1
|
Abstract
Semaphorin 3A is a secreted glycoprotein, which was originally identified as axon guidance factor in the neuronal system, but it also possesses immunoregulatory properties. Here, the effect of semaphorin 3A on T-lymphocytes, myeloid dendritic cells and macrophages is systematically analyzed on the bases of all publications available in the literature for 20 years. Expression of semaphorin 3A receptors – neuropilin-1 and plexins A – in these cells is described in details. The data obtained on human and murine cells is described comparatively. A comprehensive overview of the interaction of semaphorin 3A with mononuclear phagocyte system is presented for the first time. Semaphorin 3A signaling mostly results in changes of the cytoskeletal machinery and cellular morphology that regulate pathways involved in migration, adhesion, and cell–cell cooperation of immune cells. Accumulating evidence indicates that this factor is crucially involved in various phases of immune responses, including initiation phase, antigen presentation, effector T cell function, inflammation phase, macrophage activation, and polarization. In recent years, interest in this field has increased significantly because semaphorin 3A is associated with many human diseases and therefore can be used as a target for their treatment. Its involvement in the immune responses is important to study, because semaphorin 3A and its receptors turn to be a promising new therapeutic tools to be applied in many autoimmune, allergic, and oncology diseases.
Collapse
Affiliation(s)
- Ekaterina P Kiseleva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
- Mechnikov North-Western State Medical University, St. Petersburg, 195067, Russia
| | - Kristina V Rutto
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
| |
Collapse
|
2
|
The semaphorin 4A-neuropilin 1 axis alleviates kidney ischemia reperfusion injury by promoting the stability and function of regulatory T cells. Kidney Int 2021; 100:1268-1281. [PMID: 34534552 DOI: 10.1016/j.kint.2021.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022]
Abstract
Previous studies have suggested the role of CD4+Foxp3+ regulatory T cells (Tregs) in protection against kidney ischemia reperfusion injury via their immunosuppressive properties. Unfortunately, the associated mechanisms of Tregs in kidney ischemia reperfusion injury have not been fully elucidated. Semaphorin 4A (Sema4A) is essential for maintaining the immunosuppressive capacity of Tregs in tumors. However, whether Sema4A can alleviate kidney ischemia reperfusion injury through Tregs has not yet been demonstrated. Here, we investigated the effect and mechanism of Sema4A on the development of kidney ischemia reperfusion injury. Administration of recombinant human Sema4A-Fc chimera protein prior to ischemia reperfusion injury promoted the expansion and function of Tregs and decreased the accumulation of neutrophils and proinflammatory macrophages thereby attenuating functional and histological injury of the injured kidneys. Depletion of Tregs abrogated the protective effect of Sema4A on kidney ischemia reperfusion injury, suggesting Tregs as the main target cell type for Sema4A in the development of this injury. Mechanistically, Sema4A bound to neuropilin 1 (Nrp1), a cell surface receptor for Sema4A and other ligands and a key regulator of Tregs, which then promoted recruitment of phosphatase and tensin homologue and suppressed the Akt-mTOR pathway in Foxp3Cre mice but not in Nrp1f/fFoxp3Cre mice. Consistently, Treg-specific deletion of Nrp1 blocked the effect of Sema4A on the expansion and function of Treg cells. Thus, our results demonstrate that the Sema4A-Nrp1 axis alleviates the development of ischemia reperfusion injury by promoting the stability and function of Tregs in mouse kidneys.
Collapse
|
3
|
Dieterlen MT, Klaeske K, Bernhardt AA, Borger MA, Klein S, Garbade J, Lehmann S, Ayuk FA, Reichenspurner H, Barten MJ. Immune Monitoring Assay for Extracorporeal Photopheresis Treatment Optimization After Heart Transplantation. Front Immunol 2021; 12:676175. [PMID: 34447372 PMCID: PMC8383491 DOI: 10.3389/fimmu.2021.676175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Extracorporeal photopheresis (ECP) induces immunological changes that lead to a reduced risk of transplant rejection. The aim of the present study was to determine optimum conditions for ECP treatment by analyzing a variety of tolerance-inducing immune cells to optimize the treatment. Methods Ten ECP treatments were applied to each of 17 heart-transplant patients from month 3 to month 9 post-HTx. Blood samples were taken at baseline, three times during treatment, and four months after the last ECP treatment. The abundance of subsets of tolerance-inducing regulatory T cells (Tregs) and dendritic cells (DCs) in the samples was determined by flow cytometry. A multivariate statistical model describing the immunological status of rejection-free heart transplanted patients was used to visualize the patient-specific immunological improvement induced by ECP. Results All BDCA+ DC subsets (BDCA1+ DCs: p < 0.01, BDCA2+ DCs: p < 0.01, BDCA3+ DCs: p < 0.01, BDCA4+ DCs: p < 0.01) as well as total Tregs (p < 0.01) and CD39+ Tregs (p < 0.01) increased during ECP treatment, while CD62L+ Tregs decreased (p < 0.01). The cell surface expression level of BDCA1 (p < 0.01) and BDCA4 (p < 0.01) on DCs as well as of CD120b (p < 0.01) on Tregs increased during the study period, while CD62L expression on Tregs decreased significantly (p = 0.04). The cell surface expression level of BDCA2 (p = 0.47) and BDCA3 (p = 0.22) on DCs as well as of CD39 (p = 0.14) and CD147 (p = 0.08) on Tregs remained constant during the study period. A cluster analysis showed that ECP treatment led to a sustained immunological improvement. Conclusions We developed an immune monitoring assay for ECP treatment after heart transplantation by analyzing changes in tolerance-inducing immune cells. This assay allowed differentiation of patients who did and did not show immunological improvement. Based on these results, we propose classification criteria that may allow optimization of the duration of ECP treatment.
Collapse
Affiliation(s)
- Maja-Theresa Dieterlen
- Heart Center, HELIOS Clinic, Department of Cardiac Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Kristin Klaeske
- Heart Center, HELIOS Clinic, Department of Cardiac Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Alexander A Bernhardt
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael A Borger
- Heart Center, HELIOS Clinic, Department of Cardiac Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Sara Klein
- Heart Center, HELIOS Clinic, Department of Cardiac Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Jens Garbade
- Heart Center, HELIOS Clinic, Department of Cardiac Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Sven Lehmann
- Heart Center, HELIOS Clinic, Department of Cardiac Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Francis Ayuketang Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herrmann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Markus J Barten
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Dong Y, Yang C, Pan F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front Immunol 2021; 12:626172. [PMID: 33912156 PMCID: PMC8071870 DOI: 10.3389/fimmu.2021.626172] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3 (Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable research efforts have been directed at elucidating the mechanisms controlling Foxp3 and its co-regulators. Such work is not only advancing our understanding on Treg cell biology, but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ transplantation, and tumor therapies. Recently, many studies have explored the post-translational regulation of Foxp3, which have shown that acetylation, phosphorylation, glycosylation, methylation, and ubiquitination are important for determining Foxp3 function and plasticity. Additionally, some of these targets have been implicated to have great therapeutic values. In this review, we will discuss emerging evidence of post-translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
5
|
Targeting Neuropilin-1 Suppresses the Stability of CD4 + CD25 + Regulatory T Cells via the NF-κB Signaling Pathway in Sepsis. Infect Immun 2021; 89:IAI.00399-20. [PMID: 33139385 DOI: 10.1128/iai.00399-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 01/19/2023] Open
Abstract
Neuropilin-1 (Nrp-1) contributes to maintaining the stability of CD4+ CD25+ regulatory T cells (Tregs). We investigated the impact of Nrp-1 on the stability of CD4+ CD25+ Tregs, and the underlying signaling pathways, in a model of sepsis. Splenic CD4+ CD25+ Tregs were either treated with anti-Nrp-1, transfected to silence Nrp-1 and inhibitor of NF-κB kinase subunit beta (IKKβ), or administered ammonium pyrrolidine dithiocarbamate (PDTC), followed by recombinant semaphorin 3A (rSema3A), in a simulation of sepsis. After the creation of a sepsis model in mice, anti-Nrp-1 was administered. The expression of the gene encoding forkhead box protein P-3 foxp3-Treg-specific demethylated region (foxp3-TSDR), the apoptosis rate, the expression of Foxp-3, cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), and transforming growth factor β1 (TGF-β1), interleukin 10 (IL-10) and TGF-β1 secretion, and the NF-κB signaling activity of CD4+ CD25+ Tregs were determined. Sepsis simulation with or without rSema3A increased the stability of CD4+ CD25+ Tregs, including an increase in the expression of Foxp-3, CTLA-4, and TGF-β1, decreases in apoptosis and the methylation of foxp3-TSDR, increases in the secretion of TGF-β1 and IL-10, and an increase in the immunosuppressive effect on CD4+ T lymphocytes. Silencing of Nrp-1 or anti-Nrp-1 treatment abrogated lipopolysaccharide (LPS) stimulation with or without an rSema3A-mediated effect. Sepsis simulation increased the DNA-binding activity of NF-κB, as well as the ratios of phosphorylated IKKβ (p-IKKβ) to IKKβ and p-P65 to P65 in vitro and vivo Silencing of IKKβ expression or PDTC treatment suppressed the stability of CD4+ CD25+ Tregs in LPS-induced sepsis. Weakening Nrp-1 reduced the stability of CD4+ CD25+ Tregs by regulating the NF-κB signaling pathway; thus, Nrp-1 could be a new target for immunoregulation in sepsis.
Collapse
|
6
|
Lim YS, Lee DY, Kim HY, Ok Y, Hwang S, Moon Y, Yoon S. Descriptive and functional characterization of epidermal growth factor‑like domain 8 in mouse cortical thymic epithelial cells by integrated analysis of gene expression signatures and networks. Int J Mol Med 2021; 47:4. [PMID: 33448309 PMCID: PMC7834963 DOI: 10.3892/ijmm.2020.4837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor-like domain 8 (EGFL8), a newly identified member of the EGFL family, and plays negative regulatory roles in mouse thymic epithelial cells (TECs) and thymocytes. However, the role of EGFL8 in these cells remains poorly understood. In the present study, in order to characterize the function of EGFL8, genome-wide expression profiles in EGFL8-overexpressing or -silenced mouse cortical TECs (cTECs) were analyzed. Microarray analysis revealed that 458 genes exhibited a >2-fold change in expression levels in the EGFL8-overexpressing vs. the EGFL8-silenced cTECs. Several genes involved in a number of cellular processes, such as the cell cycle, proliferation, growth, migration and differentiation, as well as in apoptosis, reactive oxygen species generation, chemotaxis and immune responses, were differentially expressed in the EGFL8-overexpressing or -silenced cTECs. WST-1 analysis revealed that that the overexpression of EGFL8 inhibited cTEC proliferation. To investigate the underlying mechanisms of EGFL8 in the regulation of cTEC function, genes related to essential cellular functions were selected. Reverse transcription-polymerase chain reaction analysis revealed that EGFL8 knockdown upregulated the expression of cluster differentiation 74 (CD74), Fas ligand (FasL), C-X-C motif chemokine ligand 5 (CXCL5), CXCL10, CXCL16, C-C motif chemokine ligand 20 (CCL20), vascular endothelial growth factor-A (VEGF-A), interferon regulatory factor 7 (Irf7), insulin-like growth factor binding protein-4 (IGFBP-4), thrombospondin 1 (Thbs1) and nuclear factor κB subunit 2 (NF-κB2) genes, and downregulated the expression of angiopoietin-like 1 (Angptl1), and neuropilin-1 (Nrp1) genes. Additionally, EGFL8 silencing enhanced the expression of anti-apoptotic molecules, such as B-cell lymphoma-2 (Bcl-2) and Bcl-extra large (Bcl-xL), and that of cell cycle-regulating molecules, such as cyclin-dependent kinase 1 (CDK1), CDK4, CDK6 and cyclin D1. Moreover, gene network analysis revealed that EGFL8 exerted negative effects on VEGF-A gene expression. Hence, the altered expression of several genes associated with EGFL8 expression in cTECs highlights the important physiological processes in which EGFL8 is involved, and provides insight into its biological functions.
Collapse
Affiliation(s)
- Ye Seon Lim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Do-Young Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Hye-Yoon Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Yejin Ok
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Seonyeong Hwang
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Yuseok Moon
- Immune Reconstitution Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| |
Collapse
|
7
|
Ahn SH, Nguyen SL, Petroff MG. Exploring the Origin and Antigenic Specificity of Maternal Regulatory T Cells in Pregnancy. Front Immunol 2020; 11:1302. [PMID: 32670288 PMCID: PMC7330120 DOI: 10.3389/fimmu.2020.01302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Successful pregnancy outcome is partially determined by the suppression of reactive effector T cells by maternal regulatory T cells (TRegs) at the maternal-fetal interface. While a large area of research has focused on the regulation of peripherally-induced TReg (pTReg) distribution and differentiation using transgenic mouse models and human samples, studies focusing on the role of TRegs derived from the thymus (tTRegs), and the potential role of central tolerance in maternal-fetal tolerance is less explored. The genome of the fetus is composed of both the tissue-specific and paternally-inherited antigens, and a break in maternal immune tolerance to either antigen may result in adverse pregnancy outcomes. Notably, "self"-antigens, including antigens that are highly restricted to the fetus and placenta, are promiscuously expressed by medullary thymic epithelial cells under the control of Autoimmune Regulator (Aire), which skews the tTReg T cell receptor (TCR) repertoire to be specific toward these antigens. TRegs that circulate in mothers during pregnancy may be comprised of TRegs that stem from the thymus as well as those induced in the periphery. Moreover, despite a wealth of research dedicated to elucidating the function of TRegs in maternal-fetal tolerance, little is understood about the origin of these cells, and whether/how tTRegs may contribute. Investigation into this question is complicated by the absence of reliable markers to distinguish between the two. In this review, we discuss how distinct types of fetal/placental antigens may determine the generation of different subtypes of TReg cells in the mother, and in turn how these may promote maternal tolerance to the fetus in pregnancy.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Sean L Nguyen
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
| | - Margaret G Petroff
- Department of Pathobiology Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front Immunol 2020; 11:1182. [PMID: 32655556 PMCID: PMC7324675 DOI: 10.3389/fimmu.2020.01182] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother's immune system. Regulatory T cells (Tregs) play a prominent role in this process. Novel technologies allow for in-depth phenotyping of previously unidentified immune cell subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets. Similar to other immunological events, there appears to be great diversity within the Treg population during pregnancy, both at the maternal-fetal interface as in the peripheral blood. Different Treg subsets have distinct phenotypes and various ways of functioning. Furthermore, the frequency of individual Treg subsets varies throughout gestation and is altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at different time points of gestation and that their role in maintaining healthy pregnancy is crucial, as reflected for instance by their reduced frequency in women with recurrent pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple immune regulatory mechanisms and cell types are likely at play to assure successful pregnancy. Therefore, it is important to understand the complete microenvironment of the decidua, preferably in the context of the whole immune cell repertoire of the pregnant woman. So far, most studies have focused on a single mechanism or cell type, which often is the FoxP3 positive regulatory T cell when studying immune regulation. In this review, we instead focus on the contribution of FoxP3 negative Treg subsets to the decidual microenvironment and their possible role in pregnancy complications. Their phenotype, function, and effect in pregnancy are discussed.
Collapse
Affiliation(s)
- Juliette Krop
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Semaphorin-3A Inhibits Proliferation, but Does Not Affect Apoptosis of Mouse Thymocytes In Vitro. Bull Exp Biol Med 2020; 168:352-355. [PMID: 31938904 DOI: 10.1007/s10517-020-04707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 10/25/2022]
Abstract
Neuronal factor semaphorin-3A is viewed as immune suppressant of peripheral T lymphocytes, but it can also negatively affect activity of the thymus, the central organ of the immune system. The study examined the effects of this factor on proliferative activity and apoptosis of mouse thymocytes in vitro. Semaphorin-3A inhibited spontaneous and mitogen-stimulated proliferative activity of thymocytes producing no effect on the development of apoptosis in these cells. Flow cytometry revealed expression of semaphorin-3A receptors neuropilin-1 and plexin-A1 on thymocyte membranes. Approximately 13% thymocytes simultaneously expressed both receptors. The study suggests that semaphorin-3A, which is constitutively synthesized in thymic stroma in vivo, can play the role of inhibitory factor during thymocyte maturation.
Collapse
|
10
|
Gotot J, Dhana E, Yagita H, Kaiser R, Ludwig-Portugall I, Kurts C. Antigen-specific Helios - , Neuropilin-1 - Tregs induce apoptosis of autoreactive B cells via PD-L1. Immunol Cell Biol 2018; 96:852-862. [PMID: 29617057 DOI: 10.1111/imcb.12053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Regulatory T cells (Tregs) maintain self-tolerance and prevent autoimmunity by controlling autoreactive T cells. We recently demonstrated in vivo that Tregs can directly suppress auto-reactive B cells via programmed death ligand 1 (PD-L1) that ligated PD-1 on B cells and caused them to undergo apoptosis. Here, we asked whether this mechanism is utilized by thymus-derived natural Tregs and/or by peripheral lymphoid tissue-induced Tregs. We first demonstrated that antigen-specific PD-L1-expressing Tregs were induced in the draining lymph node of autoantigen-expressing tissue and characterized them by their lack of the transcription factor Helios and of the surface marker Neuropilin-1 (Nrp-1). Next, we established an in vitro co-culture system to study the interaction between B cells and Treg subsets under controlled conditions. We found that Nrp- Treg, but not Nrp+ Treg suppressed autoreactive B cells, whereas both were able to suppress T-helper cells. Such suppression was antigen-specific and was facilitated by PD-L1/PD-1-induced apoptosis. Furthermore, it required physical cell contact and was MHC II-restricted, providing an explanation for the antigen-specificity of peripherally-induced Tregs. These findings identify a role for peripherally induced Helios- Nrp-1- inducible Treg in controlling peripheral B-cell tolerance against tissue auto-antigens.
Collapse
Affiliation(s)
- Janine Gotot
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Ermanila Dhana
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Romina Kaiser
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Isis Ludwig-Portugall
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| |
Collapse
|
11
|
Park JH, Eberl G. Type 3 regulatory T cells at the interface of symbiosis. J Microbiol 2018; 56:163-171. [DOI: 10.1007/s12275-018-7565-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
|
12
|
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol 2017; 8:1228. [PMID: 29067024 PMCID: PMC5641316 DOI: 10.3389/fimmu.2017.01228] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
13
|
Kisseleva EP, Krylov AV, Lyamina IV, Kudryavtsev IV, Lioudyno VI. Role of Vascular Endothelial Growth Factor (VEGF) in Thymus of Mice under Normal Conditions and with Tumor Growth. BIOCHEMISTRY (MOSCOW) 2016; 81:491-501. [PMID: 27297899 DOI: 10.1134/s0006297916050060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In our study, we for the first time investigated a role for VEGF as a factor regulating transendothelial migration of murine thymocytes in vitro. Effects of VEGF were examined in a model of thymocyte migration across a monolayer of EA.hy 926 endothelial cells. We showed that VEGF enhanced transendothelial migration of murine thymocytes and their adhesion to endothelial cells in a dose-dependent manner. VEGF did not influence thymocytes, but rather acted on endothelial cells by upregulating surface expression of adhesion molecule ICAM-1 and downregulating activity of 5'-nucleotidase. Effects from VEGF were comparable with those from TNF-α. Because it is known that administration of VEGF to intact animals results in thymic atrophy, it was assumed that it might play a role in developing thymic involution during tumor growth. Enhanced egress of thymocytes to the periphery was considered as a plausible mechanism underlying effects of VEGF. However, we revealed no difference in parameters of in vitro transendothelial migration for thymocytes from animals bearing a transplantable hepatoma 22a compared to control animals. VEGF mRNA expression in lysates of thymic stroma was found to be upregulated in mice with grafted tumors, whereas at the protein level the amount of VEGF did not differ. While examining expression of VEGF receptors on thymocytes by flow cytometry, both VEGFR-1 and VEGFR-2 were not detected, whereas the percentage of Nrp-1-positive thymocytes in animals with hepatoma 22a was as high as in the control group. Thus, we were unable to confirm a hypothesis regarding participation of VEGF in developing thymic involution during progression of experimental hepatoma. However, a set of novel data concerning a role for VEGF in stimulating transendothelial migration of thymocytes in vitro was obtained, and it may be of significance for understanding mechanisms underlying thymus functioning as well as a role of this cytokine in preparing endothelial cells for egress of thymocytes to the periphery.
Collapse
Affiliation(s)
- E P Kisseleva
- Institute for Experimental Medicine, St. Petersburg, 197376, Russia.
| | | | | | | | | |
Collapse
|
14
|
Differences in Expression Level of Helios and Neuropilin-1 Do Not Distinguish Thymus-Derived from Extrathymically-Induced CD4+Foxp3+ Regulatory T Cells. PLoS One 2015; 10:e0141161. [PMID: 26495986 PMCID: PMC4619666 DOI: 10.1371/journal.pone.0141161] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Helios transcription factor and semaphorin receptor Nrp-1 were originally described as constitutively expressed at high levels on CD4+Foxp3+ T regulatory cells of intrathymic origin (tTregs). On the other hand, CD4+Foxp3+ Tregs generated in the periphery (pTregs) or induced ex vivo (iTregs) were reported to express low levels of Helios and Nrp-1. Soon afterwards the reliability of Nrp-1 and Helios as markers discriminating between tTregs and pTregs was questioned and until now no consensus has been reached. Here, we used several genetically modified mouse strains that favor pTregs or tTregs formation and analyzed the TCR repertoire of these cells. We found that Tregs with variable levels of Nrp-1 and Helios were abundant in mice with compromised ability to support natural differentiation of tTregs or pTregs. We also report that TCR repertoires of Treg clones expressing high or low levels of Nrp-1 or Helios are similar and more alike repertoire of CD4+Foxp3+ than repertoire of CD4+Foxp3- thymocytes. These results show that high vs. low expression of Nrp-1 or Helios does not unequivocally identify Treg clones of thymic or peripheral origin.
Collapse
|
15
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Liu G, Li Z, Wei Y, Lin Y, Yang C, Liu T. Direct detection of FoxP3 expression in thymic double-negative CD4-CD8- cells by flow cytometry. Sci Rep 2014; 4:5781. [PMID: 25060864 PMCID: PMC5376166 DOI: 10.1038/srep05781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 07/03/2014] [Indexed: 02/07/2023] Open
Abstract
Foxp3 expression is a marker of regulatory T cells (Treg), but how early it is expressed in the thymus is still not fully defined. In this study, we examined Foxp3 expression in double-negative (DN) CD4(-)CD8(-) T cell precursors in the thymus by flow cytometry. By increasing the number of collected cells from the conventional 10(4) cells up to more than 10(6) cells during flow cytometry, we found that DN cells exhibited higher Foxp3 expression than double-positive (DP) CD4(+)CD8(+) and single-positive (SP) CD4(+) or CD8(+) (SP) T cells. CD44(+) expression positively correlated with Foxp3 in thymic DN cells. Furthermore, TCR-β(-)CD25(+) DN cells exhibited the highest frequency of Foxp3-expressing cells. Almost all Foxp3(+) cells expressed CD25in DN cells. These results suggest that Foxp3 expression in DN cells can directly be detected by flow cytometry and it was positively corelated with CD25 and CD44 in DN cells.
Collapse
Affiliation(s)
- Gang Liu
- Clinical Medical Research Center, Affiliated Hospital of Guangdong Medical Collage, Zhanjiang, Guangdong 524001, China
| | - Zongfang Li
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yang Wei
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yan Lin
- The School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cengceng Yang
- The Department of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Tie Liu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
17
|
Chaudhary B, Khaled YS, Ammori BJ, Elkord E. Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol Immunother 2014; 63:81-99. [PMID: 24263240 PMCID: PMC11028473 DOI: 10.1007/s00262-013-1500-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/10/2013] [Indexed: 12/15/2022]
Abstract
Neuropilin 1 (NRP1) is a transmembrane glycoprotein that acts as a co-receptor for a number of extracellular ligands including class III/IV semaphorins, certain isoforms of vascular endothelial growth factor and transforming growth factor beta. An exact understanding of the role of NRP1 in the immune system has been obscured by the differences in NRP1 expression observed between mice and humans. In mice, NRP1 is selectively expressed on thymic-derived Tregs and greatly enhances immunosuppressive function. In humans, NRP1 is expressed on plasmacytoid dendritic cells (pDCs) where it aids in priming immune responses and on a subset of T regulatory cells (Tregs) isolated from secondary lymph nodes. Preliminary studies that show NRP1 expression on T cells confers enhanced immunosuppressive activity. However, the mechanism by which this activity is mediated remains unclear. NRP1 expression has also been identified on activated T cells and Tregs isolated from inflammatory microenvironments, suggesting NRP1 might represent a novel T cell activation marker. Of clinical interest, NRP1 may enhance Treg tumour infiltration and a decrease in NRP1+ Tregs correlates with successful chemotherapy, suggesting a specific role for NRP1 in cancer pathology. As a therapeutic target, NRP1 allows simultaneous targeting of NRP1-expressing tumour vasculature, NRP1+ Tregs and pDCs. With the development of anti-NRP1 monoclonal antibodies and cell-penetrating peptides, NRP1 represents a promising new target for cancer therapies. This paper reviews current knowledge on the role and function of NRP1 in Tregs and pDCs, both in physiological and cancer settings, as well as its potential as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Belal Chaudhary
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
| | - Yazan S. Khaled
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
- Institutes of Cancer, Inflammation & Repair, University of Manchester, Manchester, UK
| | - Basil J. Ammori
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
- Institutes of Cancer, Inflammation & Repair, University of Manchester, Manchester, UK
| | - Eyad Elkord
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, The Crescent, Peel Building G25, Manchester, M5 4WT UK
- Institutes of Cancer, Inflammation & Repair, University of Manchester, Manchester, UK
- College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Campos-Mora M, Morales RA, Gajardo T, Catalán D, Pino-Lagos K. Neuropilin-1 in transplantation tolerance. Front Immunol 2013; 4:405. [PMID: 24324469 PMCID: PMC3839227 DOI: 10.3389/fimmu.2013.00405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 01/13/2023] Open
Abstract
In the immune system, Neuropilin-1 (Nrp1) is a molecule that plays an important role in establishing the immunological synapse between dendritic cells (DCs) and T cells. Recently, Nrp1 has been identified as a marker that seems to distinguish natural T regulatory (nTreg) cells, generated in the thymus, from inducible T regulatory (iTreg) cells raised in the periphery. Given the crucial role of both nTreg and iTreg cells in the generation and maintenance of immune tolerance, the ability to phenotypically identify each of these cell populations in vivo is needed to elucidate their biological properties. In turn, these properties have the potential to be developed for therapeutic use to promote immune tolerance. Here we describe the nature and functions of Nrp1, including its potential use as a therapeutic target in transplantation tolerance.
Collapse
Affiliation(s)
- Mauricio Campos-Mora
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile
| | | | | | | | | |
Collapse
|
19
|
Dhamne C, Chung Y, Alousi AM, Cooper LJN, Tran DQ. Peripheral and thymic foxp3(+) regulatory T cells in search of origin, distinction, and function. Front Immunol 2013; 4:253. [PMID: 23986762 PMCID: PMC3753660 DOI: 10.3389/fimmu.2013.00253] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, much has been learnt and much more to discover about Foxp3(+) regulatory T cells (Tregs). Initially, it was thought that Tregs were a unique entity that originates in the thymus. It is now recognized that there is a fraternal twin sibling that is generated in the periphery. The difficulty is in the distinction between these two subsets. The ability to detect, monitor, and analyze these two subsets in health and disease will provide invaluable insights into their functions and purposes. The plasticity and mechanisms of action can be unique and not overlapping within these subsets. Therefore, the therapeutic targeting of a particular subset of Tregs might be more efficacious. In the past couple of years, a vast amount of data have provided a better understanding of the cellular and molecular components essential for their development and stability. Many studies are implicating their preferential involvement in certain diseases and immunologic tolerance. However, it remains controversial as to whether any phenotypic markers have been identified that can differentiate thymic versus peripheral Tregs. This review will address the validity and controversy regarding Helios, Lap/Garp and Neuropilin-1 as markers of thymic Tregs. It also will discuss updated information on distinguishing features of these two subsets and their critical roles in maternal-fetal tolerance and transplantation.
Collapse
Affiliation(s)
- Chetan Dhamne
- Department of Paediatrics, University Children’s Medical Institute, National University Hospital, Singapore
| | - Yeonseok Chung
- Institute of Molecular Medicine, Center for Immunology and Autoimmune Diseases, UTHealth, Houston, TX, USA
| | - Amin Majid Alousi
- Department of Pediatrics Patient Care, Division of Pediatrics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Laurence J. N. Cooper
- Department of Stem Cell Transplant and Cellular Therapy, Division of Cancer Medicine, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Dat Quoc Tran
- Department of Pediatrics, Divisions of Allergy/Immunology, Pediatric Research Center, UTHealth, Houston, TX, USA
| |
Collapse
|
20
|
Linder GE, Chuntova PD, McLelland BT, Añó L, Obodo UC, Crider NJ, Matthes DJ, García-Ojeda ME, Manilay JO, Chatterjea D. Semaphorin 4A is dynamically regulated during thymocyte development in mice. Cell Immunol 2013; 281:150-8. [PMID: 23648820 DOI: 10.1016/j.cellimm.2013.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/05/2012] [Accepted: 03/05/2013] [Indexed: 10/26/2022]
Abstract
Semaphorins are important regulators of peripheral T and B-cell mediated immune responses in mice and humans. Modulatory roles of semaphorins in T cell development are also being characterized. We carefully analyzed the gene expression and protein levels of semaphorins 4A, 4D, and 7A at various developmental stages of T cell maturation in the thymus of C57BL/6 mice. Sema7a was expressed at very low levels, while Sema4d was abundant at all developmental stages of mouse thymocytes. We found the most interesting pattern of gene regulation and protein localization for semaphorin 4A. Both semaphorin 4A mRNA and protein were clearly detected on the earliest progenitors and were downregulated through thymic development. SEMA4A protein also showed a distinct cortico-medullary pattern of localization. Our findings contribute to an understanding of the complex roles played by semaphorins in the network of spatially and temporally regulated cues underpinning T cell development in the thymus.
Collapse
Affiliation(s)
- Grace E Linder
- Biology Department, Macalester College, St. Paul, MN 55105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin ML, Littman DR, Lafaille JJ. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. ACTA ACUST UNITED AC 2012; 209:1723-42, S1. [PMID: 22966001 PMCID: PMC3457733 DOI: 10.1084/jem.20120914] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropilin-1 surface expression discriminates between nT reg cells with stable expression and Nrp1 low iT reg cells showing inducible expression under inflammatory conditions. Foxp3 activity is essential for the normal function of the immune system. Two types of regulatory T (T reg) cells express Foxp3, thymus-generated natural T reg (nT reg) cells, and peripherally generated adaptive T reg (iT reg) cells. These cell types have complementary functions. Until now, it has not been possible to distinguish iT reg from nT reg cells in vivo based solely on surface markers. We report here that Neuropilin 1 (Nrp1) is expressed at high levels by most nT reg cells; in contrast, mucosa-generated iT reg and other noninflammatory iT reg cells express low levels of Nrp1. We found that Nrp1 expression is under the control of TGF-β. By tracing nT reg and iT reg cells, we could establish that some tumors have a very large proportion of infiltrating iT reg cells. iT reg cells obtained from highly inflammatory environments, such as the spinal cords of mice with spontaneous autoimmune encephalomyelitis (EAE) and the lungs of mice with chronic asthma, express Nrp1. In the same animals, iT reg cells in secondary lymphoid organs remain Nrp1low. We also determined that, in spontaneous EAE, iT reg cells help to establish a chronic phase of the disease.
Collapse
Affiliation(s)
- Jonathan M Weiss
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Prud'homme GJ, Glinka Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012; 3:921-39. [PMID: 22948112 PMCID: PMC3660061 DOI: 10.18632/oncotarget.626] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/01/2012] [Indexed: 12/17/2022] Open
Abstract
The neuropilins (Nrps) are multifunctional proteins involved in development, immunity and cancer. Neuropilin-1 (Nrp1), or its homologue neuropilin-2 (Nrp2), are coreceptors that enhance responses to several growth factors (GFs) and other mediators. Nrps are coreceptors for the class 3 semaphorins (SEMA3), involved in axonal guidance, and several members of the vascular endothelial growth factor (VEGF) family. However, recent findings reveal they have a much broader spectrum of activity. They bind transforming growth factor β1 (TGF-β1) and its receptors, hepatocyte growth factor (HGF) and its receptor (cMet), platelet derived growth factor (PDGF) and its receptors, fibroblast growth factors (FGFs), and integrins. Nrps also promote Hedgehog signaling. These ligands and pathways are all relevant to angiogenesis and wound healing. In the immune system, the Nrps are expressed primarily by dendritic cells (DCs) and regulatory T cells (Tregs), and exert mainly inhibitory effects. In cancer, Nrps have been linked to a poor prognosis, which is consistent with their numerous interactions with ligands and receptors that promote tumor progression. We hypothesize that Nrps boost responses by capturing ligands, regulating GF receptor expression, endocytosis and recycling, and possibly also by signaling independently. Importantly, they promote epithelial-mesenchymal transition (EMT), and the survival of cancer stem cells. The recent finding that Nrps bind and internalize cell-penetrating peptides (CPPs) with arginine/lysine-rich C-terminal motifs (C-end rule; e.g., RXXR) is of interest. These CPPs can be coupled to large drugs for cancer therapy. Almost all studies have been preclinical, but findings suggest Nrps are excellent targets for anti-cancer drug development.
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, ON, Canada.
| | | |
Collapse
|
23
|
Mendes-da-Cruz DA, Stimamiglio MA, Muñoz JJ, Alfaro D, Terra-Granado E, Garcia-Ceca J, Alonso-Colmenar LM, Savino W, Zapata AG. Developing T-cell migration: role of semaphorins and ephrins. FASEB J 2012; 26:4390-9. [PMID: 22815386 DOI: 10.1096/fj.11-202952] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell migration is a crucial event for normal T-cell development, and various ligand/receptor pairs have been implicated. Most of them, including chemokines and extracellular matrix proteins, have attractant properties on thymocytes. We discuss herein two further groups of ligand/receptor pairs, semaphorins/neuropilins and ephs/ephrins, which are constitutively expressed by thymocytes and thymic microenvironmental cells. Evidence shows that the corresponding interactions are relevant for developing T-cell migration, including the entry of bone marrow progenitor cells, migration of CD4/CD8-defined thymocyte subpopulations triggered by chemokines and/or extracellular matrix proteins, and thymocyte export. Conceptually, the data summarized here show that thymocyte migration results from a complex network of molecular interactions, which generate not only attraction, but also repulsion of migrating T-cell precursors.
Collapse
|
24
|
Abstract
Regulatory T lymphocytes are essential to maintain homeostasis of the immune system, limiting the magnitude of effector responses and allowing the establishment of immunological tolerance. Two main types of regulatory T cells have been identified--natural and induced (or adaptive)-and both play significant roles in tuning down effector immune responses. Adaptive CD4(+)Foxp3(+) regulatory T (iTreg) cells develop outside the thymus under a variety of conditions. These include not only antigen presentation under subimmunogenic or noninflammatory conditions, but also chronic inflammation and infections. We speculate that the different origin of iTreg cells (noninflammatory versus inflammatory) results in distinct properties, including their stability. iTreg cells are also generated during homeostasis of the gut and in cancer, although some cancers also favor expansion of natural regulatory T (nTreg) cells. Here we review how iTreg cells develop and how they participate in immunological tolerance, contrasting, when possible, iTreg cells with nTreg cells.
Collapse
Affiliation(s)
- Angelina M Bilate
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
25
|
IL-17-producing invariant NKT cells in lymphoid organs are recent thymic emigrants identified by neuropilin-1 expression. Blood 2011; 118:2993-3002. [PMID: 21653940 DOI: 10.1182/blood-2011-01-329268] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite increasing knowledge on the mechanisms of invariant natural killer T (iNKT)-cell development in the thymus, the function of recent thymic emigrant (RTE) iNKT cells remains largely unexplored, principally because of a lack of bona fide markers to distinguish RTE from long-lived iNKT cells. Whether the recently described IL-17-producing iNKT cell subset is part of RTE has notably not been addressed. In the present study, we show that neuropilin-1 (Nrp-1), a transmembrane receptor mainly found on T-regulatory (Treg) cells in the murine immune system, is specifically expressed on RTE iNKT cells in naive mice. We used the Nrp-1 marker to discriminate RTE from mature iNKT cells and compare their functions. We show that RTE iNKT cells proliferate more than mature iNKT cells after in vitro activation; that, unlike mature iNKT cells, most RTE iNKT cells fail to rapidly produce IFN-γ and IL-4 after in vivo activation; and, most importantly, that IL-17-producing iNKT cells in lymphoid organs of naive mice are contained within the RTE iNKT cell pool. Our results establish an accurate marker of RTE iNKT cells and reveal that continuous thymic output is required for pro-inflammatory IL-17 secretion, a key function of adult iNKT cells.
Collapse
|
26
|
Neuropilin-1 attenuates autoreactivity in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011; 108:2040-5. [PMID: 21245328 DOI: 10.1073/pnas.1008721108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropilin-1 (Nrp1) is a cell surface molecule originally identified for its role in neuronal development. Recently, Nrp1 has been implicated in several aspects of immune function including maintenance of the immune synapse and development of regulatory T (T(reg)) cells. In this study, we provide evidence for a central role of Nrp1 in the regulation of CD4 T-cell immune responses in experimental autoimmune encephalitis (EAE). EAE serves as an animal model for the central nervous system (CNS) inflammatory disorder multiple sclerosis (MS). EAE is mediated primarily by CD4(+) T cells that migrate to the CNS and mount an inflammatory attack against myelin components, resulting in CNS pathology. Using a tissue-specific deletion system, we observed that the lack of Nrp1 on CD4(+) T cells results in increased EAE severity. These conditional knockout mice exhibit preferential T(H)-17 lineage commitment and decreased T(reg)-cell functionality. Conversely, CD4(+) T cells expressing Nrp1 suppress effector T-cell proliferation and cytokine production both in vivo and in vitro independent of T(reg) cells. Nrp1-mediated suppression can be inhibited by TGF-β blockade but not by IL-10 blockade. These results suggest that Nrp1 is essential for proper maintenance of peripheral tolerance and its absence can result in unchecked autoreactive responses, leading to diseases like EAE and potentially MS.
Collapse
|
27
|
Mendes-da-Cruz DA, Lepelletier Y, Brignier AC, Smaniotto S, Renand A, Milpied P, Dardenne M, Hermine O, Savino W. Neuropilins, semaphorins, and their role in thymocyte development. Ann N Y Acad Sci 2009; 1153:20-8. [PMID: 19236324 DOI: 10.1111/j.1749-6632.2008.03980.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some molecules described in the nervous system are also expressed in cells involved in the control of the immune response, suggesting they have a role as common mechanisms between neuroendocrine and immune systems. In this review, we focus on the expression and role of neuropilins (NPs) and their soluble ligands class 3 semaphorins in thymus physiology, particularly migration of developing thymocytes. We also discuss the concept of multivectorial thymocyte migration, including semaphorins, as a new individual cell migration vector.
Collapse
|
28
|
Takahashi K, Ishida M, Hirokawa K, Takahashi H. Expression of the semaphorinsSema 3DandSema 3Fin the developing parathyroid and thymus. Dev Dyn 2008; 237:1699-708. [DOI: 10.1002/dvdy.21556] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
29
|
Glinka Y, Prud'homme GJ. Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 2008; 84:302-10. [PMID: 18436584 PMCID: PMC2504713 DOI: 10.1189/jlb.0208090] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (Nrp1) is a multifunctional protein, identified principally as a receptor for the class 3 semaphorins and members of the vascular endothelial growth factor (VEGF) family, but it is capable of other interactions. It is a marker of regulatory T cells (Tr), which often carry Nrp1 and latency-associated peptide (LAP)-TGF-β1 (the latent form). The signaling TGF-β1 receptors bind only active TGF-β1, and we hypothesized that Nrp1 binds the latent form. Indeed, we found that Nrp1 is a high-affinity receptor for latent and active TGF-β1. Free LAP, LAP-TGF-β1, and active TGF-β1 all competed with VEGF165 for binding to Nrp1. LAP has a basic, arginine-rich C-terminal motif similar to VEGF and peptides that bind to the b1 domain of Nrp1. A C-terminal LAP peptide (QSSRHRR) bound to Nrp1 and inhibited the binding of VEGF and LAP-TGF-β1. We also analyzed the effects of Nrp1/LAP-TGF-β1 coexpression on T cell function. Compared with Nrp1– cells, sorted Nrp1+ T cells had a much greater capacity to capture LAP-TGF-β1. Sorted Nrp1– T cells captured soluble Nrp1-Fc, and this increased their ability to capture LAP-TGF-β1. Conventional CD4+CD25–Nrp1– T cells coated with Nrp1-Fc/LAP-TGF-β1 acquired strong Tr activity. Moreover, LAP-TGF-β was activated by Nrp1-Fc and also by a peptide of the b2 domain of Nrp1 (RKFK; similar to a thrombospondin-1 peptide). Breast cancer cells, which express Nrp1, also captured and activated LAP-TGF-β1 in a Nrp1-dependent manner. Thus, Nrp1 is a receptor for TGF-β1, activates its latent form, and is relevant to Tr activity and tumor biology.
Collapse
Affiliation(s)
- Yelena Glinka
- Department of Laboratory Medicine, St. Michael's Hospital, 30 Bond Street, Room 2-013CC, Toronto, Ontario, Canada M5B 1W8.
| | | |
Collapse
|