1
|
de Lima FMR, Abrahão I, Pentagna N, Carneiro K. Gradual specialization of phagocytic ameboid cells may have impaired regenerative capacities in metazoan lineages. Dev Dyn 2023; 252:343-362. [PMID: 36205096 DOI: 10.1002/dvdy.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Animal regeneration is a fascinating field of research that has captured the attention of many generations of scientists. Among the cellular mechanisms underlying tissue and organ regeneration, we highlight the role of phagocytic ameboid cells (PACs). Beyond their ability to engulf nutritional particles, microbes, and apoptotic cells, their involvement in regeneration has been widely documented. It has been extensively described that, at least in part, animal regenerative mechanisms rely on PACs that serve as a hub for a range of critical physiological functions, both in health and disease. Considering the phylogenetics of PAC evolution, and the loss and gain of nutritional, immunological, and regenerative potential across Metazoa, we aim to discuss when and how phagocytic activity was first co-opted to regenerative tissue repair. We propose that the gradual specialization of PACs during metazoan derivation may have contributed to the loss of regenerative potential in animals, with critical impacts on potential translational strategies for regenerative medicine.
Collapse
Affiliation(s)
- Felipe Matheus Ribeiro de Lima
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Abrahão
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pentagna
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Wang W, Wang C, Chen W, Ding S. Advances in immunological research of amphioxus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103992. [PMID: 33387559 DOI: 10.1016/j.dci.2020.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Amphioxus, one of the most closely related invertebrates to vertebrates, is an important animal model for studying the origin and evolution of vertebrate immunity, especially the transition from innate immunity to adaptive immunity. The current research progresses of amphioxus in the field of immune organs, immune cells, complement system, cytokines, nuclear factor kappa B, immune-related lectins and enzymes are summarized, and some issues that remain to be understood or are in need of further clarification are highlighted. We hope to provide references for more in-depth study of the amphioxus immune system and lay a solid foundation for the construction of three-dimensional immune network in amphioxus from ontogeny to phylogeny.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| |
Collapse
|
3
|
Juárez-Avelar I, Rodríguez T, García-García AP, Rodríguez-Sosa M. Macrophage migration inhibitory factor (MIF): Its role in the genesis and progression of colorectal cancer. IMMUNOTHERAPY IN RESISTANT CANCER: FROM THE LAB BENCH WORK TO ITS CLINICAL PERSPECTIVES 2021:173-193. [DOI: 10.1016/b978-0-12-822028-3.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Rosani U, Domeneghetti S, Gerdol M, Pallavicini A, Venier P. Expansion and loss events characterized the occurrence of MIF-like genes in bivalves. FISH & SHELLFISH IMMUNOLOGY 2019; 93:39-49. [PMID: 31306763 DOI: 10.1016/j.fsi.2019.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Macrophage migration inhibitory factor (MIF) dynamically connects innate and adaptive immune systems in vertebrate animals, allowing highly orchestrated systemic responses to various insults. The occurrence of MIF-like genes in non-vertebrate organisms suggests its origin from an ancestral metazoan gene, whose function is still a matter of debate. In the present work, by analyzing available genomic and transcriptomic data from bivalve mollusks, we identified 137 MIF-like sequences, which were classified into three types, based on phylogeny and conservation of key residues: MIF, D-DT, and the lineage-specific type MDL. Comparative genomics revealed syntenic conservation of homologous genes at the family level, the loss of D-DT in the Ostreidae family as well as the expansion of MIF-like genes in the Mytilidae family, possibly underpinning the neofunctionalization of duplicated gene copies. In M. galloprovincialis, MIF and one D-DT were mostly expressed in haemocytes and mantle rim of untreated animals, while D-DT paralogs often showed very limited expression, suggesting an accessory role or their persistence as relict genes.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy; AWI Alfred Wegener Institute, Coastal Ecology, Hafenstraße 43, 25992, List auf Sylt, Germany.
| | - Stefania Domeneghetti
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy.
| |
Collapse
|
5
|
Wang D, Yang D, Wang Q, Zhao Y, Li C, Wei Q, Han Y, Zhao J. Two macrophage migration inhibitory factors (MIFs) from the clam Ruditapes philippinarum: Molecular characterization, localization and enzymatic activities. FISH & SHELLFISH IMMUNOLOGY 2018; 78:158-168. [PMID: 29679760 DOI: 10.1016/j.fsi.2018.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionarily ancient cytokine-like factor and plays a critical role in both innate and adaptive immunity. In the present study, two MIFs (designed as RpMIF-1 and RpMIF-2, respectively) were identified and characterized from the clam Ruditapes philippinarum by rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of RpMIF-1 and RpMFI-2 consisted of 531 and 722 nucleotides, encoding a polypeptide of 113 and 114 amino acid residues, respectively. Multiple alignments and phylogenetic analysis revealed that both RpMIF-1 and RpMIF-2 belonged to the MIF family. The conserved catalytic-site Pro2 for tautomerase activity was identified in the deduced amino acid sequences of RpMIFs. Both RpMIF-1 and RpMIF-2 transcripts were constitutively expressed in examined tissues of R. philippinarum with dominant expression in hepatopancreas, gills and hemocytes. Immunolocalization analysis showed that RpMIF-1 and RpMIF-2 proteins were expressed in examined tissues with the exception of adductor muscle and foot. After Vibrio anguillarum and Micrococcus luteus challenge, the mRNA expression of RpMIFs was significantly modulated in hemocytes, gills and hepatopancreas. Recombinant RpMIF-1 and RpMIF-2 proteins possessed significant tautomerase activity and oxidoreductase activity, indicating that these two proteins was perhaps involved in inflammatory responses. In summary, our results suggested that RpMIF-1 and RpMIF-2 played an important role in the innate immunity of R. philippinarum.
Collapse
Affiliation(s)
- Dan Wang
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Chenghua Li
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Qianyu Wei
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
6
|
Identification of CPE and GAIT elements in 3'UTR of macrophage migration inhibitory factor (MIF) involved in inflammatory response induced by LPS in Ciona robusta. Mol Immunol 2018; 99:66-74. [PMID: 29702356 DOI: 10.1016/j.molimm.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Innate immune responses face infectious microorganisms by inducing inflammatory responses. Multiple genes within distinct functional categories are coordinately and temporally regulated by transcriptional 'on' and 'off' switches that account for the specificity of gene expression in response to external stimuli. Mechanisms that control transcriptional and post-transcriptional regulation are important in coordinating the initiation and resolution of inflammation. Macrophage migration inhibitory factor (MIF) is an important cytokine that, in Ciona robusta, is related to inflammatory response. It is well known that in C. robusta, formerly known as Ciona intestinalis, the pharynx is involved in the inflammatory reaction induced by lipopolysaccharide (LPS) injection in the body wall. Using this biological system, we describe the identification of two C. robusta MIFs (CrMIF1 and CrMIF2). The phylogenetic tree and modeling support a close relationship with vertebrate MIF family members. CrMIF1 and CrMIF2 possess two evolutionally conserved catalytic sites: a tautomerase and an oxidoreductase site with a conserved CXXC motif. Real-time PCR analysis shows a prompt expression induced by LPS inoculation in CrMIF1 and a late upregulation of CrMIF2 and in silico analyses of 3'UTR show a cis-acting GAIT element and a CPE element in 3'-UTR, which are not present in the 3'-UTR of CrMIF1, suggesting that different transcriptional and post-transcriptional control mechanisms are involved in the regulation of gene expression of MIF during inflammatory response in C. robusta.
Collapse
|
7
|
Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol 2017; 301:83-91. [PMID: 28679106 DOI: 10.1016/j.expneurol.2017.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a conserved cytokine found as a homotrimer protein. It is found in a wide spectrum of cell types in the body including neuronal and non-neuronal cells. MIF is implicated in several biological processes; chemo-attraction, cytokine activity, and receptor binding, among other functions. More recently, a chaperone-like activity has been added to its repertoire. In this review, we focus on the implication of MIF in the central nervous system and peripheries, its role in neurological disorders, and the mechanisms by which MIF is regulated. Numerous studies have associated MIF with various disease settings. MIF plays an important role in advocating tumorigenic processes, Alzheimer's disease, and is also upregulated in autism-spectrum disorders and spinal cord injury where it contributes to the severity of the injured area. The protective effect of MIF has been reported in amyotrophic lateral sclerosis by its reduction of aggregated misfolded SOD1, subsequently reducing the severity of this disease. Interestingly, a protective as well as pathological role for MIF has been implicated in stroke and cerebral ischemia, as well as depression. Thus, the role of MIF in neurological disorders appears to be diverse with both beneficial and adversary effects. Furthermore, its modulation is rather complex and it is regulated by different proteins, either on a molecular or protein level. This complexity might be dependent on the pathophysiological context and/or cellular microenvironment. Hence, further clarification of its diverse roles in neurological pathologies is warranted to provide new mechanistic insights which may lead in the future to the development of therapeutic strategies based on MIF, to fight some of these neurological disorders.
Collapse
|
8
|
Liao J, Wang K, Yao W, Yi X, Yan H, Chen M, Lan X. Cloning, expression and antioxidant activity of a thioredoxin peroxidase from Branchiostoma belcheri tsingtaunese. PLoS One 2017; 12:e0175162. [PMID: 28384204 PMCID: PMC5383247 DOI: 10.1371/journal.pone.0175162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/21/2017] [Indexed: 01/27/2023] Open
Abstract
Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that catalyze the thioredoxin- dependent reduction of hydroperoxides. In this study, a novel thioredoxin peroxidase (Bbt-TPx1), a member of the peroxiredoxin superfamily, was found by EST sequence analysis of a cDNA library of Branchiostoma belcheri tsingtaunese ovary. The sequence of a full-length cDNA clone contained an open reading frame encoding a polypeptide of 198 amino acid residues, with a calculated molecular weight of 22,150 Da. The expression patterns of the protein at different developmental stages and adult amphioxus tissues indicate that this enzyme may play important roles in anti-oxidation and innate immunity. The recombinant Bbt-TPx1 protein was expressed with a polyhistidine-tag in Escherichia coli and purified using Ni chromatography followed by SP cation exchange chromatography. The rBbt-TPx1 protein existed as a dimer under non-reducing conditions, and was dissociated into monomers by dithiothreitol (DTT); it might predominantly exist in oligomeric form. The rBbt-TPx1 protein showed a significant thiol-dependent peroxidase activity, removing hydrogen peroxide in the presence of dithiothreitol (DTT), but not glutathione (GSH). Protection of plasmid DNA and the thiol-protein from damage by metal-catalyzed oxidation (MCO) in vitro was also revealed.
Collapse
Affiliation(s)
- Jian Liao
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command, Fuzhou, Fujian Province, China
| | - Kaiyu Wang
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command, Fuzhou, Fujian Province, China
| | - Weirong Yao
- Clinical Laboratory, The First Hospital of Longhai, Zhangzhou, Fujian Province, China
| | - Xunfei Yi
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command, Fuzhou, Fujian Province, China
| | - Huihui Yan
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command, Fuzhou, Fujian Province, China
| | - Min Chen
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command, Fuzhou, Fujian Province, China
- * E-mail: (XL); (MC)
| | - Xiaopeng Lan
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Command, Fuzhou, Fujian Province, China
- * E-mail: (XL); (MC)
| |
Collapse
|
9
|
Xie B, Fu M, Zhao C, Shi J, Shi G, Jiao Z, Qiu L. Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2016; 56:489-495. [PMID: 27514787 DOI: 10.1016/j.fsi.2016.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/19/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an ancient cytokine that engages in innate immune system of vertebrates and invertebrates. In this study, the MIF gene homologue (PmMIF) was cloned from the black tiger shrimp, Penaeus monodon. The full-length cDNA sequence of PmMIF was 838 bp and contained 78 bp 5' untranslated region (UTR) and 397 bp 3' UTR, and an open reading frame (ORF) of 363 bp which coded 120 amino acids (aa). Multiple alignment analysis showed that the deduced amino acid sequence shared 98% identities with MIF from closely related species of Litopenaeus vannamei. Quantitative real-time PCR (qRT-PCR) analysis indicated that PmMIF was highly expression observed in hepatotpancreas and gills. After Vibrio harveyi challenge, PmMIF mRNA level in hepatopancreas and gills were sharply up-regulated at 6 h post-injection, and reached the maximum at 12 h. PmMIF expression level in the hepatopancreas and gills were up-regulated markedly under low (2.3%) and high (4.3%) salinity exposure, respectively. PmMIF expression level in gills increased significantly at 12 h and reached peak values (2.5- fold, 6.4-fold and 1.8-fold compared with the control) at 12 h, 48 h and 12 h after zinc, cadmium and copper exposure, respectively. In the hepatopancreas, the expression of PmMIF reached maximum levels (8.5- fold, 6.2-fold and 2.1-fold compared with the control) at 24 h, 6 h and 48 h after zinc, cadmium and copper exposure, respectively. All the results indicate that PmMIF plays an important role in responding in the innate immune system of shrimps.
Collapse
Affiliation(s)
- Bobo Xie
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Mingjun Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Jinxuan Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Gongfang Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Zongyao Jiao
- Guangzhou Marine Engineering Vocational and Technical School, Guangzhou, 510320, PR China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Sanya, PR China.
| |
Collapse
|
10
|
Zou L, Liu B. The polymorphisms of a MIF gene and their association with Vibrio resistance in the clam Meretrix meretrix. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:116-126. [PMID: 27103597 DOI: 10.1016/j.dci.2016.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine that mediates both innate and adaptive immune responses. In this study, a homolog of MIF was identified in the clam Meretrix meretrix. Ten SNPs in the DNA partial sequence of MmMIF were found to be significantly associated with Vibrio resistance (P < 0.05). Distinct expression patterns of MmMIF among different haplotypes were observed after Vibrio challenge. The results showed that haplotypes did not affect MmMIF expression in the negative control group, while the expression of MmMIF in clams with Hap1 and Hap1/Hap2 was significantly lower than that with Hap2 at 24 h in the PBS-injected group but significantly higher than that with Hap2 in the Vibrio-injected group. The results also indicate that Hap1 and Hap1/Hap2 can specifically respond to mechanical stimulation while Hap2 can specifically respond to Vibrio infection. The effect of a missense mutation was detected by site-directed mutagenesis using fusion expression of the protein, which showed that the SNP g.737 (I > V) has no effect on redox activity and tautomerase activity. These studies identified a potential marker that is enriched in Vibrio-resistant clams that can be used for the genetic breeding of Meretrix meretrix.
Collapse
Affiliation(s)
- Linhu Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Huang WS, Duan LP, Huang B, Wang KJ, Zhang CL, Jia QQ, Nie P, Wang T. Macrophage migration inhibitory factor (MIF) family in arthropods: Cloning and expression analysis of two MIF and one D-dopachrome tautomerase (DDT) homologues in mud crabs, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2016; 50:142-149. [PMID: 26826424 DOI: 10.1016/j.fsi.2016.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
The macrophage migration inhibitory factor (MIF) family, consisting of MIF and D-dopachrome tautomerase (DDT) in vertebrates, is evolutionarily ancient and has been found across Kingdoms including vertebrates, invertebrates, plants and bacteria. The mammalian MIF family are chemokines at the top of the inflammatory cascade in combating infections. They also possess enzymatic activities, e.g. DDT catalysis results in the production of 5,6-dihydroxyindole (DHI), a precursor of eumelanin. MIF-like genes are widely distributed, but DDT-like genes have only been described in vertebrates and a nematode. In this report, we cloned a DDT-like gene, for the first time in arthropods, and a second MIF in mud crab. The mud crab MIF family have a three exon/two intron structure as seen in vertebrates. The identification of a DDT-like gene in mud crab and other arthropods suggests that the separation of MIF and DDT preceded the divergence of protostomes and deuterostomes. The MIF family is differentially expressed in tissues of adults and during embryonic development and early life. The high level expression of the MIF family in immune tissues, such as intestine and hepatopancreas, suggests an important role in mud crab innate immunity. Mud crab DDT is highly expressed in early embryos, in megalops and crablets and this coincides with the requirement for melanisation in egg chorion tanning and cuticular hardening in arthropods, suggesting a potential novel role of DDT in melanogenesis via its tautomerase activity to produce DHI in mud crab. The clarification of the presence of both MIF and DDT in this report paves the way for further investigation of their functional roles in immunity and in melanogenesis in mud crab and other arthropods.
Collapse
Affiliation(s)
- Wen-Shu Huang
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China.
| | - Li-Peng Duan
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Bei Huang
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Ke-Jian Wang
- Fujian Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Cai-Liang Zhang
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Qin-Qin Jia
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Pin Nie
- Fishery College, Jimei University, Xiamen 361021, China
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
12
|
Proteomic analysis of muscle between hybrid abalone and parental lines Haliotis gigantea Reeve and Haliotis discus hannai Ino. Heredity (Edinb) 2015; 114:564-74. [PMID: 25669609 DOI: 10.1038/hdy.2014.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
To understand the potential molecular mechanism of heterosis, protein expression patterns were compared from hybrids of Haliotis gigantea (G) and Haliotis discus hannai (D) using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analyses. Expression differences were observed in muscle samples from the four groups with 673±21.0 stained spots for H. discus hannai ♀ × H. discus hannai ♂ (DD), 692±25.6 for H. gigantea ♀ × H. gigantea ♂ (GG), 679±16.2 for H. discus hannai ♀ × H. gigantea ♂ (DG) (F1 hybrid) and 700±19 for H. gigantea ♀ × H. discus hannai ♂ (GD) (F1 hybrid). Different 2-DE image muscle protein spots had a mirrored relationship between purebreds and the F1 hybrid, suggesting that all stained spots in F1 hybrid muscle were on 2-DEs from parents. DD and DG clustered together first, and then clustered with GD, whereas the distance of DD and GG was maximal according to hierarchical cluster analysis. We identified 136 differentially expressed protein spots involved in major biological processes, including energy metabolism and stress response. Most energy metabolism proteins were additive, and stress-induced proteins displayed additivity or over-dominance. In these 136 identified protein spots, hybrid offspring with additivity or over-dominance accounted for 68.38%. Data show that a proteomic approach can provide functional prediction of abalone interspecific hybridization.
Collapse
|
13
|
Yuan S, Ruan J, Huang S, Chen S, Xu A. Amphioxus as a model for investigating evolution of the vertebrate immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:297-305. [PMID: 24877655 DOI: 10.1016/j.dci.2014.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
As the most basal chordate, the cephalochordate amphioxus has unique features that make it a valuable model for understanding the phylogeny of immunity. Vertebrate adaptive immunity (VAI) mediated by lymphocytes bearing variable receptors has been well-studied in mammals but not observed in invertebrates. However, the identification of lymphocyte-like cells in the gill along with genes related with lymphoid proliferation and differentiation indicates the presence of some basic components of VAI in amphioxus. Without VAI, amphioxus utilizes about 10% of its gene repertoires, and an ongoing domain reshuffling mechanism among these genes, for innate immunity, suggesting extraordinary innate complexity and diversity not observed in other species. Innate diversity may not be comparable to the somatic diversity of the VAI, but there is no doubt of the success of this immune system, since amphioxus has existed for over 500 million years. Studies of amphioxus immunity may provide information on the reduction of innate immune complexity and the conflict between microbiota and host shaped the evolution of adaptive immune systems (AIS) during chordate evolution.
Collapse
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jie Ruan
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
14
|
Polimanti R, Piacentini S, Iorio A, De Angelis F, Kozlov A, Novelletto A, Fuciarelli M. Haplotype differences for copy number variants in the 22q11.23 region among human populations: a pigmentation-based model for selective pressure. Eur J Hum Genet 2014; 23:116-23. [PMID: 24667780 DOI: 10.1038/ejhg.2014.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
Two gene clusters are tightly linked in a narrow region of chromosome 22q11.23: the macrophage migration inhibitory factor (MIF) gene family and the glutathione S-transferase theta class. Within 120 kb in this region, two 30-kb deletions reach high frequencies in human populations. This gives rise to four haplotypic arrangements, which modulate the number of genes in both families. The variable patterns of linkage disequilibrium (LD) between these copy number variants (CNVs) in diverse human populations remain poorly understood. We analyzed 2469 individuals belonging to 27 human populations with different ethnic origins. Then we correlated the genetic variability of 22q11.23 CNVs with environmental variables. We confirmed an increasing strength of LD from Africa to Asia and to Europe. Further, we highlighted strongly significant correlations between the frequency of one of the haplotypes and pigmentation-related variables: skin color (R(2)=0.675, P<0.001), distance from the equator (R(2)=0.454, P<0.001), UVA radiation (R(2)=0.439, P<0.001), and UVB radiation (R(2)=0.313, P=0.002). The fact that all MIF-related genes are retained on this haplotype and the evidences gleaned from experimental systems seem to agree with the role of MIF-related genes in melanogenesis. As such, we propose a model that explains the geographic and ethnic distribution of 22q11.23 CNVs among human populations, assuming that MIF-related gene dosage could be associated with adaptation to low UV radiation.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Sara Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Andrea Iorio
- Clinical Pathophysiology Center, AFaR - 'San Giovanni Calibita' Fatebenefratelli Hospital, Rome, Italy
| | - Flavio De Angelis
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Andrey Kozlov
- Institute and Museum of Anthropology, M. Lomonosov State University, Moscow, Russia
| | - Andrea Novelletto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
15
|
Fang Y, Jiang K, Zhang F, Sun M, Hu J, Ma L. Macrophage migration inhibitory factor in mud crab Scylla paramamosain: Molecular cloning, expression profiles in various tissues and under Vibrio challenge. Mol Biol 2013. [DOI: 10.1134/s0026893313040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Cui S, Zhang D, Jiang S, Pu H, Hu Y, Guo H, Chen M, Su T, Zhu C. A macrophage migration inhibitory factor like oxidoreductase from pearl oyster Pinctada fucata involved in innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2011; 31:173-181. [PMID: 21496487 DOI: 10.1016/j.fsi.2011.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an important cytokine and plays a crucial role as a pivotal regulator of innate immunity. In this study, a MIF cDNA was identified and characterized from the pearl oyster Pinctada fucata (designated as PoMIF). The full-length of PoMIF was 1544 bp and consisted of a 5'-untranslated region (UTR) of 45 bp, a 3'-UTR of 1139 bp with a polyadenylation signal (AATAAA) at 12 nucleotides upstream of the poly (A) tail. The open reading frame (ORF) of PoMIF was 360 bp which encoded a polypeptide of 120 amino acids with an estimated molecular mass of 13.3 kDa and a predicted pI of 6.1. SMART analysis showed that PoMIF contained the catalytic-sites P² and K³³ for tautomerase activity, a motif C⁵⁷GSV⁶⁰ for oxidoreductase activity and a MIF family signature D⁵⁵PCGSVEVYSIGALG⁶⁹. Homology analysis revealed that the PoMIF shared 40.3-65.5% similarity and 26.9-45.0% identity to other known MIF sequences. PoMIF mRNA was constitutively expressed in seven selected tissues of healthy pearl oysters, with the highest expression level in digestive gland. Eight hours after P. fucata was injected with Vibrio alginolyticus, the expression of PoMIF mRNA was significantly up-regulated in digestive gland, gills, hemocytes and intestine. The cDNA fragment encoding mature protein of PoMIF was subcloned to expression vector pRSET and transformed into Escherichia coli BL21 (DE3). The recombinant PoMIF (rPoMIF) was expressed and purified under optimized conditions. Function analysis showed that rPoMIF had oxidoreductase activity and could utilize dithiothreitol (DTT) as reductant to reduce insulin.
Collapse
Affiliation(s)
- Shuge Cui
- School of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li F, Huang S, Wang L, Yang J, Zhang H, Qiu L, Li L, Song L. A macrophage migration inhibitory factor like gene from scallop Chlamys farreri: Involvement in immune response and wound healing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:62-71. [PMID: 20804783 DOI: 10.1016/j.dci.2010.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/04/2010] [Accepted: 08/20/2010] [Indexed: 05/29/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionarily ancient and highly conserved cytokine with multiple functions. In the present study, a MIF-like gene was cloned from Zhikong scallop Chlamys farreri (designated as CfMIF) based on expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full-length cDNA of CfMIF was of 2296bp, consisting of a 5' untranslated region (UTR) of 60bp, a 3' UTR of 1903bp with a poly(A) tail and an open reading frame (ORF) of 333bp encoded 111 amino acid residues with a calculated molecular mass of 12.6kDa and a theoretical isoelectric point of 5.63. The deduced amino acid sequence of CfMIF shared 27-50.5% similarity with those of other known MIFs. A conserved MIF domain was identified in the deduced amino acid sequence of CfMIF, and conserved proline(2) and lysine(33) were also found to be present in CfMIF. Phylogenetic analysis revealed that CfMIF is one of MIF members. The tissue distribution and temporal expression of CfMIF in hemocytes of scallop after lipopolysaccharide (LPS), peptidoglycan (PGN) and β-glucan stimulation were detected by real-time RT-PCR. CfMIF gene was ubiquitously expressed in six selected tissues of healthy scallops, with the higher expression levels in hepatopancreas, mantle and gill. In comparison with the control group, the expression of CfMIF mRNA in hemocytes was up-regulated significantly at 6h, 24h and 48h after LPS treatment, and at all time points after PGN and glucan treatment. The cDNA fragment encoding mature peptide of CfMIF was recombined and expressed in Escherichia coli BL21 (DE3) pLysS. The recombinant protein of CfMIF (rCfMIF) promoted sheep fibroblast migration into scraped spaces in vitro. These results generated from the present study encourage us to suggest that CfMIF was a novel member of MIF family, and it was involved in immune response and wound healing by promoting fibroblast migration.
Collapse
Affiliation(s)
- Fengmei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang B, Zhang Z, Wang Y, Zou Z, Wang G, Wang S, Jia X, Lin P. Molecular cloning and characterization of macrophage migration inhibitory factor from small abalone Haliotis diversicolor supertexta. FISH & SHELLFISH IMMUNOLOGY 2009; 27:57-64. [PMID: 19426810 DOI: 10.1016/j.fsi.2009.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 05/10/2023]
Abstract
The macrophage migration inhibitory factor (mif) cDNA and its genome were cloned from small abalone Haliotis diversicolor supertexta. Small abalone mif (samif) was originally identified from an expressed sequence tag (EST) fragment from a normalized cDNA library. It's 5' untranslated region (UTR) was obtained by 5' rapid amplification of cDNA end (RACE) techniques and its genomic DNA was cloned by PCR. The full-length cDNA of samif was of 535 bp, consisting of a 5'-terminal UTR of 49 bp, an open reading frame of 384 bp and a 3'-terminal UTR of 102 bp. The deduced protein was composed of 128 amino acids, with an estimated molecular mass of 14.0 kDa and a predicted pI of 6.90. The full-length samif genomic DNA comprises 3238 bp, containing three exons and two introns. Real time quantitative PCR analysis revealed that samif gene is constitutively expressed in 6 selected tissues, and its expression level in hepatopancreas is higher than that in the other tissues (p < 0.01). Samif expression level in the hepatopancreas at 24 and 48 h after Vibrio parahaemolyticus injection was upregulated significantly (p < 0.01), but there was no significant change after exposure to tributyltin (TBT) (p > 0.05).
Collapse
Affiliation(s)
- Baozhen Wang
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Yindou Road #43, Xiamen, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jin HJ, Xiang LX, Shao JZ. Molecular cloning and identification of macrophage migration inhibitory factor (MIF) in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:1131-44. [PMID: 17442392 DOI: 10.1016/j.dci.2007.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 02/16/2007] [Accepted: 02/22/2007] [Indexed: 05/14/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is one of the first cytokines to be identified, which have been emerged to be an important mediator of the innate and adaptive immune system. Although MIF was well characterized in several mammal species, there was still little report in fish. In present study, we cloned the MIF gene from Tetraodon nigroviridis, and identified other six MIF genes from other teleost fishes, Fundulus heteroclitu, Oncorhynchus mykiss, Ictalurus punctatus, Danio rerio, Salmo salar and Haplochromis chilotes. The results showed that the fish MIF genes with the same organization as the mammalians consist of three exons and two introns. Tetraodon MIF gene located within a 1091bp genomic fragment of chromosome 1, transcribed into a 500bp mRNA including 14bp 5' untranslated region (UTR), 348bp ORF and 138bp 3'-UTR. Tetraodon MIF with 115aa has a calculated molecular mass of 12.5kDa and a theoretical pI of 6.81. The deduced amino-acid sequences of the teleost fish MIFs showed 64.1-73.5% sequence identity to mammalian MIFs, 61.5-70.1% to avian MIFs, 55.6-62.4% to amphibian MIFs, 74.4-97.4% among the teleost fishes. Phylogenetic analysis separates the teleost fish MIFs into an exclusive group. Genomic Southern blotting analyses suggest that Tetraodon has one copy of the MIF gene. RT-PCR and real-time PCR analyses reveal that Tetraodon MIF (TnMIF) mRNA was constitutively expressed in 10 selected tissues and induced by lipopolysaccharide (LPS) strikingly in head kidney and spleen. The bioactivity of recombinant TnMIF was tested by macrophage migration inhibition (MMI) assay. The result of MMI assay showed that the recombinant TnMIF inhibited the macrophage cells migration at rate of 35% (P<0.04). These results indicated that MIFs in fish may be involved in immune responses.
Collapse
Affiliation(s)
- Hong-Jian Jin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
20
|
Du J, Yu Y, Tu H, Chen H, Xie X, Mou C, Feng K, Zhang S, Xu A. New insights on macrophage migration inhibitory factor: Based on molecular and functional analysis of its homologue of Chinese amphioxus. Mol Immunol 2006; 43:2083-8. [PMID: 16563509 DOI: 10.1016/j.molimm.2005.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 11/24/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an intricate cytokine. Many questions about it are not fully resolved. In order to identify the role of MIF in Chinese amphioxus, its genomic organization, transcription pattern and enzymatic activity were studied. It's found that MIF has multi-copy gene number in the Chinese amphioxus genome and special transcription pattern in reproductive organs. Interestingly, the recombinant Bbt-MIF has tantomerase and redox activity, but fails to utilize GSH to reduce insulin instead of DTT, strikingly different from MIF in mammalian. All these results indicate that MIF gene must have undergone important changes in structure and function during the transition of invertebrate/vertebrate and might exert important role in this primitive species, which may be quite different from those found in vertebrate.
Collapse
Affiliation(s)
- Jingchun Du
- State Key Laboratory of Biocontrol, Department of Biochemistry, Open Laboratory for Marine Functional Genomics of State High-Tech Development Program, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|