1
|
Samra K, Peakman G, MacDougall AM, Bouzigues A, Greaves CV, Convery RS, van Swieten JC, Jiskoot L, Seelaar H, Moreno F, Sanchez‐Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Ber IL, Tiraboschi P, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Rohrer JD, Russell LL. Extending the phenotypic spectrum assessed by the CDR plus NACC FTLD in genetic frontotemporal dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12571. [PMID: 38623386 PMCID: PMC11016817 DOI: 10.1002/dad2.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION We aimed to expand the range of the frontotemporal dementia (FTD) phenotypes assessed by the Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains (CDR plus NACC FTLD). METHODS Neuropsychiatric and motor domains were added to the standard CDR plus NACC FTLD generating a new CDR plus NACC FTLD-NM scale. This was assessed in 522 mutation carriers and 310 mutation-negative controls from the Genetic Frontotemporal dementia Initiative (GENFI). RESULTS The new scale led to higher global severity scores than the CDR plus NACC FTLD: 1.4% of participants were now considered prodromal rather than asymptomatic, while 1.3% were now considered symptomatic rather than asymptomatic or prodromal. No participants with a clinical diagnosis of an FTD spectrum disorder were classified as asymptomatic using the new scales. DISCUSSION Adding new domains to the CDR plus NACC FTLD leads to a scale that encompasses the wider phenotypic spectrum of FTD with further work needed to validate its use more widely. Highlights The new Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains neuropsychiatric and motor (CDR plus NACC FTLD-NM) rating scale was significantly positively correlated with the original CDR plus NACC FTLD and negatively correlated with the FTD Rating Scale (FRS).No participants with a clinical diagnosis in the frontotemporal dementia spectrum were classified as asymptomatic with the new CDR plus NACC FTLD-NM rating scale.Individuals had higher global severity scores with the addition of the neuropsychiatric and motor domains.A receiver operating characteristic analysis of symptomatic diagnosis showed nominally higher areas under the curve for the new scales.
Collapse
Affiliation(s)
- Kiran Samra
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Georgia Peakman
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Amy M. MacDougall
- Department of Medical StatisticsLondon School of Hygiene and Tropical MedicineLondonUK
| | - Arabella Bouzigues
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Caroline V. Greaves
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Rhian S. Convery
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | | | - Lize Jiskoot
- Department of NeurologyErasmus Medical CentreRotterdamthe Netherlands
| | - Harro Seelaar
- Department of NeurologyErasmus Medical CentreRotterdamthe Netherlands
| | - Fermin Moreno
- Cognitive Disorders UnitDepartment of NeurologyDonostia Universitary HospitalDonostiaSpain
- Neuroscience AreaBiodonostia Health Research InstituteSan SebastiánSpain
| | - Raquel Sanchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders UnitNeurology ServiceHospital ClínicInstitut d'Investigacións Biomèdiques August Pi I SunyerUniversity of BarcelonaBarcelonaSpain
| | - Robert Laforce
- Clinique Interdisciplinaire de MémoireDépartement des Sciences NeurologiquesCHU de Québec, and Faculté de MédecineUniversité Laval, Québec CityQuébecCanada
| | - Caroline Graff
- Center for Alzheimer ResearchDivision of NeurogeriatricsDepartment of NeurobiologyCare Sciences and Society, Bioclinicum, Karolinska Institutet, SolnavägenSolnaSweden
- Unit for Hereditary DementiasTheme AgingKarolinska University HospitalHälsovägenStockholmSweden
| | - Mario Masellis
- Sunnybrook Health Sciences CentreSunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Barbara Borroni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaPiazza del MercatoBresciaItaly
| | - Elizabeth Finger
- Department of Clinical Neurological SciencesUniversity of Western OntarioLondonOntarioCanada
| | - Matthis Synofzik
- Department of Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Daniela Galimberti
- Fondazione Ca’ GrandaIRCCS Ospedale PoliclinicoMilanItaly
- University of MilanCentro Dino FerrariMilanItaly
| | - Rik Vandenberghe
- Laboratory for Cognitive NeurologyDepartment of NeurosciencesKU LeuvenLeuvenBelgium
- Neurology ServiceUniversity Hospitals LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | | | - Chris R. Butler
- Nuffield Department of Clinical NeurosciencesMedical Sciences DivisionUniversity of OxfordOxfordUK
- Department of Brain SciencesImperial College LondonLondonUK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental PsychologyWolfson Molecular Imaging CentreUniversity of ManchesterManchesterUK
- Departments of Geriatric Medicine and Nuclear MedicineUniversity of Duisburg‐EssenDuisburgGermany
| | - Simon Ducharme
- Department of PsychiatryMcGill University Health CentreMcGill UniversityMontrealQuébecCanada
- McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Isabelle Le Ber
- Sorbonne UniversitéParis Brain Institute – Institut du Cerveau – ICMInserm U1127, CNRS UMR 7225AP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Centre de référence des démences rares ou précocesIM2A, Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Reference Network for Rare Neurological Diseases (ERN‐RND)University Hospital TübingenTübingenGermany
| | | | - Isabel Santana
- University Hospital of Coimbra (HUC)Neurology Service, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyFaculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Florence Pasquier
- Univ LilleLilleFrance
- Inserm 1172LilleFrance
- CHU, CNR‐MAJ, Labex Distalz, LiCEND LilleLilleFrance
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Markus Otto
- Department of NeurologyUniversity of UlmUlmGermany
| | - Sandro Sorbi
- Department of NeurofarbaUniversity of FlorenceFirenzeFlorenceItaly
- IRCCS Fondazione Don Carlo GnocchiFirenzeFlorenceItaly
| | - Jonathan D. Rohrer
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Lucy L. Russell
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
2
|
Sun K, Patel T, Kang SG, Yarahmady A, Srinivasan M, Julien O, Heras J, Mok SA. Disease-Associated Mutations in Tau Encode for Changes in Aggregate Structure Conformation. ACS Chem Neurosci 2023; 14:4282-4297. [PMID: 38054595 PMCID: PMC10741665 DOI: 10.1021/acschemneuro.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
The accumulation of tau fibrils is associated with neurodegenerative diseases, which are collectively termed tauopathies. Cryo-EM studies have shown that the packed fibril core of tau adopts distinct structures in different tauopathies, such as Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy. A subset of tauopathies are linked to missense mutations in the tau protein, but it is not clear whether these mutations impact the structure of tau fibrils. To answer this question, we developed a high-throughput protein purification platform and purified a panel of 37 tau variants using the full-length 0N4R splice isoform. Each of these variants was used to create fibrils in vitro, and their relative structures were studied using a high-throughput protease sensitivity platform. We find that a subset of the disease-associated mutations form fibrils that resemble wild-type tau, while others are strikingly different. The impact of mutations on tau structure was not clearly associated with either the location of the mutation or the relative kinetics of fibril assembly, suggesting that tau mutations alter the packed core structures through a complex molecular mechanism. Together, these studies show that single-point mutations can impact the assembly of tau into fibrils, providing insight into its association with pathology and disease.
Collapse
Affiliation(s)
- Kerry
T. Sun
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Tark Patel
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sang-Gyun Kang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Allan Yarahmady
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Mahalashmi Srinivasan
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Jónathan Heras
- Department
of Mathematics and Computer Sciences, University
of La Rioja, Logroño, Spain 26004
| | - Sue-Ann Mok
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
3
|
Koga S, Metrick MA, Golbe LI, Santambrogio A, Kim M, Soto-Beasley AI, Walton RL, Baker MC, De Castro CF, DeTure M, Russell D, Navia BA, Sandiego C, Ross OA, Vendruscolo M, Caughey B, Dickson DW. Case report of a patient with unclassified tauopathy with molecular and neuropathological features of both progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol Commun 2023; 11:88. [PMID: 37264457 DOI: 10.1186/s40478-023-01584-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are distinct clinicopathological subtypes of frontotemporal lobar degeneration. They both have atypical parkinsonism, and they usually have distinct clinical features. The most common clinical presentation of PSP is Richardson syndrome, and the most common presentation of CBD is corticobasal syndrome. In this report, we describe a patient with a five-year history of Richardson syndrome and a family history of PSP in her mother and sister. A tau PET scan (18F-APN-1607) revealed low-to-moderate uptake in the substantia nigra, globus pallidus, thalamus and posterior cortical areas, including temporal, parietal and occipital cortices. Neuropathological evaluation revealed widespread neuronal and glial tau pathology in cortical and subcortical structures, including tufted astrocytes in the motor cortex, striatum and midbrain tegmentum. The subthalamic nucleus had mild-to-moderate neuronal loss with globose neurofibrillary tangles, consistent with PSP. On the other hand, there were also astrocytic plaques, a pathological hallmark of CBD, in the neocortex and striatum. To further characterize the mixed pathology, we applied two machine learning-based diagnostic pipelines. These models suggested diagnoses of PSP and CBD depending on the brain region - PSP in the motor cortex and superior frontal gyrus and CBD in caudate nucleus. Western blots of insoluble tau from motor cortex showed a banding pattern consistent with mixed features of PSP and CBD, whereas tau from the superior frontal gyrus showed a pattern consistent with CBD. Real-time quaking-induced conversion (RT-QuIC) using brain homogenates from the motor cortex and superior frontal gyrus showed ThT maxima consistent with PSP, while reaction kinetics were consistent with CBD. There were no pathogenic variants in MAPT with whole genome sequencing. We conclude that this patient had an unclassified tauopathy and features of both PSP and CBD. The different pathologies in specific brain regions suggests caution in diagnosis of tauopathies with limited sampling.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Michael A Metrick
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, UK
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alessia Santambrogio
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, UK
| | - Minji Kim
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - David Russell
- Institute for Neurodegenerative Disorders, Temple Medical Center, New Haven, CT, USA
- Invicro, LLC, New Haven, CT, USA
| | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge, UK
| | - Byron Caughey
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
4
|
Olfati N, Ghodsi H, Bayram E, Litvan I. Why Therapeutic Trials Fail in Primary Tauopathies. Mov Disord 2023; 38:545-550. [PMID: 36670054 PMCID: PMC10398638 DOI: 10.1002/mds.29322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Nahid Olfati
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Hamidreza Ghodsi
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Buciuc M, Koga S, Pham NTT, Duffy JR, Knopman DS, Ali F, Boeve BF, Graff-Radford J, Botha H, Lowe VJ, Nguyen A, Reichard RR, Dickson DW, Petersen RC, Whitwell JL, Josephs KA. The many faces of globular glial tauopathy: A clinical and imaging study. Eur J Neurol 2023; 30:321-333. [PMID: 36256511 PMCID: PMC10141553 DOI: 10.1111/ene.15603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Globular glial tauopathy (GGT) has been associated with frontotemporal dementia syndromes; little is known about the clinical and imaging characteristics of GGT and how they differ from other non-globular glial 4-repeat tauopathies (N4GT) such as progressive supranuclear palsy (PSP) or corticobasal degeneration (CBD). METHODS For this case-control study the Mayo Clinic brain banks were queried for all cases with an autopsy-confirmed diagnosis of GGT between 1 January 2011 and 31 October 2021. Fifty patients with N4GT (30 PSP, 20 CBD) were prospectively recruited and followed by the Neurodegenerative Research Group at Mayo Clinic, Minnesota. Magnetic resonance imaging was used to characterize patterns of gray/white matter atrophy, MR-parkinsonism index, midbrain volume, and white matter hyperintensities.18 F-Fluorodeoxyglucose-, 11 C Pittsburg compound-, and 18 F-flortaucipir-positron emission tomography scans were reviewed. RESULTS Twelve patients with GGT were identified: 83% were women compared to 42% in NG4T (p = 0.02) with median age at death 76.5 years (range: 55-87). The most frequent clinical features were eye movement abnormalities, parkinsonism, behavioral changes followed by pyramidal tract signs and motor speech abnormalities. Lower motor neuron involvement was present in 17% and distinguished GGT from NG4T (p = 0.035). Primary progressive apraxia of speech was the most frequent initial diagnosis (25%); 50% had a Parkinson-plus syndrome before death. Most GGT patients had asymmetric frontotemporal atrophy with matching hypometabolism. GGT patients had more gray matter atrophy in temporal lobes, normal MR-parkinsonism index, and larger midbrain volumes. CONCLUSIONS Female sex, lower motor neuron involvement in the context of a frontotemporal dementia syndrome, and asymmetric brain atrophy with preserved midbrain might be suggestive of underlying GGT.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shunsuke Koga
- Department of Neurosciences, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neurosciences, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Cooper YA, Teyssier N, Dräger NM, Guo Q, Davis JE, Sattler SM, Yang Z, Patel A, Wu S, Kosuri S, Coppola G, Kampmann M, Geschwind DH. Functional regulatory variants implicate distinct transcriptional networks in dementia. Science 2022; 377:eabi8654. [PMID: 35981026 DOI: 10.1126/science.abi8654] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Predicting the function of noncoding variation is a major challenge in modern genetics. In this study, we used massively parallel reporter assays to screen 5706 variants identified from genome-wide association studies for both Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), identifying 320 functional regulatory variants (frVars) across 27 loci, including the complex 17q21.31 region. We identified and validated multiple risk loci using CRISPR interference or excision, including complement 4 (C4A) and APOC1 in AD and PLEKHM1 and KANSL1 in PSP. Functional variants disrupt transcription factor binding sites converging on enhancers with cell type-specific activity in PSP and AD, implicating a neuronal SP1-driven regulatory network in PSP pathogenesis. These analyses suggest that noncoding genetic risk is driven by common genetic variants through their aggregate activity on specific transcriptional programs.
Collapse
Affiliation(s)
- Yonatan A Cooper
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Noam Teyssier
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Zhongan Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Abdulsamie Patel
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Sarah Wu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
- Institute of Precision Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Koçoğlu C, Ferrari R, Roes M, Vandeweyer G, Kooy RF, van Broeckhoven C, Manzoni C, van der Zee J. Protein interaction network analysis reveals genetic enrichment of immune system genes in frontotemporal dementia. Neurobiol Aging 2022; 116:67-79. [DOI: 10.1016/j.neurobiolaging.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
|
8
|
Forrest SL, Kril JJ, Kovacs GG. Association Between Globular Glial Tauopathies and Frontotemporal Dementia-Expanding the Spectrum of Gliocentric Disorders: A Review. JAMA Neurol 2021; 78:1004-1014. [PMID: 34152367 DOI: 10.1001/jamaneurol.2021.1813] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Globular glial tauopathies (GGTs), as defined by a consensus study in 2013, belong to the group of frontotemporal lobar degenerations and expand the spectrum of glial-predominant neurodegenerative diseases. Three neuropathological subtypes of GGT (types I-III) are characterized by phosphorylated tau-immunopositive inclusions that are predominantly in oligodendroglia and/or astroglia in the frontal, temporal, and/or precentral cortices. Type II is largely restricted to the corticospinal system. The low incidence of GGT (<10% of cases of frontotemporal lobar degeneration with tau pathology), together with its unusual combination of neuronal and nonneuronal pathology, has hindered identification and accurate diagnosis. This review collated clinical, demographic, neuropathological, and genetic data from 88 published GGT cases identified on PubMed to examine the association between GGT and frontotemporal dementia and associated disorders. Observations Among 88 patients with GGT (46 female [52.3%]; mean [SD] age at disease onset, 65 [11] years), 44 patients (50.0%) had idiopathic disease, and 21 patients (23.9%) had a variation in the microtubule-associated protein tau (MAPT) gene. Those with idiopathic GGT compared with those with a variation in MAPT had a mean (SD) age at symptom onset of 70 (8) years vs 54 (9) years and a mean (SD) disease duration of 7 (3) years vs 6 (3) years, respectively. A similar sex distribution was observed among patients with GGT; however, female patients were typically 6 years older at symptom onset than male patients (mean [SD] age, 68 [11] years vs 62 [11] years, respectively). Disease duration was similar in both sexes (mean [SD], 6 [3] years for women and 6 [4] years for men). The most common predominant clinical features were primary progressive aphasia (22 patients [25.0%]), behavioral-variant frontotemporal dementia (20 patients [22.7%]), upper motor neuron signs (11 patients [12.5%]), memory impairment (7 patients [8.0%]), and Richardson syndrome (7 patients [8.0%]). Although some demographic differences between GGT subtypes were identified, the predictive value of the clinical presentation was low, calling into question the need for neuropathological subtyping. Further neuropathological studies are needed to clarify whether GGT type II should be interpreted as atypical progressive supranuclear palsy or a separate entity. Few cases (7 patients [8.0%]) had coexisting proteinopathies. Conclusions and Relevance This review of the published data suggests an association between regional distribution of glial tau pathology and neuronal degeneration. Targeting glial tau accumulation or sustaining their neuron-supportive function might require different therapeutic or neuroprotective strategies and more accurate preclinical models to explore disease mechanisms and track progression. Emerging data support the important role of glia in the pathogenesis of neurodegenerative disorders, highlighting the need to raise awareness of GGT in clinical and research settings.
Collapse
Affiliation(s)
- Shelley L Forrest
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jillian J Kril
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Diez-Fairen M, Alvarez Jerez P, Berghausen J, Bandres-Ciga S. The Genetic Landscape of Parkinsonism-Related Dystonias and Atypical Parkinsonism-Related Syndromes. Int J Mol Sci 2021; 22:ijms22158100. [PMID: 34360863 PMCID: PMC8347917 DOI: 10.3390/ijms22158100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
In recent decades, genetic research has nominated promising pathways and biological insights contributing to the etiological landscape of parkinsonism-related dystonias and atypical parkinsonism-related syndromes. Several disease-causing mutations and genetic risk factors have been unraveled, providing a deeper molecular understanding of the complex genetic architecture underlying these conditions. These disorders are difficult to accurately diagnose and categorize, thus making genetics research challenging. On one hand, dystonia is an umbrella term linked to clinically heterogeneous forms of disease including dopa-responsive dystonia, myoclonus-dystonia, rapid-onset dystonia-parkinsonism and dystonia-parkinsonism, often viewed as a precursor to Parkinson’s disease. On the other hand, atypical parkinsonism disorders, such as progressive supranuclear palsy, multiple system atrophy and corticobasal degeneration, are rare in nature and represent a wide range of diverse and overlapping phenotypic variabilities, with genetic research limited by sample size availability. The current review summarizes the plethora of available genetic information for these diseases, outlining limits and future directions.
Collapse
|
10
|
Wagner M, Lorenz G, Volk AE, Brunet T, Edbauer D, Berutti R, Zhao C, Anderl-Straub S, Bertram L, Danek A, Deschauer M, Dill V, Fassbender K, Fliessbach K, Götze KS, Jahn H, Kornhuber J, Landwehrmeyer B, Lauer M, Obrig H, Prudlo J, Schneider A, Schroeter ML, Uttner I, Vukovich R, Wiltfang J, Winkler AS, Zhou Q, Ludolph AC, Oexle K, Otto M, Diehl-Schmid J, Winkelmann J. Clinico-genetic findings in 509 frontotemporal dementia patients. Mol Psychiatry 2021; 26:5824-5832. [PMID: 34561610 PMCID: PMC8758482 DOI: 10.1038/s41380-021-01271-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/09/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous disorder. To which extent genetic aberrations dictate clinical presentation remains elusive. We investigated the spectrum of genetic causes and assessed the genotype-driven differences in biomarker profiles, disease severity and clinical manifestation by recruiting 509 FTD patients from different centers of the German FTLD consortium where individuals were clinically assessed including biomarker analysis. Exome sequencing as well as C9orf72 repeat analysis were performed in all patients. These genetic analyses resulted in a diagnostic yield of 18.1%. Pathogenic variants in C9orf72 (n = 47), GRN (n = 26), MAPT (n = 11), TBK1 (n = 5), FUS (n = 1), TARDBP (n = 1), and CTSF (n = 1) were identified across all clinical subtypes of FTD. TBK1-associated FTD was frequent accounting for 5.4% of solved cases. Detection of a homozygous missense variant verified CTSF as an FTD gene. ABCA7 was identified as a candidate gene for monogenic FTD. The distribution of APOE alleles did not differ significantly between FTD patients and the average population. Male sex was weakly associated with clinical manifestation of the behavioral variant of FTD. Age of onset was lowest in MAPT patients. Further, high CSF neurofilament light chain levels were found to be related to GRN-associated FTD. Our study provides large-scale retrospective clinico-genetic data such as on disease manifestation and progression of FTD. These data will be relevant for counseling patients and their families.
Collapse
Affiliation(s)
- Matias Wagner
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany ,grid.6936.a0000000123222966Institute of Human Genetics, Technical University München, Munich, Germany ,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Georg Lorenz
- grid.15474.330000 0004 0477 2438Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Alexander E. Volk
- grid.13648.380000 0001 2180 3484Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theresa Brunet
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany ,grid.6936.a0000000123222966Institute of Human Genetics, Technical University München, Munich, Germany
| | - Dieter Edbauer
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Riccardo Berutti
- grid.6936.a0000000123222966Institute of Human Genetics, Technical University München, Munich, Germany ,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Chen Zhao
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Sarah Anderl-Straub
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany
| | - Lars Bertram
- grid.4562.50000 0001 0057 2672Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XNeurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marcus Deschauer
- grid.6936.a0000000123222966Department of Neurology, Technische Universität München, School of Medicine, Munich, Germany
| | - Veronika Dill
- grid.6936.a0000000123222966Clinic and Policlinic for Internal Medicine III, Technical University Munich, School of Medicine, Munich, Germany
| | - Klaus Fassbender
- grid.411937.9Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katharina S. Götze
- grid.6936.a0000000123222966Clinic and Policlinic for Internal Medicine III, Technical University Munich, School of Medicine, Munich, Germany
| | - Holger Jahn
- grid.13648.380000 0001 2180 3484Clinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kornhuber
- grid.411668.c0000 0000 9935 6525Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Martin Lauer
- grid.8379.50000 0001 1958 8658Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Hellmuth Obrig
- grid.419524.f0000 0001 0041 5028Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.411339.d0000 0000 8517 9062Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Prudlo
- grid.413108.f0000 0000 9737 0454Department of Neurology, Rostock University Medical Center, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias L. Schroeter
- grid.419524.f0000 0001 0041 5028Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.411339.d0000 0000 8517 9062Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Ingo Uttner
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany
| | - Ruth Vukovich
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
| | - Jens Wiltfang
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7311.40000000123236065Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Andrea S. Winkler
- grid.6936.a0000000123222966Department of Neurology, Technische Universität München, School of Medicine, Munich, Germany ,grid.5510.10000 0004 1936 8921Centre for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Qihui Zhou
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Albert C. Ludolph
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm, Oberer Eselsberg, Ulm, Germany
| | | | - Konrad Oexle
- grid.4567.00000 0004 0483 2525Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany. .,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Janine Diehl-Schmid
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany.
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany. .,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany. .,Chair of Neurogenetics, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
12
|
Ferrer I, Andrés-Benito P, Zelaya MV, Aguirre MEE, Carmona M, Ausín K, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E, del Rio JA. Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy. Acta Neuropathol 2020; 139:735-771. [PMID: 31907603 PMCID: PMC7096369 DOI: 10.1007/s00401-019-02122-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Globular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.
Collapse
|
13
|
Forrest SL, Halliday GM, Shepherd CE, Kwok JB, Hallupp M, Kril JJ. Are mutations in MAPT associated with GGT type III? Neuropathol Appl Neurobiol 2019; 46:406-409. [PMID: 31618471 DOI: 10.1111/nan.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022]
Affiliation(s)
- S L Forrest
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - G M Halliday
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - C E Shepherd
- Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - J B Kwok
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - M Hallupp
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - J J Kril
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Forrest SL, Kril JJ, Halliday GM. Cellular and regional vulnerability in frontotemporal tauopathies. Acta Neuropathol 2019; 138:705-727. [PMID: 31203391 DOI: 10.1007/s00401-019-02035-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
The frontotemporal tauopathies all deposit abnormal tau protein aggregates, but often of only certain isoforms and in distinguishing pathologies of five main types (neuronal Pick bodies, neurofibrillary tangles, astrocytic plaques, tufted astrocytes, globular glial inclusions and argyrophilic grains). In those with isoform specific tau aggregates glial pathologies are substantial, even though there is limited evidence that these cells normally produce tau protein. This review will assess the differentiating features and clinicopathological correlations of the frontotemporal tauopathies, the genetic predisposition for these different pathologies, their neuroanatomical selectivity, current observations on how they spread through the brain, and any potential contributing cellular and molecular changes. The findings show that diverse clinical phenotypes relate most to the brain region degenerating rather than the type of pathology involved, that different regions on the MAPT gene and novel risk genes are associated with specific tau pathologies, that the 4-repeat glial tauopathies do not follow individual patterns of spreading as identified for neuronal pathologies, and that genetic and pathological data indicate that neuroinflammatory mechanisms are involved. Each pathological frontotemporal tauopathy subtype with their distinct pathological features differ substantially in the cell type affected, morphology, biochemical and anatomical distribution of inclusions, a fundamental concept central to future success in understanding the disease mechanisms required for developing therapeutic interventions. Tau directed therapies targeting genetic mechanisms, tau aggregation and pathological spread are being trialled, although biomarkers that differentiate these diseases are required. Suggested areas of future research to address the regional and cellular vulnerabilities in frontotemporal tauopathies are discussed.
Collapse
|
15
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|