some abnormal splicing RNAs can lead to multiple intestinal disorders during the onset of IBD as well as the progression to colitis-associated cancer (CAC), including gut microbiota perturbations, intestinal barrier dysfunctions, innate/adaptive immune dysregulations, pro-fibrosis activation and some other risk factors. Moreover, current data show that the advanced technologies, including microarrays and NGS, have been pioneeringly employed to screen the AS candidates and elucidate the potential regulatory mechanisms of IBD. Besides, other biotechnological progresses such as the applications of third-generation sequencing (TGS), single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST), will be desired with great expectations. CONCLUSIONS To our knowledge, the current review is the first one to evaluate the potential regulatory mechanisms of AS events in IBD. The expanding list of aberrantly spliced genes in IBD along with the developed technologies provide us new clues to how IBD develops, and how these important AS events can be explored for future treatment.
Collapse
Affiliation(s)
- Chentao Zou
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinquan Zan
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhenyu Jia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lu Zheng
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yijie Gu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fei Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ye Han
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chunfang Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Airong Wu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qiaoming Zhi
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
14
|
Dave A, Park EJ, Pezzuto JM. Multi-Organ Nutrigenomic Effects of Dietary Grapes in a Mouse Model. Antioxidants (Basel) 2023; 12:1821. [PMID: 37891900 PMCID: PMC10604885 DOI: 10.3390/antiox12101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
As a whole food, the potential health benefits of table grapes have been widely studied. Some individual constituents have garnered great attention, particularly resveratrol, but normal quantities in the diet are meniscal. On the other hand, the grape contains hundreds of compounds, many of which have antioxidant potential. Nonetheless, the achievement of serum or tissue concentrations of grape antioxidants sufficient to mediate a direct quenching effect is not likely, which supports the idea of biological responses being mediated by an indirect catalytic-type response. We demonstrate herein with Hsd:ICR (CD-1® Outbred, 18-24 g, 3-4 weeks old, female) mice that supplementation of a semi-synthetic diet with a grape surrogate, equivalent to the human consumption of 2.5 servings per day for 12 months, modulates gene expression in the liver, kidney, colon, and ovary. As might be expected when sampling changes in a pool of over 35,000 genes, there are numerous functional implications. Analysis of some specific differentially expressed genes suggests the potential of grape consumption to bolster metabolic detoxification and regulation of reactive oxygen species in the liver, cellular metabolism, and anti-inflammatory activity in the ovary and kidney. In the colon, the data suggest anti-inflammatory activity, suppression of mitochondrial dysfunction, and maintaining homeostasis. Pathway analysis reveals a combination of up- and down-regulation in the target tissues, primarily up-regulated in the kidney and down-regulated in the ovary. More broadly, based on these data, it seems logical to conclude that grape consumption leads to modulation of gene expression throughout the body, the consequence of which may help to explain the broad array of activities demonstrated in diverse tissues such as the brain, heart, eye, bladder, and colon. In addition, this work further supports the profound impact of nutrigenomics on mammalian phenotypic expression.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Department of Pharmaceutical and Administrative Science, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| |
Collapse
|
15
|
Wang R, Li Q, Chu X, Li N, Liang H, He F. Sequencing and Bioinformatics analysis of lncRNA/circRNA-miRNA-mRNA in Glioblastoma multiforme. Metab Brain Dis 2023; 38:2289-2300. [PMID: 37389689 DOI: 10.1007/s11011-023-01256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Evidence suggests that non-coding RNAs have a role in glioblastoma multiforme (GBM), although the regulatory mechanisms controlled by competing endogenous RNAs (ceRNAs) in GBM are still poorly understood and infrequently described. This research extensively analyzed circRNA, lncRNA, miRNA, and mRNA expression changes in GBM patients. RNA-sequencing analyses were conducted to investigate differentially expressed genes (DEGs), lncRNAs (DELs), miRNAs (DEMs), and circRNAs (DECs) in the GBM. In this study, researchers found that GBM patients and healthy controls differed in the presence of 1224 DECs, 1406 DELs, 229 DEMs, and 2740 DEGs. PPI network analysis demonstrated that CEACAM5, CXCL17, FAM83A, TMPRSS4, and GGPRC5A were hub genes and enriched in modules. Then a ceRNA network was constructed with 8 circRNA, 7 lncRNAs, 16 miRNAs, and 17 mRNAs. Overall, the ceRNA interaction axes that were found may prove to be pivotal therapeutic targets for treating GBM.
Collapse
Affiliation(s)
- Renjie Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Qi Li
- Tianjin Hospital, Tianjin University, Tianjin, 300050, China
| | - Xiaolei Chu
- Tianjin Hospital, Tianjin University, Tianjin, 300050, China
| | - Nan Li
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Haiqian Liang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
16
|
Montes de Jesus FM, Giovanella L. Unexplained increase of serum carcinoembryonic antigen: don't forget the thyroid! Clin Chem Lab Med 2023; 61:e203-e205. [PMID: 37053395 DOI: 10.1515/cclm-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Affiliation(s)
- Filipe Miguel Montes de Jesus
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Clinic for Nuclear Medicine, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Li Z, Wang T, Liu P, Huang Y. SpatialDM for rapid identification of spatially co-expressed ligand-receptor and revealing cell-cell communication patterns. Nat Commun 2023; 14:3995. [PMID: 37414760 PMCID: PMC10325966 DOI: 10.1038/s41467-023-39608-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Cell-cell communication is a key aspect of dissecting the complex cellular microenvironment. Existing single-cell and spatial transcriptomics-based methods primarily focus on identifying cell-type pairs for a specific interaction, while less attention has been paid to the prioritisation of interaction features or the identification of interaction spots in the spatial context. Here, we introduce SpatialDM, a statistical model and toolbox leveraging a bivariant Moran's statistic to detect spatially co-expressed ligand and receptor pairs, their local interacting spots (single-spot resolution), and communication patterns. By deriving an analytical null distribution, this method is scalable to millions of spots and shows accurate and robust performance in various simulations. On multiple datasets including melanoma, Ventricular-Subventricular Zone, and intestine, SpatialDM reveals promising communication patterns and identifies differential interactions between conditions, hence enabling the discovery of context-specific cell cooperation and signalling.
Collapse
Affiliation(s)
- Zhuoxuan Li
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Tianjie Wang
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| | - Pentao Liu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China.
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| | - Yuanhua Huang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China.
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China.
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
18
|
Breugelmans T, Arras W, Oosterlinck B, Jauregui-Amezaga A, Somers M, Cuypers B, Laukens K, De Man JG, De Schepper HU, De Winter BY, Smet A. IL-22-Activated MUC13 Impacts on Colonic Barrier Function through JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK Signaling. Cells 2023; 12:1224. [PMID: 37174625 PMCID: PMC10177587 DOI: 10.3390/cells12091224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Overexpression of the transmembrane mucin MUC13, as seen in inflammatory bowel diseases (IBD), could potentially impact barrier function. This study aimed to explore how inflammation-induced MUC13 disrupts epithelial barrier integrity by affecting junctional protein expression in IBD, thereby also considering the involvement of MUC1. RNA sequencing and permeability assays were performed using LS513 cells transfected with MUC1 and MUC13 siRNA and subsequently stimulated with IL-22. In vivo intestinal permeability and MUC13-related signaling pathways affecting barrier function were investigated in acute and chronic DSS-induced colitis wildtype and Muc13-/- mice. Finally, the expression of MUC13, its regulators and other barrier mediators were studied in IBD and control patients. Mucin knockdown in intestinal epithelial cells affected gene expression of several barrier mediators in the presence/absence of inflammation. IL-22-induced MUC13 expression impacted barrier function by modulating the JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK signaling pathways, with a cooperating role for MUC1. In response to DSS, MUC13 was protective during the acute phase whereas it caused more harm upon chronic colitis. The pathways accounting for the MUC13-mediated barrier dysfunction were also altered upon inflammation in IBD patients. These novel findings indicate an active role for aberrant MUC13 signaling inducing intestinal barrier dysfunction upon inflammation with MUC1 as collaborating partner.
Collapse
Affiliation(s)
- Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Aranzazu Jauregui-Amezaga
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Michaël Somers
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Bart Cuypers
- Department of Computer Science, Adrem Data Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Kris Laukens
- Department of Computer Science, Adrem Data Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Heiko U. De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
19
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
20
|
Wang J, Du L, Chen X. Oncolytic virus: A catalyst for the treatment of gastric cancer. Front Oncol 2022; 12:1017692. [PMID: 36505792 PMCID: PMC9731121 DOI: 10.3389/fonc.2022.1017692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
21
|
Yokoyama K, Mitoma H, Kawano S, Yamauchi Y, Wang Q, Ayano M, Kimoto Y, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. CEACAM 1, 3, 5 and 6 -positive classical monocytes correlate with interstitial lung disease in early systemic sclerosis. Front Immunol 2022; 13:1016914. [PMID: 36341379 PMCID: PMC9632165 DOI: 10.3389/fimmu.2022.1016914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a multiple-organ disease characterized by vascular damage, autoimmunity, and tissue fibrosis. Organ injuries such as interstitial lung diseases (ILD), resulting from inflammatory and fibrosis processes, lead to poor prognosis. Although autoantibodies are detected in the serum of patients with SSc, the mechanisms by which immune cells are involved in tissue inflammation and fibrosis is not fully understood. Recent studies have revealed carcinoembryonic antigen related cell adhesion molecule (CEACAM)-positive monocytes are involved in murine bleomycin-induced lung fibrosis. We investigated CEACAM-positive monocytes in patients with SSc to clarify the role of monocytes in the pathogenesis of SSc. Methods The proportion of of CEACAM-positive classical monocytes in healthy controls (HCs) and patients with rheumatoid arthritis (RA) and SSc was evaluated using flow cytometry. The correlation between the proportion of CEACAM-positive monocytes and clinical parameters was analyzed in patients with SSc. Gene expression microarrays were performed in CEACAM-positive and negative monocytes in patients with SSc. Infiltration of CEACAM-positive monocytes into scleroderma skin was evaluated by immunohistochemical staining. Results The proportion of CEACAM-positive classical monocytes was increased in patients with early SSc within 2 years after diagnosis, which positively correlated with ESR, serum IgG, and serum KL-6 and negatively correlated with %forced vital capacity. The percentage of CEACAM-positive monocytes decreased after immunosuppressive therapy. CEACAM6-positive cells among classical monocytes were significantly increased in patients with SSc compared with HCs and patients with rheumatoid arthritis. SSc serum induced CEACAM6 expression on monocytes from HCs. Functionally, CEACAM-positive monocytes produced higher levels of TNF-α and IL-1β compared to CEACAM-negative cells and showed activation of the NF-κB pathway. Furthermore, CEACAM6-positive monocytes infiltrated the dermis of SSc. Conclusions CEACAM-positive monocytes showed inflammatory phenotypes and may be involved in the tissue inflammation and fibrosis in early SSc. CEACAM-positive monocytes may be one of biomarkers to detect patients with progressive ILD, requiring therapeutic intervention.
Collapse
Affiliation(s)
- Kana Yokoyama
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- *Correspondence: Hiroki Mitoma,
| | - Shotaro Kawano
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yusuke Yamauchi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Qiaolei Wang
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
NF-kappa B expression in resected specimen of colonic cancer is higher compared to its expression in inflammatory bowel diseases and polyps. Sci Rep 2022; 12:16645. [PMID: 36198850 PMCID: PMC9534908 DOI: 10.1038/s41598-022-21078-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
NF-Kappa B has a significant role in inflammatory processes as well as in colorectal cancer. The aim of this study was to compare the expression of NF-kappa B in colonic adenocarcinoma specimen, colonic adenomas and inflammatory colonic tissues. Patients with colorectal cancer (CRC), colonic adenomas and inflammatory processes undergoing surgery were recruited. Following a routine pathological evaluation tissue samples were stained using anti NF-κB monoclonal antibodies. Expression of NF-κB was quantified using IMAGEJ program for immunohistochemistry staining. Samples were also stained and quantified for CEA expression. Fifty-six patients were included. 30 cancers, 6 polyps and 20 inflammatory processes. Expression of NF-κB was similar between polypoid and inflammation etiologies. However, it was significantly higher in CRC compared to both (p < 0.05). In cancer patients, NF-κB expression in the resection margins was correlated with positive node status. CEA expression was higher in the cancer group, less in the IBD group and the lowest in the colonic non diseased margins. Our results provide a supportive evidence that NF-κB pathway is strongly involved in colon cancer development and metastasis. Interestingly, expression of NF-κB in benign polypoid lesions was as high as in inflammatory etiologies. This support the role of NF-κB early in the adenoma to carcinoma sequence. Further research is needed to evaluate the exact role of NF-κB in tumor progression in order to look for diagnostic and therapeutic possibilities.
Collapse
|
23
|
Paris T, Yatime L. [CEACAMs as anchoring platforms for pathogens on mucosal epithelia]. Med Sci (Paris) 2022; 38:650-653. [PMID: 36094234 DOI: 10.1051/medsci/2022097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Théo Paris
- Laboratoire des interactions hôte-pathogène, UMR5235, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Laure Yatime
- Laboratoire des interactions hôte-pathogène, UMR5235, Université de Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
24
|
Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23158361. [PMID: 35955491 PMCID: PMC9369148 DOI: 10.3390/ijms23158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.
Collapse
|
25
|
Igami K, Uchiumi T, Shiota M, Ueda S, Tsukahara S, Akimoto M, Eto M, Kang D. Extracellular vesicles expressing CEACAM proteins in the urine of bladder cancer patients. Cancer Sci 2022; 113:3120-3133. [PMID: 35611462 PMCID: PMC9459299 DOI: 10.1111/cas.15438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Early detection and long‐term monitoring are important for urothelial carcinoma of the bladder (UCB). Urine cytology and existing markers have insufficient diagnostic performance. Here, we examined medium‐sized extracellular vesicles (EVs) in urine to identify specific markers for UCB and evaluated their usefulness as diagnostic material. To identify specific markers in urinary EVs derived from UCB, we undertook shotgun proteomics using urine from four UCB patients and four healthy subjects. Next, 29 healthy specimens, 18 noncancer specimens, and 33 UCB specimens, all from men, were analyzed for urinary EVs by flow cytometry to evaluate the diagnostic performance of UCB‐specific EVs. Nanoparticle‐tracking analysis indicated that the size of EVs extracted from urine was mostly <400 nm. By shotgun proteomics, we detected several proteins characteristic of UCB and found that carcinoembryonic antigen‐related adhesion molecule (CEACAM) proteins were increased in patients. Flow cytometric analysis revealed that the degree of expression of CEACAM1, CEACAM5, and CEACAM6 proteins on the surface of EVs varied among patients. Extracellular vesicles expressing CEACAM proteins also expressed mucin 1, suggesting that they were derived from tumorigenic uroepithelial cells. The number of EVs expressing CEACAM1, 5, and 6 proteins was significantly increased in UCB (mean ± SD, 8.6 ± 13%) compared to non‐UCB (0.69 ± 0.46) and healthy (0.46 ± 0.34) by flow cytometry. The results of receiver operating characteristic (ROC) analysis showed a good score of area under the ROC curve of 0.907. We identified EVs that specifically express CEACAM proteins in urine and have potential for diagnostic applications. These EVs are potential targets in a new liquid biopsy test for UCB patients.
Collapse
Affiliation(s)
- Ko Igami
- Business Management Division, Clinical Laboratory Business Segment, LSI Medience Corporation, Tokyo, Japan.,Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Shigehiro Tsukahara
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Akimoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Baj J, Bryliński Ł, Woliński F, Granat M, Kostelecka K, Duda P, Flieger J, Teresiński G, Buszewicz G, Furtak-Niczyporuk M, Portincasa P. Biomarkers and Genetic Markers of Hepatocellular Carcinoma and Cholangiocarcinoma-What Do We Already Know. Cancers (Basel) 2022; 14:1493. [PMID: 35326644 PMCID: PMC8946081 DOI: 10.3390/cancers14061493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with an increasing worldwide mortality rate. Cholangiocarcinoma (CCA) is the second most common primary liver cancer. In both types of cancers, early detection is very important. Biomarkers are a relevant part of diagnosis, enabling non-invasive detection and control of cancer recurrence, as well as in the application of screening tests in high-risk groups. Furthermore, some of these biomarkers are useful in controlling therapy and treatment selection. Detection of some markers presents higher sensitivity and specificity in combination with other markers when compared with a single detection. Some gene aberrations are also prognostic markers in the two types of cancers. In the following review, we discuss the most common biomarkers and genetic markers currently being used in the diagnosis of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Łukasz Bryliński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Michał Granat
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Piotr Duda
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | | | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
27
|
López-Siles M, Camprubí-Font C, Gómez del Pulgar EM, Sabat Mir M, Busquets D, Sanz Y, Martinez-Medina M. Prevalence, Abundance, and Virulence of Adherent-Invasive Escherichia coli in Ulcerative Colitis, Colorectal Cancer, and Coeliac Disease. Front Immunol 2022; 13:748839. [PMID: 35359974 PMCID: PMC8960851 DOI: 10.3389/fimmu.2022.748839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND & AIMS Adherent-invasive E. coli (AIEC) has largely been implicated in the pathogenesis of Crohn's disease (CD). E. coli strains with similar genetic backgrounds and virulence genes profiles have been associated with other intestinal disorders, such as ulcerative colitis (UC), colorectal cancer (CRC), and coeliac disease (CeD), but the role of AIEC in these diseases remains unexplored. We aimed to assess the distribution, abundance, and pathogenic features of AIEC in UC, CRC, and CeD. METHODS The AIEC phenotype was investigated in 4,233 E. coli isolated from the ileum and colon of 14 UC and 15 CRC patients and in 38 fecal E. coli strains obtained from 17 CeD and 10 healthy (H) children. AIEC prevalence and abundance were compared with previous data from CD patients and H controls. Clonality, virulence gene carriage, and phylogenetic origin were determined for the AIEC identified. RESULTS In UC, AIEC prevalence was intermediate between CD and H subjects (UC: 35.7%, CD: 55.0%, H: 21.4%), and similar to CD patients with colonic disease (C-CD: 40.0%). In CRC, the prevalence was lower (6.7%) than these groups. In patients with AIEC, the estimated abundance was similar across all intestinal conditions. All AIEC strains isolated from UC and CRC belonged to the B1 phylogroup, except for a strain of the A phylogroup, and the majority (75% of clonally distinct AIEC) harbored the Afa/Dr operon and the cdt gene. None of the E. coli isolated from the CeD cohort were AIEC. Nonetheless, E. coli strains isolated from active CeD patients showed higher invasion indices than those isolated from H and inactive CeD pediatric patients. CONCLUSION We support the hypothesis that AIEC-like strains can be involved not only in CD but also in UC. Further works are needed to study the virulence particularities of these groups of strains and to determine if there is a causative link between AIEC and UC. In contrast, we rule out the possible association of AIEC with CRC. In addition, to further study the E. coli strains in CeD for their possible pathogenic role would be of interest.
Collapse
Affiliation(s)
- Mireia López-Siles
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Carla Camprubí-Font
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Eva M. Gómez del Pulgar
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | - Miriam Sabat Mir
- Department of Gastroenterology, Hospital Santa Caterina, Salt, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Yolanda Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | | |
Collapse
|
28
|
Wang Q, Wang C, Tian W, Qiu Z, Song M, Cao Y, Xiao J. Hydroxytyrosol Alleviates Dextran Sulfate Sodium-Induced Colitis by Modulating Inflammatory Responses, Intestinal Barrier, and Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2241-2252. [PMID: 35133830 DOI: 10.1021/acs.jafc.1c07568] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxytyrosol (HT), a polyphenol derived from olive oil, was examined against dextran sulfate sodium (DSS)-induced colitis to study its potential in preventing colitis and the underlying mechanisms involved. The low dose and high dose of HT used in mice were 10 and 50 mg/kg, respectively. Research findings have shown that HT is effective in preventing colitis by alleviating the signs of colitis. HT intervention significantly reduces colitis markers such as myeloperoxidase (MPO) and proinflammatory cytokine (IL-6, IL-1β, and TNF-α). Also, mice treated with a high dose of HT showed increased secretion of antioxidant enzymes (heme oxygenase-1 (HO) and anti-inflammatory cytokine (IL-10) by 2.32- and 2.28-fold, respectively, in comparison to the DSS-treated group. Modulation effects of HT on the antioxidant signal pathway (NRF2) and the inflammatory pathway (NF-κB) were confirmed. Meanwhile, HT promoted the regeneration of the intestinal barrier and maintained intestinal functional homeostasis by boosting the regeneration of goblet cells and the expression of mucin protein (Muc2) and tight junction (TJ) proteins (claudin-1, occludin, and Zonula Occludens-1). Moreover, HT intervention obviously transformed the gut microbiota, leading to a lower abundance of inflammation-related microbes (e.g., Bacteroidaceae and Desulfovibrionaceae) and a higher level of short-chain fatty acids (SCFAs) producing bacteria (e.g., Lachnospiraceae, Muribaculaceae, ASF356, and Colidextribacter). Scientific evidence for the beneficial effect of the "Mediterranean diet" (MD) on intestinal health was achieved by elucidating the alleviation mechanism of hydroxytyrosol on colitis.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chujing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenyuan Qiu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Huskey ALW, Merner ND. An investigation into the role of inherited CEACAM gene family variants and colorectal cancer risk. BMC Res Notes 2022; 15:26. [PMID: 35115044 PMCID: PMC8815132 DOI: 10.1186/s13104-022-05907-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 01/03/2023] Open
Abstract
Objective This study was designed to determine if CEACAM mutations are associated with inherited risk of colorectal cancer. Recently, protein-truncating mutations in the CEACAM gene family were associated with inherited breast cancer risk. That discovery, along with aberrant expression of CEACAM genes in colorectal cancer tumors and that colorectal cancer and breast cancer share many risk factors, including genetics, inspired our team to search for inherited CEACAM mutations in colorectal cancer cases. Specifically utilizing The Cancer Genome Atlas (TCGA) blood-derived whole-exome sequencing data from the colorectal cancer cohort, rare protein-truncating variants and missense variants were investigated through single variant and aggregation analyses in European American and African American cases and compared to ethnic-matched controls. Results A total of 34 and 14 different CEACAM variants were identified in European American and African American colorectal cancer cases, respectively. Nine missense variants were individually associated with risk, two in African Americans and seven in European Americans. No identified protein-truncating variants were associated with CRC risk in either ethnicity. Gene family and gene-specific aggregation analyses did not yield any significant results. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05907-6.
Collapse
Affiliation(s)
- Anna L W Huskey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL, 36849, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 3306 Walker Building, Auburn, AL, 36849, USA
| | - Nancy D Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL, 36849, USA.
| |
Collapse
|
30
|
Liu XY. The High Prevalence of Short-Term Elevation of Tumor Markers Due to Hyperglycemia in Diabetic Patients. Diabetes Metab Syndr Obes 2022; 15:1113-1122. [PMID: 35431565 PMCID: PMC9012301 DOI: 10.2147/dmso.s350599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The relationship between diabetes and cancer is uncertain. However, tumor markers in diabetic patients are significantly elevated. The prevalence of diabetic inpatients with elevation of tumor markers and its relationship to blood glucose is needed to be studied. METHODS A total of 102 diabetic inpatients were included in this study. We collected information from diabetic inpatients and tested tumor markers. Patients with elevation of tumor markers were rechecked. RESULTS We found that up to 73.3% of diabetic inpatients had one or more tumor markers elevated. The proportion of diabetic inpatients with higher than normal cytokeratin 19 fragment (CYFRA 21-1) was 54.5%. Most of them did not return to normal after controlling the blood glucose. A short-term elevation of carcinoembryonic antigen (CEA) was present in 15.8% of diabetic inpatients, and 19.8% of diabetic inpatients had a short-term elevation of carbohydrate antigen. CEA and carbohydrate antigen including CA19-9, CA72-4, CA125 and CA15-3 returned to normal or became significantly reduced within 2 weeks after good control of blood glucose. CONCLUSION Our study showed that the elevation of tumor markers was common in diabetic inpatients, especially those with poor blood glucose control. It indicated that re-checking the tumor markers after controlling blood glucose might be better than conducting large-scale test for cancer.
Collapse
Affiliation(s)
- Xi-yu Liu
- Department of Endocrinology, Dongyang People’s Hospital, Dongyang, Zhejiang, People’s Republic of China
- Correspondence: Xi-yu Liu, Email
| |
Collapse
|
31
|
Huang Z, Yang M. Molecular Network of Colorectal Cancer and Current Therapeutic Options. Front Oncol 2022; 12:852927. [PMID: 35463300 PMCID: PMC9018988 DOI: 10.3389/fonc.2022.852927] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related mortalities globally, results from the accumulation of multiple genetic and epigenetic alterations in the normal colonic and rectum epithelium, leading to the progression from colorectal adenomas to invasive carcinomas. Almost half of CRC patients will develop metastases in the course of the disease and most patients with metastatic CRC are incurable. Particularly, the 5-year survival rate of patients with stage 4 CRC at diagnosis is less than 10%. Although genetic understanding of these CRC tumors and paired metastases has led to major advances in elucidating early driver genes responsible for carcinogenesis and metastasis, the pathophysiological contribution of transcriptional and epigenetic aberrations in this malignancy which influence many central signaling pathways have attracted attention recently. Therefore, treatments that could affect several different molecular pathways may have pivotal implications for their efficacy. In this review, we summarize our current knowledge on the molecular network of CRC, including cellular signaling pathways, CRC microenvironment modulation, epigenetic changes, and CRC biomarkers for diagnosis and predictive/prognostic use. We also provide an overview of opportunities for the treatment and prevention strategies in this field.
Collapse
Affiliation(s)
- Zhe Huang
- The Department of 11 General Surgery, Minimally Invasive Colorectal Hernia Unit, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Yang
- The Department of 3Oncology, Gastrointestinal Cancer Unit, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingli Yang,
| |
Collapse
|
32
|
Nahalka J. Theoretical Analysis of S, M and N Structural Proteins by the Protein-RNA Recognition Code Leads to Genes/proteins that Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Front Genet 2021; 12:763995. [PMID: 34659373 PMCID: PMC8511677 DOI: 10.3389/fgene.2021.763995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
In this conceptual review, based on the protein-RNA recognition code, some theoretical sequences were detected in the spike (S), membrane (M) and capsid (N) proteins that may post-transcriptionally regulate the host genes/proteins in immune homeostasis, pulmonary epithelial tissue homeostasis, and lipid homeostasis. According to the review of literature, the spectrum of identified genes/proteins shows that the virus promotes IL1α/β-IL1R1 signaling (type 1 immunity) and immunity defense against helminths and venoms (type 2 immunity). In the alteration of homeostasis in the pulmonary epithelial tissue, the virus blocks the function of cilia and the molecular programs that are involved in wound healing (EMT and MET). Additionally, the protein-RNA recognition method described here identifies compatible sequences in the S1A-domain for the post-transcriptional promotion of PIKFYVE, which is one of the critical factors for SARS-CoV-2 entry to the host cell, and for the post-transcriptional repression of xylulokinase XYLB. A decrease in XYLB product (Xu5P) in plasma was proposed as one of the potential metabolomics biomarkers of COVID-19. In summary, the protein-RNA recognition code leads to protein genes relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
33
|
Saiz-Gonzalo G, Hanrahan N, Rossini V, Singh R, Ahern M, Kelleher M, Hill S, O'Sullivan R, Fanning A, Walsh PT, Hussey S, Shanahan F, Nally K, O'Driscoll CM, Melgar S. Regulation of CEACAM Family Members by IBD-Associated Triggers in Intestinal Epithelial Cells, Their Correlation to Inflammation and Relevance to IBD Pathogenesis. Front Immunol 2021; 12:655960. [PMID: 34394073 PMCID: PMC8358819 DOI: 10.3389/fimmu.2021.655960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Carcinoembryogenic antigen cellular adhesion molecules (CEACAMs) are intercellular adhesion molecules highly expressed in intestinal epithelial cells. CEACAM1, -3, -5, -6, -7 are altered in patients suffering from colon cancer and inflammatory bowel diseases (IBD), but their role in the onset and pathogenesis of IBD is not well known. Herein, we aim to correlate CEACAM1, -3, -5, -6, -7 expression to the degree of inflammation in pediatric and adult IBD colon biopsies and to examine the regulation of CEACAMs on human intestinal epithelial cell lines (C2BBe1/HT29) by different IBD-associated triggers (cytokines, bacteria/metabolites, emulsifiers) and IBD-drugs (6-Mercaptopurine, Prednisolone, Tofacitinib). Biopsies from patients with pediatric Crohn’s disease (CD) and adult ulcerative colitis (UC, active/inactive disease) showed a significant increase in CEACAM3, -5, -6 expression, while CEACAM5 expression was reduced in adult CD patients (active/inactive disease). Intestinal epithelial cells cultured with a pro-inflammatory cytokine cocktail and Adherent-invasive Escherichia coli (AIEC) showed a rapid induction of CEACAM1, -5, -7 followed by a reduced RNA and protein expression overtime and a constant expression of CEACAM3, correlating with IL-8 expression. Cells cultured with the emulsifier polysorbate-80 resulted in a significant induction of CEACAM3, -5, -6, -7 at a late time point, while SCFA treatment reduced CEACAM1, -5, -7 expression. No major alterations in expression of CEACAMs were noted on cells cultured with the commensal Escherichia coli K12 or the pathogen Salmonella typhimurium. IBD drugs, particularly Tofacitinib, significantly reduced cytokine-induced CEACAM1, -3, -5, -6, -7 expression associated with a reduced IL-8 secretion. In conclusion, we provide new evidence on the regulation of CEACAMs by different IBD-associated triggers, identifying a role of CEACAMs in IBD pathogenesis.
Collapse
Affiliation(s)
- Gonzalo Saiz-Gonzalo
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, National University of Ireland, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, National University of Ireland, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Raminder Singh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Mary Ahern
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Maebh Kelleher
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Shane Hill
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Ruairi O'Sullivan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Aine Fanning
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Patrick T Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Seamus Hussey
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,Department of Pediatric Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, National University of Ireland, Cork, Ireland
| | - Caitriona M O'Driscoll
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,School of Pharmacy, University College Cork, National University of Ireland, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
34
|
Berger K, Somineni H, Prince J, Kugathasan S, Gibson G. Altered splicing associated with the pathology of inflammatory bowel disease. Hum Genomics 2021; 15:47. [PMID: 34301333 PMCID: PMC8305504 DOI: 10.1186/s40246-021-00347-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant splicing of individual genes is a well-known mechanism promoting pathology for a wide range of conditions, but disease is less commonly attributed to global disruption of exon usage. To explore the possible association of aberrant splicing with inflammatory bowel disease, we developed a pipeline for quantifying transcript abundance and exon inclusion transcriptome-wide and applied it to a dataset of ileal and rectal biopsies, both obtained in duplicate from 34 pediatric or young adult cases of ulcerative colitis and Crohn’s disease. Results Expression and splicing covary to some extent, and eight individuals exhibited aberrant profiles that can be explained by altered ratios of epithelial to stromal and immune cells. Ancestry-related biases in alternative splicing accounting for 5% of the variance were also observed, in part also related to cell-type proportions. In addition, two individuals were identified who had 284 exons with significantly divergent percent spliced in exons, including in the established IBD risk gene CEACAM1, which caused their ileal samples to resemble the rectum. Conclusions These results imply that quantitative differences in splice usage contribute to the pathology of inflammatory bowel disease in a previously unrecognized manner. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-021-00347-y.
Collapse
Affiliation(s)
- Kiera Berger
- School of Biological Sciences and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hari Somineni
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.,Current address: insitro, San Francisco, CA, 94080, USA
| | - Jarod Prince
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Greg Gibson
- School of Biological Sciences and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
35
|
Kowalewski J, Paris T, Gonzalez C, Lelièvre E, Castaño Valencia L, Boutrois M, Augier C, Lutfalla G, Yatime L. Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis. PLoS One 2021; 16:e0254533. [PMID: 34252160 PMCID: PMC8274849 DOI: 10.1371/journal.pone.0254533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.
Collapse
Affiliation(s)
- Julien Kowalewski
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Théo Paris
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Catherine Gonzalez
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Lelièvre
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lina Castaño Valencia
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Morgan Boutrois
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Augier
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laure Yatime
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
36
|
Tong X, Zheng Y, Li Y, Xiong Y, Chen D. Soluble ligands as drug targets for treatment of inflammatory bowel disease. Pharmacol Ther 2021; 226:107859. [PMID: 33895184 DOI: 10.1016/j.pharmthera.2021.107859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is characterized by persistent inflammation in a hereditarily susceptible host. In addition to gastrointestinal symptoms, patients with IBD frequently suffer from extra-intestinal complications such as fibrosis, stenosis or cancer. Mounting evidence supports the targeting of cytokines for effective treatment of IBD. Cytokines can be included in a newly proposed classification "soluble ligands" that has become the third major target of human protein therapeutic drugs after enzymes and receptors. Soluble ligands have potential significance for research and development of anti-IBD drugs. Compared with traditional drug targets for IBD treatment, such as receptors, at least three factors contribute to the increasing importance of soluble ligands as drug targets. Firstly, cytokines are the main soluble ligands and targeting of them has demonstrated efficacy in patients with IBD. Secondly, soluble ligands are more accessible than receptors, which are embedded in the cell membrane and have complex tertiary membrane structures. Lastly, certain potential target proteins that are present in membrane-bound forms can become soluble following cleavage, providing further opportunities for intervention in the treatment of IBD. In this review, 49 drugs targeting 25 distinct ligands have been evaluated, including consideration of the characteristics of the ligands and drugs in respect of IBD treatment. In addition to approved drugs targeting soluble ligands, we have also assessed drugs that are in preclinical research and drugs inhibiting ligand-receptor binding. Some new types of targetable soluble ligands/proteins, such as epoxide hydrolase and p-selectin glycoprotein ligand-1, are also introduced. Targeting soluble ligands not only opens a new field of anti-IBD drug development, but the circulating soluble ligands also provide diagnostic insights for early prediction of treatment response. In conclusion, soluble ligands serve as the third-largest protein target class in medicine, with much potential for the drugs targeting them.
Collapse
Affiliation(s)
- Xuhui Tong
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yuanyuan Zheng
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yu Li
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yongjian Xiong
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China.
| |
Collapse
|
37
|
Malijauskaite S, Connolly S, Newport D, McGourty K. Gradients in the in vivo intestinal stem cell compartment and their in vitro recapitulation in mimetic platforms. Cytokine Growth Factor Rev 2021; 60:76-88. [PMID: 33858768 DOI: 10.1016/j.cytogfr.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Intestinal tissue, and specifically its mucosal layer, is a complex and gradient-rich environment. Gradients of soluble factor (BMP, Noggin, Notch, Hedgehog, and Wnt), insoluble extracellular matrix proteins (laminins, collagens, fibronectin, and their cognate receptors), stromal stiffness, oxygenation, and sheer stress induced by luminal fluid flow at the crypt-villus axis controls and supports healthy intestinal tissue homeostasis. However, due to current technological challenges, very few of these features have so far been included in in vitro intestinal tissue mimetic platforms. In this review, the tightly defined and dynamic microenvironment of the intestinal tissue is presented in detail. Additionally, the authors introduce the current state-of-the-art intestinal tissue mimetic platforms, as well as the design drawbacks and challenges they face while attempting to capture the complexity of the intestinal tissue's physiology. Finally, the compositions of an "idealized" mimetic system is presented to guide future developmental efforts.
Collapse
Affiliation(s)
- Sigita Malijauskaite
- Dept. of Chemical Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Sinead Connolly
- Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland.
| | - David Newport
- Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland.
| | - Kieran McGourty
- Dept. of Chemical Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
38
|
Lu Y, Li D, Liu G, Xiao E, Mu S, Pan Y, Qin F, Zhai Y, Duan S, Li D, Yan G. Identification of Critical Pathways and Potential Key Genes in Poorly Differentiated Pancreatic Adenocarcinoma. Onco Targets Ther 2021; 14:711-723. [PMID: 33536763 PMCID: PMC7850576 DOI: 10.2147/ott.s279287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction The poorly differentiated pancreatic adenocarcinoma (PDAC) is an extremely lethal neoplasm without effective biomarkers for early detection and prognosis prediction, which is characteristically unresponsive to chemotherapeutic regimens. This study aims at searching for key genes which could be applied as novel prognostic biomarkers and therapeutic targets in PDAC. Methods Clinical samples were collected and a comprehensive differential analysis of seven PDAC samples by integrating RNA-seq data of tumor tissues and matched normal tissues from both our cohort and gene expression profiling interactive analysis (GEPIA) were performed to discover potential prognostic genes in PDAC. Pathway enrichment analysis was carried out to determine the biological function of PDAC differentially expressed genes (DEGs), and protein-protein interaction (PPI) network was constructed for functional modules analysis. Real-time PCR was performed to validate expression of hub genes. Results A total of 126 PDAC-specific expressed genes identified from seven PDAC samples were predominantly enriched in cell adhesion, integral component of membrane, signal transduction and chemical carcinogenesis, IL-17 signaling pathway, indicating that obtained genes might play a unique role in PDAC tumorigenesis. Furthermore, survival analysis revealed that five genes (CEACAM5, KRT6A, KRT6B, KRT7, KRT17) which exhibited high expression levels in tumor tissues were obviously correlated with the prognosis of PDAC patients and KRT7 was positively correlated with KRT6A, KRT6B, KRT17 expression. In addition, real-time PCR demonstrated that the expression level of the hub genes was consistent with RNA-seq analysis. Discussion The current study suggested that CEACAM5, KRT6A, KRT6B, KRT7, and KRT17 may represent novel prognostic biomarkers as well as novel therapeutic targets for poorly differentiated PDAC.
Collapse
Affiliation(s)
- Yuanxiang Lu
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,School of Clinical Medicine, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ge Liu
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,School of Clinical Medicine, Henan University, Kaifeng, People's Republic of China
| | - Erwei Xiao
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Senmao Mu
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yujin Pan
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fangyuan Qin
- Henan Eye Hospital, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaping Zhai
- Henan Eye Hospital, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, People's Republic of China
| | - Deyu Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,School of Clinical Medicine, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guoyi Yan
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,School of Clinical Medicine, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
39
|
Tian C, Zhang B, Ge C. Effect of CEACAM6 silencing on the biological behavior of human gallbladder cancer cells. Oncol Lett 2020; 20:2677-2688. [PMID: 32782584 PMCID: PMC7400980 DOI: 10.3892/ol.2020.11806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is abnormally expressed in various malignant tumors and thus represents a potential biomarker, although information regarding its role in gallbladder cancer (GBC) is limited. This study aimed to evaluate the expression of CEACAM6 in GBC and the effect of CEACAM6 gene silencing on the proliferation, migration, invasion and apoptosis of human GBC cells. Immunochemistry was used to evaluate CEACAM6 expression in 95 GBC specimens and 40 peritumoral tissue specimens. GBC-SD and SGC-996 cell lines were used for in vitro experiments. CEACAM6 was knocked down by transfection of targeted small interfering RNA (siRNA), and reverse-transcription quantitative PCR and western blot analysis were used to detect knockdown efficiency. Cell Counting Kit-8 and colony formation assays were undertaken to evaluate cell proliferation. Variations in cell migration and invasion were detected by wound-healing and Transwell assays, respectively. Flow cytometry was applied to measure cell apoptosis and cell cycle distribution. CEACAM6 gene expression was significantly greater in GBC tissues than in peritumoral tissues, and its positive expression was associated with poor prognosis. CEACAM6 mRNA and protein expression in the CEACAM6 siRNA treatment group was significantly lower than that in the negative control group and the blank group. CEACAM6 knockdown inhibited GBC cell proliferation, migration and invasion but promoted cell apoptosis. Western blot analysis of invasion- and apoptosis-related proteins matrix metalloproteinase-2, Vimentin, BCL-2 and BAX further confirmed CEACAM6 mRNA depletion promoted cell apoptosis and inhibited invasion. Additionally, CEACAM6 mRNA depletion affected the progression of the GBC cell cycle to increase cell distribution in G0/G1 phase, and to reduce it in G2/M phase and S phase. These findings indicated that CEACAM6 overexpression may be related to the tumorigenesis and development of GBC. In summary, depletion of CEACAM6 mRNA suppressed the malignant biological behaviors of human gallbladder cancer cells.
Collapse
Affiliation(s)
- Chengming Tian
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Bingye Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Chunlin Ge
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
40
|
Gong C, Qi L, Huo Y, Zhang S, Ning X, Bai L, Wang Z. Anticancer effect of Limonin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice and the inhibition of A549 cell proliferation through apoptotic pathway. J Biochem Mol Toxicol 2019; 33:e22374. [PMID: 31702096 DOI: 10.1002/jbt.22374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
The main purpose of the current study is to reveal the anticancer action of limonin against benzo(a)pyrene [B(a)P]-treated lung carcinogenesis in Swiss albino mice and A549 lung cancer cells. B(a)P was orally supplemented (50 mg/kg body weight) twice a week for four weeks induction of lung cancer in mice. The lung weight, body weight, incidence of tumor, lipid peroxidation, carcinoembryonic antigen (CEA), enzymatic and nonenzymatic antioxidants (superoxide dismutase, GPx, glutathione, glutathione reductase, catalase, and glutathione S-transferase), serum marker enzymes (aryl hydroxylase, lactate dehydrogenase, 5'-nucleotidases, and γ-glutamyl transpeptidase), and inflammatory mediators (interleukin-1β, interleukin-6, and tumor necrosis factor-α) were estimated. Moreover, a histopathological study of lung tissues was supported by the biochemical analysis. Furthermore, the anticancer activity of limonin on A549 cells was measured by cell viability, production of reactive oxygen species (ROS), apoptotic morphological changes by AO/EtBr staining. Additionally, the status of apoptosis protein (caspase-9 and -3) expressions was analyzed by the colorimetric analysis. B(a)P-induced mice showed increased lipid peroxidation, CEA, serum marker enzymes and inflammatory cytokines levels with simultaneously decreased in the nonenzymatic and enzymatic antioxidants levels. Limonin supplements significantly reverted back to all these changes in this manner, showing the efficiency of anticancer effect. Furthermore, our in vitro study also supported the anticancer effect of the treatment of limonin-enhanced apoptosis by loss of cell viability, improved ROS production, apoptotic morphological changes, and apoptosis protein expression were analyzed. Overall, these results suggest the anticancer potential of limonin against B(a)P-induced lung cancer in Swiss albino mice and A549 lung cancer cells.
Collapse
Affiliation(s)
- Cuike Gong
- Department of Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Lei Qi
- Department of Pathology, Xingtai People's Hospital, Xingtai City, China
| | - Yanxia Huo
- Department of Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Shiran Zhang
- Department of Intensive Care Unit, Huanghua Boai Hospital, Cangzhou City, China
| | - Xuecong Ning
- Department of Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Linlin Bai
- Department of Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Zhihua Wang
- Department of Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| |
Collapse
|