1
|
Pellman J, Goldstein A, Słabicki M. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection. Biochem Soc Trans 2024; 52:2009-2021. [PMID: 39222407 PMCID: PMC11555711 DOI: 10.1042/bst20230324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
E3 ubiquitin ligases regulate the composition of the proteome. These enzymes mono- or poly-ubiquitinate their substrates, directly altering protein function or targeting proteins for degradation by the proteasome. In this review, we discuss the opposing roles of human E3 ligases as effectors and targets in the evolutionary battle between host and pathogen, specifically in the context of SARS-CoV-2 infection. Through complex effects on transcription, translation, and protein trafficking, human E3 ligases can either attenuate SARS-CoV-2 infection or become vulnerabilities that are exploited by the virus to suppress the host's antiviral defenses. For example, the human E3 ligase RNF185 regulates the stability of SARS-CoV-2 envelope protein through the ubiquitin-proteasome pathway, and depletion of RNF185 significantly increases SARS-CoV-2 viral titer (iScience (2023) 26, 106601). We highlight recent advances that identify functions for numerous human E3 ligases in the SARS-CoV-2 life cycle and we assess their potential as novel antiviral agents.
Collapse
Affiliation(s)
- Jesse Pellman
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Anna Goldstein
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, U.S.A
| |
Collapse
|
2
|
Li Y, Sun M, Sui Z, Zhang Z, Shan Y, Zhang L, Zhang Y. Site-specific identification and quantitation of endogenous SUMOylation based on SUMO-specific protease and strong anion exchange chromatography. J Chromatogr A 2024; 1730:465064. [PMID: 38865749 DOI: 10.1016/j.chroma.2024.465064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Small ubiquitin-like modifier (SUMO) modification regulates various eukaryotic cellular processes and plays a pivotal role in interferon (IFN)-mediated antiviral defense. While immunoprecipitation enrichment method is widely used for proteome-wide analysis of endogenous SUMOylation, the inability to target all SUMO forms and high cost of antibodies limited its further application. Herein, we proposed an antibody-free enrichment method based on SUMO-specific protease and strong anion exchange chromatography (SPAX) to globally profile the endogenous SUMOylation. The SUMO1/2/3-modified peptides could be simultaneously enriched by SAX chromatography by utilizing its electrostatic interaction with SUMO1/2/3 remnants, which contained multiple aspartic acids (D) and glutamic acids (E). To remove the co-enriched D/E-containing peptides which might interfere with the detection of low-abundance SUMOylated peptides, SUMO-specific protease was used to cleave the SUMO1/2/3 remnants from enriched SUMOylated peptides. As the deSUMOylated peptides lost SUMO remnants, their interaction with SAX materials became weaker, and the D/E-containing peptides could thus be depleted through the second SAX separation. The SPAX method identified over twice the SUMOylated sites than using SAX method only, greatly improving the identification coverage of endogenous SUMOylated sites. Our strategy was then applied to the site-specific identification and quantification of endogenous SUMOylation in A549 cells stimulated by IFN-γ for the first time. A total of 226 SUMOylated sites on 146 proteins were confidently identified, among which multiple up-regulated sites were involved in IFN-mediated antiviral defense, demonstrating the great promise of SPAX to globally profile and discover endogenous SUMOylation with significant biological functions.
Collapse
Affiliation(s)
- Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.
| | - Mingwei Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhenbin Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
3
|
Hu W, Zhao Z, Du J, Jiang J, Yang M, Tian M, Zhao P. Interferon signaling and ferroptosis in tumor immunology and therapy. NPJ Precis Oncol 2024; 8:177. [PMID: 39127858 PMCID: PMC11316745 DOI: 10.1038/s41698-024-00668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
This study sought to elucidate the mechanisms underlying the impact of the interferon signaling pathway on Ferroptosis in tumor cells and its correlation with CD8 + T cell exhaustion. Using mouse models and single-cell sequencing, the researchers studied the interaction between CD8 + T cells and the interferon signaling pathway. Differential gene analysis revealed key genes involved in CD8 + T cell exhaustion, and their downstream factors were explored using bioinformatics tools. The expression levels of interferon-related genes associated with Ferroptosis were analyzed using data from the TCGA database, and their relevance to tumor tissue Ferroptosis and patients' prognosis was determined. In vitro experiments were conducted to measure the levels of IFN-γ, MDA, and LPO, as well as tumor cell viability and apoptosis. In vivo validation using a mouse tumor model confirmed the results obtained from the in vitro experiments, highlighting the potential of silencing HSPA6 or DNAJB1 in enhancing the efficacy of PD-1 therapy and inhibiting tumor growth and migration.
Collapse
Grants
- This study was supported by National Natural Science Foundation of China (81972002,12304241), Natural Science Foundation of Shandong Province (ZR2023QC168,ZR2021MC165,ZR2021MC083,ZR2023MC136), and Taishan Young Scholar Foundation of Shandong Province (tsqnz20231257). Xinjiang Uygur Autonomous Region Training Program of Innovation and Entrepreneurship for College Students (S202310760060).
- This study was supported by National Natural Science Foundation of China (81972002, 12304241), and Natural Science Foundation of Shandong Province (ZR2019MH099, ZR2021MC165, ZR2021MC083, ZR2023QC168). Xinjiang Uygur Autonomous Region Training Program of Innovation and Entrepreneurship for College Students(S202310760060).
Collapse
Affiliation(s)
- Wei Hu
- Department of Breast Surgery, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China
| | - Ziqian Zhao
- The Second Medical College, Xinjiang Medical University, Urumqii, PR China
| | - Jianxin Du
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China
| | - Jie Jiang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Minghao Yang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China.
| |
Collapse
|
4
|
Dong D, Du Y, Fei X, Yang H, Li X, Yang X, Ma J, Huang S, Ma Z, Zheng J, Chan DW, Shi L, Li Y, Irving AT, Yuan X, Liu X, Ni P, Hu Y, Meng G, Peng Y, Sadler A, Xu D. Inflammasome activity is controlled by ZBTB16-dependent SUMOylation of ASC. Nat Commun 2023; 14:8465. [PMID: 38123560 PMCID: PMC10733316 DOI: 10.1038/s41467-023-43945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammasome activity is important for the immune response and is instrumental in numerous clinical conditions. Here we identify a mechanism that modulates the central Caspase-1 and NLR (Nod-like receptor) adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). We show that the function of ASC in assembling the inflammasome is controlled by its modification with SUMO (small ubiquitin-like modifier) and identify that the nuclear ZBTB16 (zinc-finger and BTB domain-containing protein 16) promotes this SUMOylation. The physiological significance of this activity is demonstrated through the reduction of acute inflammatory pathogenesis caused by a constitutive hyperactive inflammasome by ablating ZBTB16 in a mouse model of Muckle-Wells syndrome. Together our findings identify an further mechanism by which ZBTB16-dependent control of ASC SUMOylation assembles the inflammasome to promote this pro-inflammatory response.
Collapse
Affiliation(s)
- Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhang Du
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Fei
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Li
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi Province, 710003, China
| | - Xiaobao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junrui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Zheng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David W Chan
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China
| | - Liyun Shi
- Department of Microbiology and Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunqi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aaron T Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Infection, Immunity &Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Xiangliang Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihua Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqun Hu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Anthony Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| | - Dakang Xu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Mu M, Zhang Q, Li J, Zhao C, Li X, Chen Z, Sun X, Yu J. USP51 facilitates colorectal cancer stemness and chemoresistance by forming a positive feed-forward loop with HIF1A. Cell Death Differ 2023; 30:2393-2407. [PMID: 37816999 PMCID: PMC10657471 DOI: 10.1038/s41418-023-01228-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
In the current study, we have shown that USP51 promotes colorectal cancer stemness and chemoresistance, and high expression of USP51 predicts survival disadvantage in colorectal cancer patients. Mechanically, USP51 directly binds to Elongin C (ELOC) and forms a larger functional complex with VHL E3 ligase (USP51/VHL/CUL2/ELOB/ELOC/RBX1) to regulate the ubiquitin-dependent proteasomal degradation of HIF1A. USP51 efficiently deubiquitinates HIF1A and activates hypoxia-induced gene transcription. Conversely, the activation of HIF1A under hypoxia transcriptionally upregulates the expression of USP51. Thus, USP51 and HIF1A form a positive feedback loop. Further, we found that the SUMOylation of ELOC at K32 inhibits its binding to USP51. SUMO-specific protease 1 (SENP1) mediates the deSUMOylation of ELOC, promoting the binding of USP51 to ELOC and facilitating the deubiquitination and stabilization of HIF1A by USP51. Importantly, USP51 plays a crucial role in promoting the HIF1A and SENP1-dependent proliferation, migration, stemness, and chemoresistance under hypoxia in colorectal cancer. Together, our data revealed that USP51 is an oncogene stabilizing the pro-survival protein HIF1A, offering a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Mingchao Mu
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qin Zhang
- Department of Dermatology, Northwest Hospital, the Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Radiation Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Chenye Zhao
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Xiaopeng Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Zilu Chen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Xuejun Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| | - Junhui Yu
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Wu W, Huang C. SUMOylation and DeSUMOylation: Prospective therapeutic targets in cancer. Life Sci 2023; 332:122085. [PMID: 37722589 DOI: 10.1016/j.lfs.2023.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
The SUMO family is a type of ubiquitin-like protein modification molecule. Its protein modification mechanism is similar to that of ubiquitination: both involve modifier-activating enzyme E1, conjugating enzyme E2 and substrate-specific ligase E3. However, polyubiquitination can lead to the degradation of substrate proteins, while poly-SUMOylation only leads to the degradation of substrate proteins through the proteasome pathway after being recognized by ubiquitin as a signal factor. There are currently five reported subtypes in the SUMO family, namely SUMO1-5. As a reversible dynamic modification, intracellular sentrin/SUMO-specific proteases (SENPs) mainly regulate the reverse reaction pathway of SUMOylation. The SUMOylation modification system affects the localization, activation and turnover of proteins in cells and participates in regulating most nuclear and extranuclear molecular reactions. Abnormal expression of proteins related to the SUMOylation pathway is commonly observed in tumors, indicating that this pathway is closely related to tumor occurrence, metastasis and invasion. This review mainly discusses the composition of members in the protein family related to SUMOylation pathways, mutual connections between SUMOylation and other post-translational modifications on proteins as well as therapeutic drugs developed based on these pathways.
Collapse
Affiliation(s)
- Wenyan Wu
- Kunming University of Science and Technology, Medical School, Kunming 650500, China
| | - Chao Huang
- Kunming University of Science and Technology, Medical School, Kunming 650500, China.
| |
Collapse
|
7
|
Karandikar PV, Suh L, Gerstl JVE, Blitz SE, Qu QR, Won SY, Gessler FA, Arnaout O, Smith TR, Peruzzi PP, Yang W, Friedman GK, Bernstock JD. Positioning SUMO as an immunological facilitator of oncolytic viruses for high-grade glioma. Front Cell Dev Biol 2023; 11:1271575. [PMID: 37860820 PMCID: PMC10582965 DOI: 10.3389/fcell.2023.1271575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.
Collapse
Affiliation(s)
- Paramesh V. Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lyle Suh
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Qing Rui Qu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sae-Yeon Won
- Department of Neurosurgery, University of Rostock, Rostock, Germany
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Yang
- Department of Anesthesiology, Multidisciplinary Brain Protection Program, Duke University Medical Center, Durham, NC, United States
| | - Gregory K. Friedman
- Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
8
|
Jin S, He X, Ma L, Zhuang Z, Wang Y, Lin M, Cai S, Wei L, Wang Z, Zhao Z, Wu Y, Sun L, Li C, Xie W, Zhao Y, Songyang Z, Peng K, Zhao J, Cui J. Suppression of ACE2 SUMOylation protects against SARS-CoV-2 infection through TOLLIP-mediated selective autophagy. Nat Commun 2022; 13:5204. [PMID: 36057605 PMCID: PMC9440653 DOI: 10.1038/s41467-022-32957-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
In addition to investigating the virology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovering the host–virus dependencies are essential to identify and design effective antiviral therapy strategy. Here, we report that the SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) and provide evidence indicating that prevention of ACE2 SUMOylation can block SARS-CoV-2 infection. E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. TOLLIP deficiency results in the stabilization of ACE2 and elevated SARS-CoV-2 infection. In conclusion, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination as a potential way to combat SARS-CoV-2 infection. SARS- CoV-2 hijacks ACE2 for cell entry. Here, the authors report that dynamic SUMOylation modulates the TOLLIP-directed selective autophagic degradation of ACE2 and suggest SUMOylation inhibition as a potential intervention against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shouheng Jin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China.
| | - Xing He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Ling Ma
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 510182, Guangzhou, Guangdong, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 510182, Guangzhou, Guangdong, China
| | - Meng Lin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Sihui Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Lu Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zheyu Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhiyao Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 510182, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Lin Sun
- Department of Otolaryngology, First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Chunwei Li
- Department of Otolaryngology, First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Weihong Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Yong Zhao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhou Songyang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Ke Peng
- State Key Laboratory of Virology, CAS Key Laboratory of Special Pathogens, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, Hubei, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 510182, Guangzhou, Guangdong, China
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Guo Y, Yang C, Liu Y, Li T, Li H, Han J, Jia L, Wang X, Zhang B, Li J, Li L. High Expression of HERV-K (HML-2) Might Stimulate Interferon in COVID-19 Patients. Viruses 2022; 14:996. [PMID: 35632738 PMCID: PMC9143815 DOI: 10.3390/v14050996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background. Interferon is a marker of host antiviral immunity, which is disordered in COVID-19 patients. ERV can affect the secretion of interferon through the cGAS-STING pathway. In this study, we explored whether IFN-I and HERV-K (HML-2) were activated in COVID-19 patients and whether there was an interaction between them. Methods. We collected blood samples from COVID-19 patients and healthy controls. We first detected the expression of HERV-K (HML-2) gag, env, and pol genes and IFN-I-related genes between patients and healthy people by qPCR, synchronously detected VERO cells infected with SARS-CoV-2. Then, the chromosome distributions of highly expressed HERV-K (HML-2) gag, env, and pol genes were mapped by the next-generation sequencing results, and GO analysis was performed on the related genes. Results. We found that the HERV-K (HML-2) gag, env, and pol genes were highly expressed in COVID-19 patients and VERO cells infected with SARS-CoV-2. The interferon-related genes IFNB1, ISG15, and IFIT1 were also activated in COVID-19 patients, and GO analysis showed that HERV-K (HML-2) can regulate the secretion of interferon. Conclusions. The high expression of HERV-K (HML-2) might activate the increase of interferon in COVID-19 patients, proving that HERV-K does not only play a negative role in the human body.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (Y.G.); (C.Y.); (Y.L.); (T.L.); (H.L.); (J.H.); (L.J.); (X.W.); (B.Z.); (J.L.)
| |
Collapse
|
10
|
Fan Y, Li X, Zhang L, Zong Z, Wang F, Huang J, Zeng L, Zhang C, Yan H, Zhang L, Zhou F. SUMOylation in Viral Replication and Antiviral Defense. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104126. [PMID: 35060688 PMCID: PMC8895153 DOI: 10.1002/advs.202104126] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Indexed: 05/22/2023]
Abstract
SUMOylation is a ubiquitination-like post-translational modification that plays an essential role in the regulation of protein function. Recent studies have shown that proteins from both RNA and DNA virus families can be modified by SUMO conjugation, which facilitates viral replication. Viruses can manipulate the entire process of SUMOylation through interplay with the SUMO pathway. By contrast, SUMOylation can eliminate viral infection by regulating host antiviral immune components. A deeper understanding of how SUMOylation regulates viral proteins and cellular antiviral components is necessary for the development of effective antiviral therapies. In the present review, the regulatory mechanism of SUMOylation in viral replication and infection and the antiviral immune response, and the consequences of this regulation for viral replication and engagement with antiviral innate immunity are summarized. The potential therapeutic applications of SUMOylation in diseases caused by viruses are also discussed.
Collapse
Affiliation(s)
- Yao Fan
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123China
| | - Xiang Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Lei Zhang
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Wenzhou Medical UniversityRui'an325200China
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jun Huang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Linghui Zeng
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
| | - Chong Zhang
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
| | - Haiyan Yan
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123China
| |
Collapse
|
11
|
Alexandridi M, Mazej J, Palermo E, Hiscott J. The Coronavirus Pandemic – 2022: Viruses, Variants & Vaccines. Cytokine Growth Factor Rev 2022; 63:1-9. [PMID: 35216872 PMCID: PMC8839804 DOI: 10.1016/j.cytogfr.2022.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the beginning of the COVID-19 pandemic in 2019–2020, Cytokine & Growth Factor Reviews has published several Special Issues focused on the biology, pathogenesis and therapeutic options in the treatment of COVID-19 infection, including articles on the involvement of the chemokine system in the cytokine storm in COVID-19, intervention in the early stages of COVID-19 pneumonia, the therapeutic value of corticosteroid treatment, early clinical intervention with type 1 interferons, progress in vaccine development, and organ specific complications of COVID-19. By 2022, multiple highly efficacious vaccines are available and are being administered in countries around the world, therapeutic options have been clinically evaluated and approved, and SARS-CoV-2 has arguably become the most thoroughly studied virus in history. But, with progress has also come unanticipated problems – misinformation, anti-vaxxers, opposition to protective masks, and politically motivated interference disguised as knowledge. With this issue of CGFR, we continue to document the global coronavirus pandemic and provide an update on the emergence of viral variants, the global effort to administer vaccines and the impediments to progress posed by misinformation and anti-vaccine sentiment.
Collapse
|
12
|
Epstein-Barr Virus BGLF2 commandeers RISC to interfere with cellular miRNA function. PLoS Pathog 2022; 18:e1010235. [PMID: 35007297 PMCID: PMC8782528 DOI: 10.1371/journal.ppat.1010235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/21/2022] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
The Epstein-Barr virus (EBV) BGLF2 protein is a tegument protein with multiple effects on the cellular environment, including induction of SUMOylation of cellular proteins. Using affinity-purification coupled to mass-spectrometry, we identified the miRNA-Induced Silencing Complex (RISC), essential for miRNA function, as a top interactor of BGLF2. We confirmed BGLF2 interaction with the Ago2 and TNRC6 components of RISC in multiple cell lines and their co-localization in cytoplasmic bodies that also contain the stress granule marker G3BP1. In addition, BGLF2 expression led to the loss of processing bodies in multiple cell types, suggesting disruption of RISC function in mRNA regulation. Consistent with this observation, BGLF2 disrupted Ago2 association with multiple miRNAs. Using let-7 miRNAs as a model, we tested the hypothesis that BGLF2 interfered with the function of RISC in miRNA-mediated mRNA silencing. Using multiple reporter constructs with 3’UTRs containing let-7a regulated sites, we showed that BGLF2 inhibited let-7a miRNA activity dependent on these 3’UTRs, including those from SUMO transcripts which are known to be regulated by let-7 miRNAs. In keeping with these results, we showed that BGLF2 increased the cellular level of unconjugated SUMO proteins without affecting the level of SUMO transcripts. Such an increase in free SUMO is known to drive SUMOylation and would account for the effect of BGLF2 in inducing SUMOylation. We further showed that BGLF2 expression inhibited the loading of let-7 miRNAs into Ago2 proteins, and conversely, that lytic infection with EBV lacking BGLF2 resulted in increased interaction of let-7a and SUMO transcripts with Ago2, relative to WT EBV infection. Therefore, we have identified a novel role for BGLF2 as a miRNA regulator and shown that one outcome of this activity is the dysregulation of SUMO transcripts that leads to increased levels of free SUMO proteins and SUMOylation. Epstein-Barr virus (EBV) infects most people worldwide, persists for life and is associated with several kinds of cancer. In order to undergo efficient lytic infection, EBV must manipulate multiple cellular pathways. BGLF2 is an EBV lytic protein known to modulate several cellular processes including increasing the modification of cellular proteins with the Small Ubiquitin-Like Modifier (SUMO), a process referred to as SUMOylation. Here we show for the first time that BGLF2 interacts with a cellular complex (RISC) required for miRNA function and interferes with the function of some cellular miRNAs by sequestering this complex. One of the consequences of this effect is the increased expression of SUMO proteins, due to inhibition of the miRNAs that normally downregulate their expression. The resulting increase in SUMO proteins drives SUMOylation, providing a mechanism for the previously reported BGLF2-induced SUMOylation of cellular proteins. In addition, the discovery of BGLF2 as a miRNA regulator suggests that this EBV protein can control many cellular pathways by interfering with cellular miRNAs that normally regulate them.
Collapse
|
13
|
Liu Q, Gu T, Su LY, Jiao L, Qiao X, Xu M, Xie T, Yang LX, Yu D, Xu L, Chen C, Yao YG. GSNOR facilitates antiviral innate immunity by restricting TBK1 cysteine S-nitrosation. Redox Biol 2021; 47:102172. [PMID: 34678655 PMCID: PMC8577438 DOI: 10.1016/j.redox.2021.102172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Innate immunity is the first line of host defense against pathogens. This process is modulated by multiple antiviral protein modifications, such as phosphorylation and ubiquitination. Here, we showed that cellular S-nitrosoglutathione reductase (GSNOR) is actively involved in innate immunity activation. GSNOR deficiency in mouse embryo fibroblasts (MEFs) and RAW264.7 macrophages reduced the antiviral innate immune response and facilitated herpes simplex virus-1 (HSV-1) and vesicular stomatitis virus (VSV) replication. Concordantly, HSV-1 infection in Gsnor-/- mice and wild-type mice with GSNOR being inhibited by N6022 resulted in higher mortality relative to the respective controls, together with severe infiltration of immune cells in the lungs. Mechanistically, GSNOR deficiency enhanced cellular TANK-binding kinase 1 (TBK1) protein S-nitrosation at the Cys423 site and inhibited TBK1 kinase activity, resulting in reduced interferon production for antiviral responses. Our study indicated that GSNOR is a critical regulator of antiviral responses and S-nitrosation is actively involved in innate immunity.
Collapse
Affiliation(s)
- Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Lijin Jiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101, China
| | - Lu-Xiu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Chelbi-Alix MK, Thibault P. Crosstalk Between SUMO and Ubiquitin-Like Proteins: Implication for Antiviral Defense. Front Cell Dev Biol 2021; 9:671067. [PMID: 33968942 PMCID: PMC8097047 DOI: 10.3389/fcell.2021.671067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Interferon (IFN) is a crucial first line of defense against viral infection. This cytokine induces the expression of several IFN-Stimulated Genes (ISGs), some of which act as restriction factors. Upon IFN stimulation, cells also express ISG15 and SUMO, two key ubiquitin-like (Ubl) modifiers that play important roles in the antiviral response. IFN itself increases the global cellular SUMOylation in a PML-dependent manner. Mass spectrometry-based proteomics enables the large-scale identification of Ubl protein conjugates to determine the sites of modification and the quantitative changes in protein abundance. Importantly, a key difference amongst SUMO paralogs is the ability of SUMO2/3 to form poly-SUMO chains that recruit SUMO ubiquitin ligases such RING finger protein RNF4 and RNF111, thus resulting in the proteasomal degradation of conjugated substrates. Crosstalk between poly-SUMOylation and ISG15 has been reported recently, where increased poly-SUMOylation in response to IFN enhances IFN-induced ISGylation, stabilizes several ISG products in a TRIM25-dependent fashion, and results in enhanced IFN-induced antiviral activities. This contribution will highlight the relevance of the global SUMO proteome and the crosstalk between SUMO, ubiquitin and ISG15 in controlling both the stability and function of specific restriction factors that mediate IFN antiviral defense.
Collapse
Affiliation(s)
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Department of Chemistry, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
15
|
Neerukonda SN. Interplay between RNA Viruses and Promyelocytic Leukemia Nuclear Bodies. Vet Sci 2021; 8:vetsci8040057. [PMID: 33807177 PMCID: PMC8065607 DOI: 10.3390/vetsci8040057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are nuclear membrane-less sub structures that play a critical role in diverse cellular pathways including cell proliferation, DNA damage, apoptosis, transcriptional regulation, stem cell renewal, alternative lengthening of telomeres, chromatin organization, epigenetic regulation, protein turnover, autophagy, intrinsic and innate antiviral immunity. While intrinsic and innate immune functions of PML NBs or PML NB core proteins are well defined in the context of nuclear replicating DNA viruses, several studies also confirm their substantial roles in the context of RNA viruses. In the present review, antiviral activities of PML NBs or its core proteins on diverse RNA viruses that replicate in cytoplasm or the nucleus were discussed. In addition, viral counter mechanisms that reorganize PML NBs, and specifically how viruses usurp PML NB functions in order to create a cellular environment favorable for replication and pathogenesis, are also discussed.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- Department of Animal and Food and Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
16
|
Lork M, Lieber G, Hale BG. Proteomic Approaches to Dissect Host SUMOylation during Innate Antiviral Immune Responses. Viruses 2021; 13:528. [PMID: 33806893 PMCID: PMC8004987 DOI: 10.3390/v13030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
SUMOylation is a highly dynamic ubiquitin-like post-translational modification that is essential for cells to respond to and resolve various genotoxic and proteotoxic stresses. Virus infections also constitute a considerable stress scenario for cells, and recent research has started to uncover the diverse roles of SUMOylation in regulating virus replication, not least by impacting antiviral defenses. Here, we review some of the key findings of this virus-host interplay, and discuss the increasingly important contribution that large-scale, unbiased, proteomic methodologies are making to discoveries in this field. We highlight the latest proteomic technologies that have been specifically developed to understand SUMOylation dynamics in response to cellular stresses, and comment on how these techniques might be best applied to dissect the biology of SUMOylation during innate immunity. Furthermore, we showcase a selection of studies that have already used SUMO proteomics to reveal novel aspects of host innate defense against viruses, such as functional cross-talk between SUMO proteins and other ubiquitin-like modifiers, viral antagonism of SUMO-modified antiviral restriction factors, and an infection-triggered SUMO-switch that releases endogenous retroelement RNAs to stimulate antiviral interferon responses. Future research in this area has the potential to provide new and diverse mechanistic insights into host immune defenses.
Collapse
Affiliation(s)
| | | | - Benjamin G. Hale
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland; (M.L.); (G.L.)
| |
Collapse
|
17
|
Karhausen J, Ulloa L, Yang W. SUMOylation Connects Cell Stress Responses and Inflammatory Control: Lessons From the Gut as a Model Organ. Front Immunol 2021; 12:646633. [PMID: 33679811 PMCID: PMC7933481 DOI: 10.3389/fimmu.2021.646633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Conjugation with the small ubiquitin-like modifier (SUMO) constitutes a key post-translational modification regulating the stability, activity, and subcellular localization of its target proteins. However, the vast numbers of identified SUMO substrates obscure a clear view on the function of SUMOylation in health and disease. This article presents a comprehensive review on the physiological relevance of SUMOylation by discussing how global SUMOylation levels—rather than specific protein SUMOylation—shapes the immune response. In particular, we highlight the growing body of work on SUMOylation in intestinal pathologies, because of the unique metabolic, infectious, and inflammatory challenges of this organ. Recent studies show that global SUMOylation can help restrain detrimental inflammation while maintaining immune defenses and tissue integrity. These results warrant further efforts to develop new therapeutic tools and strategies to control SUMOylation in infectious and inflammatory disorders.
Collapse
Affiliation(s)
- Jörn Karhausen
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| | - Wei Yang
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
18
|
Antibody-free enrichment method for proteome-wide analysis of endogenous SUMOylation sites. Anal Chim Acta 2021; 1154:338324. [PMID: 33736815 DOI: 10.1016/j.aca.2021.338324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/22/2022]
Abstract
SUMOylation is a reversible post-translational modification that plays crucial roles in numerous cellular processes. Although anti-SUMO antibodies have been applied to analyze exogenous and endogenous SUMOylation, such immunoprecipitation enrichment strategy is applicable only for the enrichment of one specific SUMO type in mammalian cells, unable to map the global landscape of all endogenous SUMOylation simultaneously. To address this issue, we proposed an antibody-free strategy to enrich and profile endogenous SUMO1/2/3-modified peptides simultaneously. Upon trypsin digestion, the SUMO1- and SUMO2/3-modified peptides contained SUMO remnants with 7 and 9 acidic amino acids respectively, which carried more negative charges at high pH and could interact with strong anion exchange (SAX) materials more strongly than non-SUMOylated peptides, thus enabling the specific enrichment of endogenous SUMOylated peptides. Followed by the secondary digestion with Asp-N/Glu-C to generate smaller SUMOylated peptides with proper length for MS identification, off-line high-pH C18 pre-fractionation and low pH nanoRPLC-ESI-MS/MS analysis, 177 SUMO1-modified sites and 74 SUMO2/3-modified sites were unbiasedly identified in HeLa cell lysate. To the best of our knowledge, this was the first antibody-free strategy to comprehensively profile various endogenous SUMOylation sites, demonstrating the great potential in the comprehensive analysis of endogenous SUMOylation across various species and organs, which might further facilitate the understanding of SUMO's function in physiology and pathology.
Collapse
|