1
|
Völter F, Eckenweber S, Scheifele M, Eckenweber F, Hirsch F, Franzmeier N, Kreuzer A, Griessl M, Steward A, Janowitz D, Palleis C, Bernhardt A, Vöglein J, Stockbauer A, Rauchmann BS, Schöberl F, Wlasich E, Buerger K, Wagemann O, Perneczky R, Weidinger E, Höglinger G, Levin J, Brendel M, Schönecker S. Correlation of early-phase β-amyloid positron-emission-tomography and neuropsychological testing in patients with Alzheimer's disease. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07175-5. [PMID: 40019578 DOI: 10.1007/s00259-025-07175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Clinical staging in individuals with Alzheimer's disease (AD) typically relies on neuropsychological testing. Recognizing the imperative for an objective measure of clinical AD staging, regional perfusion in early-phase β-amyloid-PET may aid as a cost-efficient index for the assessment of neurodegeneration severity in patients with Alzheimer's disease. METHODS Regional perfusion deficits in early-phase β-amyloid-PET as well as neuropsychological testing (max. 90 days delay) were evaluated in 82 patients with biologically defined AD according to the ATN classification. In reference to the Braak staging system patients were classified into the groups stage0, stageI-II+, stageI-IV+, stageI-VI+, and stageatypical+ according to regional perfusion deficits in regions of interest (ROIs) published by the Alzheimer's Disease Neuroimaging Initiative. Multiple regression analysis controlling for age, gender, and education was used to evaluate the association of regional z-scores on perfusion-phase PET with clinical scores for all patients and with annual decline of cognitive performance in 23 patients with follow-up data. RESULTS Patients classified as stage0 and stageI-II+ demonstrated significantly superior neuropsychological performance compared to those classified as stageI-IV+ and stageI-VI+. Lower cognitive performance was associated with decreased perfusion in early-phase β-amyloid-PET globally and regionally, with the most pronounced association identified in the left temporal lobe. Mean z-scores on early-phase PET in temporal and parietal regions offered a robust prediction of future annual decline in MMSE and sum scores of the CERAD-Plus (Consortium to Establish a Registry for Alzheimer's Disease) test battery. CONCLUSION Regional and global perfusion deficits in early-phase β-amyloid-PET can serve as an objective index of neurodegeneration severity and may act as prognostic markers of future cognitive decline in AD.
Collapse
Affiliation(s)
- Friederike Völter
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany.
| | - Sebastian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Fabian Hirsch
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal and Gothenburg, Sweden
| | - Annika Kreuzer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Maria Griessl
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alexander Bernhardt
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jonathan Vöglein
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Florian Schöberl
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elisabeth Wlasich
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research (ISD), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Olivia Wagemann
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Günter Höglinger
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sonja Schönecker
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Denning AE, Ittyerah R, Levorse LM, Sadeghpour N, Athalye C, Chung E, Ravikumar S, Dong M, Duong MT, Li Y, Ilesanmi A, Sreepada LP, Sabatini P, Lowe M, Bahena A, Zablah J, Spencer BE, Watanabe R, Kim B, Sørensen MH, Khandelwal P, Brown C, Hrybouski S, Xie SX, de Flores R, Robinson JL, Schuck T, Ohm DT, Arezoumandan S, Porta S, Detre JA, Insausti R, Wisse LEM, Das SR, Irwin DJ, Lee EB, Wolk DA, Yushkevich PA. Association of quantitative histopathology measurements with antemortem medial temporal lobe cortical thickness in the Alzheimer's disease continuum. Acta Neuropathol 2024; 148:37. [PMID: 39227502 PMCID: PMC11371872 DOI: 10.1007/s00401-024-02789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
The medial temporal lobe (MTL) is a hotspot for neuropathology, and measurements of MTL atrophy are often used as a biomarker for cognitive decline associated with neurodegenerative disease. Due to the aggregation of multiple proteinopathies in this region, the specific relationship of MTL atrophy to distinct neuropathologies is not well understood. Here, we develop two quantitative algorithms using deep learning to measure phosphorylated tau (p-tau) and TDP-43 (pTDP-43) pathology, which are both known to accumulate in the MTL and are associated with MTL neurodegeneration. We focus on these pathologies in the context of Alzheimer's disease (AD) and limbic predominant age-related TDP-43 encephalopathy (LATE) and apply our deep learning algorithms to distinct histology sections, on which MTL subregions were digitally annotated. We demonstrate that both quantitative pathology measures show high agreement with expert visual ratings of pathology and discriminate well between pathology stages. In 140 cases with antemortem MR imaging, we compare the association of semi-quantitative and quantitative postmortem measures of these pathologies in the hippocampus with in vivo structural measures of the MTL and its subregions. We find widespread associations of p-tau pathology with MTL subregional structural measures, whereas pTDP-43 pathology had more limited associations with the hippocampus and entorhinal cortex. Quantitative measurements of p-tau pathology resulted in a significantly better model of antemortem structural measures than semi-quantitative ratings and showed strong associations with cortical thickness and volume. By providing a more granular measure of pathology, the quantitative p-tau measures also showed a significant negative association with structure in a severe AD subgroup where semi-quantitative ratings displayed a ceiling effect. Our findings demonstrate the advantages of using quantitative neuropathology to understand the relationship of pathology to structure, particularly for p-tau, and motivate the use of quantitative pathology measurements in future studies.
Collapse
Affiliation(s)
- Amanda E Denning
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Levorse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Chinmayee Athalye
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Eunice Chung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sadhana Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mengjin Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Tran Duong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ademola Ilesanmi
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lasya P Sreepada
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Sabatini
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - MaKayla Lowe
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandra Bahena
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamila Zablah
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara E Spencer
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryohei Watanabe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Boram Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Maja Højvang Sørensen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Pulkit Khandelwal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin de Flores
- UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, INSERM, Caen-Normandie University, GIP Cyceron, Caen, France
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa Schuck
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel T Ohm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanaz Arezoumandan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Insausti
- Human Neuroanatomy Lab, University of Castilla La Mancha, Albacete, Spain
| | - Laura E M Wisse
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Phongpreecha T, Cholerton B, Bhukari S, Chang AL, De Francesco D, Thuraiappah M, Godrich D, Perna A, Becker MG, Ravindra NG, Espinosa C, Kim Y, Berson E, Mataraso S, Sha SJ, Fox EJ, Montine KS, Baker LD, Craft S, White L, Poston KL, Beecham G, Aghaeepour N, Montine TJ. Prediction of neuropathologic lesions from clinical data. Alzheimers Dement 2023; 19:3005-3018. [PMID: 36681388 PMCID: PMC10359434 DOI: 10.1002/alz.12921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Post-mortem analysis provides definitive diagnoses of neurodegenerative diseases; however, only a few can be diagnosed during life. METHODS This study employed statistical tools and machine learning to predict 17 neuropathologic lesions from a cohort of 6518 individuals using 381 clinical features (Table S1). The multisite data allowed validation of the model's robustness by splitting train/test sets by clinical sites. A similar study was performed for predicting Alzheimer's disease (AD) neuropathologic change without specific comorbidities. RESULTS Prediction results show high performance for certain lesions that match or exceed that of research annotation. Neurodegenerative comorbidities in addition to AD neuropathologic change resulted in compounded, but disproportionate, effects across cognitive domains as the comorbidity number increased. DISCUSSION Certain clinical features could be strongly associated with multiple neurodegenerative diseases, others were lesion-specific, and some were divergent between lesions. Our approach could benefit clinical research, and genetic and biomarker research by enriching cohorts for desired lesions.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
| | - Brenna Cholerton
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
| | - Syed Bhukari
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
| | - Alan L. Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Davide De Francesco
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Melan Thuraiappah
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Dana Godrich
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami 1501 NW 10 Ave, Miami, Florida 33136 USA
| | - Amalia Perna
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
| | - Martin G. Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Neal G. Ravindra
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Yeasul Kim
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Eloise Berson
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Samson Mataraso
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Sharon J. Sha
- Department of Neurology & Neurological Sciences, Stanford University 213 Quarry Road, MC 5979 Palo Alto, CA 94304 USA
| | - Edward J. Fox
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
| | - Kathleen S. Montine
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
| | - Laura D. Baker
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine 475 Vine Street, Winston-Salem, NC 27101 USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine 475 Vine Street, Winston-Salem, NC 27101 USA
| | - Lon White
- Pacific Health Research and Education Institute, Hawaii 3375 Koapaka Street, I-540, Honolulu, HI 96819 USA
| | - Kathleen L. Poston
- Department of Neurology & Neurological Sciences, Stanford University 213 Quarry Road, MC 5979 Palo Alto, CA 94304 USA
| | - Gary Beecham
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami 1501 NW 10 Ave, Miami, Florida 33136 USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University 300 Pasteur Drive, Room H3580 MC 5640 Stanford, CA 94305 USA
- Department of Biomedical Data Science, Stanford University 1265 Welch Road MC5464 MSOB West Wing, Third Floor Stanford, CA 94305 USA
- Department of Pediatrics, Stanford University 453 Quarry Road MC 5660 Palo Alto, CA 94304 USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University 300 Pasteur Drive Medicine Lane Building L235 Stanford, CA 94305 USA
| |
Collapse
|
4
|
Ge X, Zheng M, Hu M, Fang X, Geng D, Liu S, Wang L, Zhang J, Guan L, Zheng P, Xie Y, Pan W, Zhou M, Zhou L, Tang R, Zheng K, Yu Y, Huang XF. Butyrate ameliorates quinolinic acid-induced cognitive decline in obesity models. J Clin Invest 2023; 133:154612. [PMID: 36787221 PMCID: PMC9927952 DOI: 10.1172/jci154612] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2022] [Indexed: 02/15/2023] Open
Abstract
Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer's disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine's intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration.
Collapse
Affiliation(s)
- Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Li Guan
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Jiangsu, China.,Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Hansen N, Hirschel S, Teegen B, Wiltfang J, Malchow B. Preserved visuoconstruction in patients with Alzheimer's pathology and anti-neural autoantibodies: A case control study. FRONTIERS IN DEMENTIA 2022; 1:975851. [PMID: 39081477 PMCID: PMC11285684 DOI: 10.3389/frdem.2022.975851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/29/2022] [Indexed: 08/02/2024]
Abstract
Background Alzheimer's disease (AD) is seldom reported to be associated with neural autoantibodies apart from those involved in axonal neurodegeneration and amyloidopathy in prior studies. Nevertheless, this is an under-investigated aspect of AD. As we do not know whether additional screening for autoantibodies in AD patients has additional diagnostic and therapeutic value, this study aims to shed light on whether visuoconstructive or figural memory capacities might distinguish these patient populations. Methods In this pilot case series, we investigated eight patients suffering from cognitive impairment associated with cerebrospinal fluid (CSF)-based Alzheimer pathology (AP) and with verified anti-neural autoantibodies (AP Aab+) compared to eight AD patients presenting no autoantibodies (Aab-) (AD Aab-). Patients files were reviewed retrospectively regarding their neuropsychological profile assessed via the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) test battery and psychopathology measured by the AMDP (Manual for the Assessment and Documentation of Psychopathology in Psychiatry) system. We also relied on diagnostic parameters as in the CSF and magnetic resonance images. Results All patients shared the same pattern of dysfunctional word-list learning and word-list recall resembling a hippocampus-dependent memory dysfunction. Furthermore, both patient groups revealed a CSF profile concurring with Alzheimer's disease. However, visuoconstructive capacity, but not figure recall was preserved in AP Aab+ patients, but not in AD Ab-patients with the shared hippocampus-based memory dysfunction. We observed no relevant differences between the AP Aab+ and AD Aab- groups in CSF cell-counts or intrathecal IgG synthesis. The relative frequency of hippocampal and focal atrophy did not differ either between AP Aab+ and AD Aab- groups. Discussion Our pilot findings are encouraging us to conduct large-scale studies to replicate our discovery of preserved visuoconstruction in AP Aab+ patients with hippocampus-based memory dysfunction. The role of anti-neural autoantibodies is still not fully understood. The detection of these autoantibodies might imply another disease pathology that could be either neuroprotective or be affecting other brain regions, i.e., less pronounced disease activity in the right temporo-parietal regions mainly involved in visuoconstruction.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Translational Psychoneuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Stöcker, Lübeck, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Sharma MJ, Callahan BL. Cerebrovascular and Neurodegenerative Pathologies in Long-Term Stable Mild Cognitive Impairment. J Alzheimers Dis 2021; 79:1269-1283. [PMID: 33427736 DOI: 10.3233/jad-200829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is considered by some to be a prodromal phase of a progressive disease (i.e., neurodegeneration) resulting in dementia; however, a substantial portion of individuals (ranging from 5-30%) remain cognitively stable over the long term (sMCI). The etiology of sMCI is unclear but may be linked to cerebrovascular disease (CVD), as evidence from longitudinal studies suggest a significant proportion of individuals with vasculopathy remain stable over time. OBJECTIVE To quantify the presence of neurodegenerative and vascular pathologies in individuals with long-term (>5-year) sMCI, in a preliminary test of the hypothesis that CVD may be a contributor to non-degenerative cognitive impairment. We expect frequent vasculopathy at autopsy in sMCI relative to neurodegenerative disease, and relative to individuals who convert to dementia. METHODS In this retrospective study, using data from the National Alzheimer's Coordinating Center, individuals with sMCI (n = 28) were compared to those with MCI who declined over a 5 to 9-year period (dMCI; n = 139) on measures of neurodegenerative pathology (i.e., Aβ plaques, neurofibrillary tangles, TDP-43, and cerebral amyloid angiopathy) and CVD (infarcts, lacunes, microinfarcts, hemorrhages, and microbleeds). RESULTS Alzheimer's disease pathology (Aβ plaques, neurofibrillary tangles, and cerebral amyloid angiopathy) was significantly higher in the dMCI group than the sMCI group. Microinfarcts were the only vasculopathy associated with group membership; these were more frequent in sMCI. CONCLUSION The most frequent neuropathology in this sample of long-term sMCI was microinfarcts, tentatively suggesting that silent small vessel disease may characterize non-worsening cognitive impairment.
Collapse
Affiliation(s)
- Manu J Sharma
- Department of Psychology, University of Calgary, Calgary (AB), Canada
- Hotchkiss Brain Institute, Calgary (AB), Canada
| | - Brandy L Callahan
- Department of Psychology, University of Calgary, Calgary (AB), Canada
- Hotchkiss Brain Institute, Calgary (AB), Canada
| |
Collapse
|