1
|
Kim SE, Kim YK, Oh KB, Hwang JH. Development of the PD9-9 Monoclonal Antibody for Identifying Porcine Bone Marrow-Derived Dendritic Cells. Life (Basel) 2024; 14:1054. [PMID: 39337839 PMCID: PMC11433566 DOI: 10.3390/life14091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
The purpose of this study was to develop a monoclonal antibody (mAb) that can identify porcine dendritic cells (DCs) that have differentiated from bone marrow progenitor cells. Hybridoma technology was used to obtain mAbs, and bone marrow-derived DCs (BMDCs) were employed as immunogens for producing antibodies. The generated PD9-9 mAbs exhibited considerable reactivity towards porcine BMDCs with applications in flow cytometry and immunostaining. The antibody was composed of heavy immunoglobulin gamma-1 chains and light kappa chains. The PD9-9 mAb recognized fully differentiated porcine BMDCs and cells undergoing DC differentiation. In contrast, bone marrow cells and macrophages were not recognized by PD9-9. In addition, the PD9-9 mAb promoted porcine DC proliferation. Consequently, the PD9-9 mAb may be a biomarker for porcine DCs and will be advantageous for investigating porcine DC biology.
Collapse
Affiliation(s)
- Sang Eun Kim
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology (KIT), Konkuk University, Seoul 05029, Republic of Korea
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
| | - Young Kyu Kim
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology (KIT), Konkuk University, Seoul 05029, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup-si 56212, Republic of Korea;
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
| | - Jeong Ho Hwang
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology (KIT), Konkuk University, Seoul 05029, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup-si 56212, Republic of Korea;
| |
Collapse
|
2
|
Barut GT, Kreuzer M, Bruggmann R, Summerfield A, Talker SC. Single-cell transcriptomics reveals striking heterogeneity and functional organization of dendritic and monocytic cells in the bovine mesenteric lymph node. Front Immunol 2023; 13:1099357. [PMID: 36685557 PMCID: PMC9853064 DOI: 10.3389/fimmu.2022.1099357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Dendritic and monocytic cells co-operate to initiate and shape adaptive immune responses in secondary lymphoid tissue. The complexity of this system is poorly understood, also because of the high phenotypic and functional plasticity of monocytic cells. We have sequenced mononuclear phagocytes in mesenteric lymph nodes (LN) of three adult cows at the single-cell level, revealing ten dendritic-cell (DC) clusters and seven monocyte/macrophage clusters with clearly distinct transcriptomic profiles. Among DC, we defined LN-resident subsets and their progenitors, as well as subsets of highly activated migratory DC differing in transcript levels for T-cell attracting chemokines. Our analyses also revealed a potential differentiation path for cDC2, resulting in a cluster of inflammatory cDC2 with close transcriptional similarity to putative DC3 and monocyte-derived DC. Monocytes and macrophages displayed sub-clustering mainly driven by pro- or anti-inflammatory expression signatures, including a small cluster of cycling, presumably self-renewing, macrophages. With this transcriptomic snapshot of LN-derived mononuclear phagocytes, we reveal functional properties and differentiation trajectories in a "command center of immunity", and identify elements that are conserved across species.
Collapse
Affiliation(s)
- Güliz Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marco Kreuzer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephanie C. Talker
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Mair KH, Stadler M, Razavi MA, Saalmüller A, Gerner W. Porcine Plasmacytoid Dendritic Cells Are Unique in Their Expression of a Functional NKp46 Receptor. Front Immunol 2022; 13:822258. [PMID: 35371050 PMCID: PMC8970115 DOI: 10.3389/fimmu.2022.822258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
The activating receptor NKp46 shows a unique expression pattern on porcine leukocytes. We showed already that in swine not all NK cells express NKp46 and that CD3+NKp46+ lymphocytes form a T-cell subset with unique functional properties. Here we demonstrate the expression of NKp46 on CD4highCD14-CD172a+ porcine plasmacytoid dendritic cells (pDCs). Multicolor flow cytometry analyses revealed that the vast majority of porcine pDCs (94.2% ± 4) express NKp46 ex vivo and have an increased expression on the single-cell level compared to NK cells. FSC/SSChighCD4highNKp46+ cells produced high levels of IFN-α after CpG ODN 2216 stimulation, a hallmark of pDC function. Following receptor triggering with plate-bound monoclonal antibodies against NKp46, phosphorylation of signaling molecules downstream of NKp46 was analyzed in pDCs and NK cells. Comparable to NK cells, NKp46 triggering led to an upregulation of the phosphorylated ribosomal protein S6 (pS6) in pDCs, indicating an active signaling pathway of NKp46 in porcine pDCs. Nevertheless, a defined effector function of the NK-associated receptor on porcine pDCs could not be demonstrated yet. NKp46-mediated cytotoxicity, as shown for NK cells, does not seem to occur, as NKp46+ pDCs did not express perforin. Yet, NKp46 triggering seems to contribute to cytokine production in porcine pDCs, as induction of TNF-α was observed in a small pDC subset after NKp46 cross-linking. To our knowledge, this is the first report on NKp46 expression on pDCs in a mammalian species, showing that this receptor contributes to pDC activation and function.
Collapse
Affiliation(s)
- Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Kerstin H. Mair,
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Borowska D, Sives S, Vervelde L, Sutton KM. Chicken CSF2 and IL-4-, and CSF2-dependent bone marrow cultures differentiate into macrophages over time. Front Immunol 2022; 13:1064084. [PMID: 36618373 PMCID: PMC9812659 DOI: 10.3389/fimmu.2022.1064084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chicken bone marrow-derived macrophages (BMMΦ) and dendritic cells (BMDC) are utilized as models to study the mononuclear phagocytic system (MPS). A widely used method to generate macrophages and DC in vitro is to culture bone marrow cells in the presence of colony-stimulating factor-1 (CSF1) to differentiate BMMΦ and granulocyte-macrophage-CSF (GM-CSF, CSF2) and interleukin-4 (IL-4) to differentiate BMDC, while CSF2 alone can lead to the development of granulocyte-macrophage-CSF-derived DC (GMDC). However, in chickens, the MPS cell lineages and their functions represented by these cultures are poorly understood. Here, we decipher the phenotypical, functional and transcriptional differences between chicken BMMΦ and BMDC along with examining differences in DC cultures grown in the absence of IL-4 on days 2, 4, 6 and 8 of culture. BMMΦ cultures develop into a morphologically homogenous cell population in contrast to the BMDC and GMDC cultures, which produce morphologically heterogeneous cell cultures. At a phenotypical level, all cultures contained similar cell percentages and expression levels of MHCII, CD11c and CSF1R-transgene, whilst MRC1L-B expression decreased over time in BMMΦ. All cultures were efficiently able to uptake 0.5 µm beads, but poorly phagocytosed 1 µm beads. Little difference was observed in the kinetics of phagosomal acidification across the cultures on each day of analysis. Temporal transcriptomic analysis indicated that all cultures expressed high levels of CSF3R, MERTK, SEPP1, SPI1 and TLR4, genes associated with macrophages in mammals. In contrast, low levels of FLT3, XCR1 and CAMD1, genes associated with DC, were expressed at day 2 in BMDC and GMDC after which expression levels decreased. Collectively, chicken CSF2 + IL-4- and CSF2-dependent BM cultures represent cells of the macrophage lineage rather than inducing conventional DC.
Collapse
Affiliation(s)
- Dominika Borowska
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Samantha Sives
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kate M Sutton
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Li Y, Puebla-Clark L, Hernández J, Díaz I, Mateu E. Development of Pig Conventional Dendritic Cells From Bone Marrow Hematopoietic Cells in vitro. Front Immunol 2020; 11:553859. [PMID: 33162975 PMCID: PMC7580533 DOI: 10.3389/fimmu.2020.553859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, porcine dendritic cells (DCs) have been identified from pig tissues. However, studying the interaction of porcine DCs with pathogens is still difficult due to the scarcity of DCs in tissues. In the present work, the Flt3-ligand (Flt3L)-based in vitro derivation system was further characterized and compared with other cytokine derivation models using a combination of factors: stem cell factor (SCF), GM-CSF, and IL-4. The method using Flt3L alone or combined with SCF supported the development of pig bone marrow hematopoietic cells into in vivo equivalent conventional DCs (cDCs). The equivalent cDC1 (the minor population in the cultures) were characterized as CADM1+CD14–MHC-II+CD172a–/loCD1–CD163– DEC205+CD11R3loCD11R1+CD33+CD80/86+. They expressed high levels of FLT3, ZBTB46, XCR1, and IRF8 mRNA, were efficient in endocytosing dextran and in proliferating allogenic CD4+CD8+ T cells, but were deficient in phagocyting inactivated Staphylococcus aureus (S. aureus). Also, after poly I:C stimulation, they predominantly produced IL-12p40a and matured as indicated by the increase of MHC-I, MHC-II, and CD80/86. The equivalent cDC2 (the main population) were CADM1+CD14–MHC-II+C D172a+CD1+CD163–/loDEC205loCD11R3+CD11R1+CD33+CD80/86+; meanwhile, they overexpressed FcεR1α and IRF4 mRNA. They showed high efficiency in the endocytosis of dextran, but weak in phagocytosing bacteria. They supported allogenic CD4+CD8–/CD4+CD8+ T cell proliferation and were high producers of IL-12p40 (upon TLR7 stimulation) and IL-10 (upon TLR7 stimulation). TLR ligand stimulation also induced their maturation. In addition, a CD14+ population was identified with the phenotype CADM1+CD14+MHC-II+CD172a+ CD1+CD163+DEC205–CD11R3+CD11R1+CD33–/loCD80/86+. They shared some functional similarities with cDC2 and were distinguishable from macrophages. This CD14+ population was efficient in phagocyting S. aureus but showed less maturation upon TLR ligand stimulation than cDC1 or cDC2. The alternative methods of DC derivation including GM-CSF and/or IL-4 produced mostly CADM1– cells that did not fulfill the canonical phenotype of bona fide porcine DCs. Our study provides an exhaustive characterization of Flt3L-derived DCs with different methods that can help the in vitro study of the interaction of DCs with porcine-relevant pathogens.
Collapse
Affiliation(s)
- Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lucinda Puebla-Clark
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Ivan Díaz
- Centre de Recerca en Sanitat Animal, IRTA-UAB, Bellaterra, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centre de Recerca en Sanitat Animal, IRTA-UAB, Bellaterra, Spain
| |
Collapse
|
6
|
Barut GT, Lischer HEL, Bruggmann R, Summerfield A, Talker SC. Transcriptomic profiling of bovine blood dendritic cells and monocytes following TLR stimulation. Eur J Immunol 2020; 50:1691-1711. [PMID: 32592404 DOI: 10.1002/eji.202048643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 11/06/2022]
Abstract
Dendritic cells (DC) and monocytes are vital for the initiation of innate and adaptive immune responses. Recently, we identified bona fide DC subsets in blood of cattle, revealing subset- and species-specific transcription of toll-like receptors (TLR). In the present study, we analyzed phenotypic and transcriptional responses of bovine DC subsets and monocytes to in vitro stimulation with four to six different TLR ligands. Bovine DC subsets, especially plasmacytoid DC (pDC), showed a clear increase of CCR7, CD25, CD40, CD80, CD86, and MHC-II expression both on mRNA and protein level. Flow cytometric detection of p38 MAPK phosphorylation 15 min after stimulation confirmed activation of DC subsets and monocytes in accordance with TLR gene expression. Whole-transcriptome sequencing of sorted and TLR-stimulated subsets revealed potential ligand- and subset-specific regulation of genes associated with inflammation, T-cell co-stimulation, migration, metabolic reprogramming, and antiviral activity. Gardiquimod was found to evoke strong responses both in DC subsets and monocytes, while Poly(I:C) and CpG preferentially triggered responses in cDC1 and pDC, respectively. This in-depth analysis of ligand responsiveness is essential for the rational design of vaccine adjuvants in cattle, and provides a solid basis for comparative studies on DC and monocyte biology across species.
Collapse
Affiliation(s)
- G Tuba Barut
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Heidi E L Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephanie C Talker
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Auray G, Talker SC, Keller I, Python S, Gerber M, Liniger M, Ganges L, Bruggmann R, Ruggli N, Summerfield A. High-Resolution Profiling of Innate Immune Responses by Porcine Dendritic Cell Subsets in vitro and in vivo. Front Immunol 2020; 11:1429. [PMID: 32733474 PMCID: PMC7358342 DOI: 10.3389/fimmu.2020.01429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
The present study investigated the transcriptomic response of porcine dendritic cells (DC) to innate stimulation in vitro and in vivo. The aim was to identify DC subset-specialization, suitable Toll-like receptor (TLR) ligands targeting plasmacytoid DC (pDC), and the DC activation profile during highly and low virulent classical swine fever virus (CSFV, strain Eystrup and Pinar del Rio, respectively) infection, chosen as model for a virus causing a severe immunopathology. After identification of porcine conventional DC (cDC) 1, cDC2, pDC and a monocyte-derived subset in lymphoid tissues, we characterized DC activation using transcriptomics, and focused on chemokines, interferons, cytokines, as well as on co-stimulatory and inhibitory molecules. We demonstrate that porcine pDC provide important signals for Th1 and interferon responses, with CpG triggering the strongest responses in pDC. DC isolated early after infection of pigs with either of the two CSFV strains showed prominent upregulation of CCL5, CXCL9, CXCL10, CXCL11, and XCL1, as well as of the cytokines TNFSF13B, IL6, IL7, IL12B, IL15, IL27. Transcription of IL12B and many interferon genes were mostly restricted to pDC. Interestingly, the infection was associated with a prominent induction of inhibitory and cell death receptors. When comparing low and highly virulent CSFV strains, the latter induced a stronger inflammatory and antiviral response but a weaker cell cycle response, and reduced antigen presentation functions of DC. Taken together, we provide high-resolution information on DC activation in pigs, as well as information on how DC modulation could be linked to CSFV immunopathology.
Collapse
Affiliation(s)
- Gaël Auray
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Stephanie C Talker
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Irene Keller
- Department for Biomedical Research and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Front Immunol 2018; 9:2505. [PMID: 30425716 PMCID: PMC6218925 DOI: 10.3389/fimmu.2018.02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4−, cDC2 being Flt3+CD172a+CD13−CD4−, pDC being Flt3+CD172adimCD13−CD4+, and monocytes being Flt3−CD172ahighCD13−CD4−. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16−) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for “marker molecules” that—when targeted by flow cytometry—will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Baumann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Ziegler A, Marti E, Summerfield A, Baumann A. Identification and characterization of equine blood plasmacytoid dendritic cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:352-357. [PMID: 27524460 DOI: 10.1016/j.dci.2016.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Dendritic cells (DC) are antigen-presenting cells that can be classified into three major cell subsets: conventional DC1 (cDC1), cDC2 and plasmacytoid DCs (pDC), none of which have been identified in horses. Therefore, the objective of this study was to identify and characterize DC subsets in equine peripheral blood, emphasizing on pDC. Surface marker analysis allowed distinction of putative DC subsets, according to their differential expression of CADM-1 and MHC class II. Equine pDC were found to be Flt3(+) CD4(low) CD13(-) CD14(-) CD172a(-) CADM-1(-) MHCII(low). The weak expression of CD4 on equine pDC contrasts with findings in several other mammals. Furthermore, pDC purified by fluorescence-activated cell sorting were found to be the only cell subset able to produce large amounts of IFN-α upon TLR9-agonist stimulation. The pDC identity was confirmed by demonstrating high-levels of PLAC8, RUNX2 and TCF4 expression, showing pDC-restricted expression in other mammals.
Collapse
Affiliation(s)
- Anja Ziegler
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, Bern, Switzerland
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, Bern, Switzerland.
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | - Arnaud Baumann
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland
| |
Collapse
|
10
|
Auray G, Keller I, Python S, Gerber M, Bruggmann R, Ruggli N, Summerfield A. Characterization and Transcriptomic Analysis of Porcine Blood Conventional and Plasmacytoid Dendritic Cells Reveals Striking Species-Specific Differences. THE JOURNAL OF IMMUNOLOGY 2016; 197:4791-4806. [DOI: 10.4049/jimmunol.1600672] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
|
11
|
Hartmann SB, Mohanty S, Skovgaard K, Brogaard L, Flagstad FB, Emnéus J, Wolff A, Summerfield A, Jungersen G. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells. PLoS One 2016; 11:e0158503. [PMID: 27362493 PMCID: PMC4928952 DOI: 10.1371/journal.pone.0158503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.
Collapse
Affiliation(s)
- Sofie Bruun Hartmann
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Soumyaranjan Mohanty
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kerstin Skovgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Louise Brogaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | | | - Jenny Emnéus
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Wolff
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland
| | - Gregers Jungersen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
12
|
Abstract
Dendritic cells (DCs) are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c, and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.
Collapse
Affiliation(s)
- Mateusz Pawel Poltorak
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München , Munich , Germany
| | - Barbara Ursula Schraml
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München , Munich , Germany
| |
Collapse
|
13
|
Summerfield A, Auray G, Ricklin M. Comparative Dendritic Cell Biology of Veterinary Mammals. Annu Rev Anim Biosci 2015; 3:533-57. [DOI: 10.1146/annurev-animal-022114-111009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Gael Auray
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Meret Ricklin
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| |
Collapse
|
14
|
Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol 2014; 66:14-21. [PMID: 25466611 DOI: 10.1016/j.molimm.2014.10.023] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 01/21/2023]
Abstract
The porcine skin has striking similarities to the human skin in terms of general structure, thickness, hair follicle content, pigmentation, collagen and lipid composition. This has been the basis for numerous studies using the pig as a model for wound healing, transdermal delivery, dermal toxicology, radiation and UVB effects. Considering that the skin also represents an immune organ of utmost importance for health, immune cells present in the skin of the pig will be reviewed. The focus of this review is on dendritic cells, which play a central role in the skin immune system as they serve as sentinels in the skin, which offers a large surface area exposed to the environment. Based on a literature review and original data we propose a classification of porcine dendritic cell subsets in the skin corresponding to the subsets described in the human skin. The equivalent of the human CD141(+) DC subset is CD1a(-)CD4(-)CD172a(-)CADM1(high), that of the CD1c(+) subset is CD1a(+)CD4(-)CD172a(+)CADM1(+/low), and porcine plasmacytoid dendritic cells are CD1a(-)CD4(+)CD172a(+)CADM1(-). CD209 and CD14 could represent markers of inflammatory monocyte-derived cells, either dendritic cells or macrophages. Future studies for example using transriptomic analysis of sorted populations are required to confirm the identity of these cells.
Collapse
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
| | - François Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Meret E Ricklin
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| |
Collapse
|
15
|
Kyrova K, Stepanova H, Rychlik I, Polansky O, Leva L, Sekelova Z, Faldyna M, Volf J. The response of porcine monocyte derived macrophages and dendritic cells to Salmonella Typhimurium and lipopolysaccharide. BMC Vet Res 2014; 10:244. [PMID: 25270530 PMCID: PMC4195948 DOI: 10.1186/s12917-014-0244-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/24/2014] [Indexed: 01/24/2023] Open
Abstract
Background Following infection and initial multiplication in the gut lumen, Salmonella Typhimurium crosses the intestinal epithelial barrier and comes into contact with cells of the host immune system. Mononuclear phagocytes which comprise macrophages and dendritic cells (DC) are of key importance for the outcome of Salmonella infection. Although macrophages and DC may differentiate from a common precursor, their capacities to process and present antigen differ significantly. In this study, we therefore compared the response of porcine macrophages and DC differentiated from peripheral blood monocytes to S. Typhimurium and one of the most potent bacterial pathogen associated molecular patterns, bacterial lipopolysaccharide. To avoid any bias, the expression was determined by protein LC-MS/MS and verified at the level of transcription by quantitative RT-PCR. Results Within 4 days of culture, peripheral blood monocytes differentiated into two populations with distinct morphology and expression of MHC II. Mass spectrometry identified 446 proteins in macrophages and 672 in DC. Out of these, 433 proteins were inducible in macrophages either after infection with S. Typhimurium or LPS exposure and 144 proteins were inducible in DC. The expression of the 46 most inducible proteins was verified at the level of transcription and the differential expression was confirmed in 22 of them. Out of these, 16 genes were induced in both cell types, 3 genes (VCAM1, HMOX1 and Serglycin) were significantly induced in macrophages only and OLDLR1 and CDC42 were induced exclusively in DC. Thirteen out of 22 up-regulated genes contained the NF-kappaB binding site in their promoters and could be considered as either part of the NF-kappaB feedback loop (IkappaBalpha and ISG15) or as NF-kappaB targets (IL1beta, IL1alpha, AMCF2, IL8, SOD2, CD14, CD48, OPN, OLDLR1, HMOX1 and VCAM1). Conclusions The difference in the response of monocyte derived macrophages and DC was quantitative rather than qualitative. Despite the similarity of the responses, compared to DC, the macrophages responded in a more pro-inflammatory fashion. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0244-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiri Volf
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| |
Collapse
|
16
|
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F. The porcine innate immune system: an update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:321-43. [PMID: 24709051 PMCID: PMC7103209 DOI: 10.1016/j.dci.2014.03.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/21/2023]
Abstract
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.
Collapse
Affiliation(s)
- K H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - T Käser
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - A Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - W Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Summerfield
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - V Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - H L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
17
|
Baumann A, McCullough KC, Summerfield A. Porcine circovirus type 2 stimulates plasmacytoid dendritic cells in the presence of IFN-gamma. Vet Immunol Immunopathol 2013; 156:223-8. [DOI: 10.1016/j.vetimm.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 11/27/2022]
|
18
|
Baumann A, Mateu E, Murtaugh MP, Summerfield A. Impact of genotype 1 and 2 of porcine reproductive and respiratory syndrome viruses on interferon-α responses by plasmacytoid dendritic cells. Vet Res 2013; 44:33. [PMID: 23675981 PMCID: PMC3672080 DOI: 10.1186/1297-9716-44-33] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/18/2013] [Indexed: 12/31/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) infections are characterized by prolonged viremia and viral shedding consistent with incomplete immunity. Type I interferons (IFN) are essential for mounting efficient antiviral innate and adaptive immune responses, but in a recent study, North American PRRSV genotype 2 isolates did not induce, or even strongly inhibited, IFN-α in plasmacytoid dendritic cells (pDC), representing “professional IFN-α-producing cells”. Since inhibition of IFN-α expression might initiate PRRSV pathogenesis, we further characterized PRRSV effects and host modifying factors on IFN-α responses of pDC. Surprisingly, a variety of type 1 and type 2 PRRSV directly stimulated IFN-α secretion by pDC. The effect did not require live virus and was mediated through the TLR7 pathway. Furthermore, both IFN-γ and IL-4 significantly enhanced the pDC production of IFN-α in response to PRRSV exposure. PRRSV inhibition of IFN-α responses from enriched pDC stimulated by CpG oligodeoxynucleotides was weak or absent. VR-2332, the prototype genotype 2 PRRSV, only suppressed the responses by 34%, and the highest level of suppression (51%) was induced by a Chinese highly pathogenic PRRSV isolate. Taken together, these findings demonstrate that pDC respond to PRRSV and suggest that suppressive activities on pDC, if any, are moderate and strain-dependent. Thus, pDC may be a source of systemic IFN-α responses reported in PRRSV-infected animals, further contributing to the puzzling immunopathogenesis of PRRS.
Collapse
Affiliation(s)
- Arnaud Baumann
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, Mittelhäusern, 3147, Switzerland.
| | | | | | | |
Collapse
|
19
|
Lannes N, Summerfield A. Regulation of porcine plasmacytoid dendritic cells by cytokines. PLoS One 2013; 8:e60893. [PMID: 23577175 PMCID: PMC3620061 DOI: 10.1371/journal.pone.0060893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/04/2013] [Indexed: 11/25/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the most potent producers of type-I interferon (IFN) and represent the main interferon (IFN)-α source in response to many viruses. Considering the important roles played by type I IFN's, not only as antiviral effectors but also as potent alarming cytokine of the immune system, we investigated how such responses are regulated by various cytokines. To this end, we stimulated enriched pDC in the presence or absence of particular cytokines with a strong activator, CpG DNA, or a weak activator of pDC, foot-and-mouth disease virus (FMDV). Alternatively, we pre-incubated pDC for 16 h before stimulation. The pro-inflammatory cytokines tested Interleukin (IL)-6, IL17A, tumour necrosis factor (TNF)-α did not influence IFN-α responses except TNF-α, which promoted responses induced by FMDV. The haematopoietic cytokines Fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) had enhancing effects on pDC activation at least in one of the protocols tested. IFN-β and IFN-γ were the most potent at enhancing FMDV-induced IFN-α, up to 10-fold. Interestingly, also the Th2 cytokine IL-4 was an efficient promoter of pDC activity, while IL-10 was the only negative regulator of IFN-α in pDC identified. The cytokines enhancing IFN-α responses also promoted pDC survival in cell culture with the exception of GM-CSF. Taken together this work illustrates how the cytokine network can influence pDC activation, a knowledge of relevance for improving vaccines and therapeutic interventions during virus infections, cancers and autoimmune diseases in which pDC play a role.
Collapse
Affiliation(s)
- Nils Lannes
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| |
Collapse
|
20
|
Ravlo K, Koefoed-Nielsen P, Secher N, Søndergaard P, Keller A, Petersen M, Møldrup U, Østraat E, Bibby B, Jørgensen T, Tønnesen E, Jespersen B. Effect of remote ischemic conditioning on dendritic cell number in blood after renal transplantation — flow cytometry in a porcine model. Transpl Immunol 2012; 26:146-50. [DOI: 10.1016/j.trim.2011.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/17/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
|
21
|
Bel M, Ocaña-Macchi M, Liniger M, McCullough KC, Matrosovich M, Summerfield A. Efficient sensing of avian influenza viruses by porcine plasmacytoid dendritic cells. Viruses 2011; 3:312-330. [PMID: 21994734 PMCID: PMC3185703 DOI: 10.3390/v3040312] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 12/17/2022] Open
Abstract
H5N1 influenza A virus (IAV) infections in human remain rare events but have been associated with severe disease and a higher mortality rate compared to infections with seasonal strains. An excessive release of pro-inflammatory cytokine together with a greater virus dissemination potential have been proposed to explain the high virulence observed in human and other mammalian and avian species. Among the cells involved in the cytokine storm, plasmacytoid dendritic cells (pDC) could play an important role considering their unique capacity to secrete massive amounts of type I interferon (IFN). Considering the role of IFN as a major component of antiviral responses as well as in priming inflammatory responses, we aimed to characterize the induction of IFN-α release upon infection with IAV originating from various avian and mammalian species in a comparative way. In our porcine pDC model, we showed that the viral components triggering IFN responses related to the ability to hemagglutinate, although virosomes devoid of viral RNA were non-stimulatory. Heat-treatment at 65 °C but not chemical inactivation destroyed the ability of IAV to stimulate pDC. All IAV tested induced IFN-α but at different levels and showed different dose-dependencies. H5 and H7 subtypes, in particular H5N1, stimulated pDC at lower doses when compared to mammalian IAV. At high viral doses, IFN-α levels reached by some mammalian IAV surpassed those induced by avian isolates. Although sialic acid-dependent entry was demonstrated, the α-2,3 or α-2,6 binding specificity alone did not explain the differences observed. Furthermore, we were unable to identify a clear role of the hemagglutinin, as the IFN-α doses-response profiles did not clearly differ when viruses with all genes of identical avian origin but different HA were compared. This was found with IAV bearing an HA derived from either a low, a high pathogenic H5N1, or a human H3. Stimulation of pDC was associated with pDC depletion within the cultures. Taken together and considering the efficient sensing of H5N1 at low dose, pDC on one side may play a role in the cytokine storm observed during severe disease, on the other hand could participate in early antiviral responses limiting virus replication.
Collapse
Affiliation(s)
- Michael Bel
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland; E-Mails: (M.B.); (M.O.-M.); (M.L.); (K.C.M.)
| | - Manuela Ocaña-Macchi
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland; E-Mails: (M.B.); (M.O.-M.); (M.L.); (K.C.M.)
| | - Matthias Liniger
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland; E-Mails: (M.B.); (M.O.-M.); (M.L.); (K.C.M.)
| | - Kenneth C. McCullough
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland; E-Mails: (M.B.); (M.O.-M.); (M.L.); (K.C.M.)
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; E-Mail: (M.M.)
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland; E-Mails: (M.B.); (M.O.-M.); (M.L.); (K.C.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +41-(0)-31-848-93-77; Fax: +41-(0)-31-848-92-22
| |
Collapse
|
22
|
Fairbairn L, Kapetanovic R, Sester DP, Hume DA. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol 2011; 89:855-71. [PMID: 21233410 DOI: 10.1189/jlb.1110607] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The biology of cells of the mononuclear phagocyte system has been studied extensively in the mouse. Studies of the pig as an experimental model have commonly been consigned to specialist animal science journals. In this review, we consider some of the many ways in which the innate immune systems of humans differ from those of mice, the ways that pigs may address the shortcomings of mice as models for the study of macrophage differentiation and activation in vitro, and the biology of sepsis and other pathologies in the living animal. With the completion of the genome sequence and the characterization of many key regulators and markers, the pig has emerged as a tractable model of human innate immunity and disease that should address the limited, predictive value of rodents in preclinical studies.
Collapse
Affiliation(s)
- Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Medicine, University of Edinburgh, Roslin BioCentre, Scotland, United Kingdom
| | | | | | | |
Collapse
|
23
|
Ferret-Bernard S, Remot A, Lacroix-Lamandé S, Metton C, Bernardet N, Drouet F, Laurent F. Cellular and molecular mechanisms underlying the strong neonatal IL-12 response of lamb mesenteric lymph node cells to R-848. PLoS One 2010; 5:e13705. [PMID: 21060840 PMCID: PMC2965667 DOI: 10.1371/journal.pone.0013705] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Comparative studies on the response of neonates and adults to TLR stimulation have been almost exclusively limited to comparisons of human neonatal cord blood cells with peripheral blood from adults, and analyses of spleen cell responses in mice. We need to extend these studies and gain further information regarding such responses at mucosal sites. METHODOLOGY/PRINCIPAL FINDINGS We used sheep as a large animal model to study TLR agonist responses in the lymph nodes draining the intestine, an organ that must adapt to profound changes after birth. In response to the imidazoquinoline compound R-848, neonatal mesenteric lymph node (MLN) and spleen cells produced more IL-12 and, consequently, more IFNγ than their adult counterparts. This difference was age-related for both organs, but the preferential IL-12 response decreased more rapidly in the MLN, with young animals producing similar amounts of this cytokine to adults, from the age of 20 days onwards. Intracellular assays and depletion experiments identified CD14(+)CD11b(+)CD40(+) cells as the main producer of IL-12. These cells accounted for a greater proportion of neonatal than of adult MLN cells, and also produced, in direct response to R-848, more IL-12 after isolation. This strong IL-12 response in neonates occurred despite the production of larger amounts of the regulatory cytokine IL-10 and the stronger upregulation of SOCS-1 and SOCS-3 mRNA levels than in adult cells, and was correlated with an increase in p38/MAPK phosphorylation. CONCLUSIONS/SIGNIFICANCE This is the first attempt to decipher the mechanism by which neonatal MLN cells produce more IL-12 than adult cells in response to the TLR8 agonist R-848. CD14(+)CD11b(+)CD40(+) IL-12-producing cells were more numerous in neonate than in adult MLN cells and displayed higher intracellular responsiveness upon R-848 stimulation. This work provides relevant information for future vaccination or immunostimulation strategies targeting neonates.
Collapse
Affiliation(s)
- Stéphanie Ferret-Bernard
- Equipe «Contrôle et Immunologie des Maladies Entériques du Nouveau-Né», UR1282 Infectiologie Animale et Santé Publique, INRA Nouzilly, Nouzilly, France
| | - Aude Remot
- Equipe «Contrôle et Immunologie des Maladies Entériques du Nouveau-Né», UR1282 Infectiologie Animale et Santé Publique, INRA Nouzilly, Nouzilly, France
| | - Sonia Lacroix-Lamandé
- Equipe «Contrôle et Immunologie des Maladies Entériques du Nouveau-Né», UR1282 Infectiologie Animale et Santé Publique, INRA Nouzilly, Nouzilly, France
| | - Coralie Metton
- Equipe «Contrôle et Immunologie des Maladies Entériques du Nouveau-Né», UR1282 Infectiologie Animale et Santé Publique, INRA Nouzilly, Nouzilly, France
| | - Nelly Bernardet
- Equipe «Contrôle et Immunologie des Maladies Entériques du Nouveau-Né», UR1282 Infectiologie Animale et Santé Publique, INRA Nouzilly, Nouzilly, France
| | - Françoise Drouet
- Equipe «Contrôle et Immunologie des Maladies Entériques du Nouveau-Né», UR1282 Infectiologie Animale et Santé Publique, INRA Nouzilly, Nouzilly, France
| | - Fabrice Laurent
- Equipe «Contrôle et Immunologie des Maladies Entériques du Nouveau-Né», UR1282 Infectiologie Animale et Santé Publique, INRA Nouzilly, Nouzilly, France
- * E-mail:
| |
Collapse
|