1
|
Abdellatif AM, Basha WAA. Insights into microstructure and expression of markers of proliferation, apoptosis and T cells in the spleen of cattle egret (Bubulcus ibis). Anat Histol Embryol 2024; 53:e13082. [PMID: 38944689 DOI: 10.1111/ahe.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The spleen is the largest secondary lymphoid organ with significant roles in pathogen clearance. It is involved in several avian diseases. The cattle egret is a wild insectivorous bird of agricultural and socioeconomic importance. Data related to microstructural features of cattle egret spleen are lacking. The present study investigated the gross anatomical, histological and immunohistochemical characteristics of the cattle egret spleen. Proliferation (PCNA and PHH3), apoptosis (cleaved caspase 3, C.CASP3) and T-cell (CD3 and CD8) markers were assessed. Grossly, the spleen appeared brownish red, oval-shaped and located at the oesophago-proventricular junction. Histologically, the spleen was surrounded by a thin capsule sending a number of trabeculae which contained branches of the splenic vessels. The white pulp consisted of the periarteriolar lymphoid sheath and periellipsoidal lymphatic sheath (PELS). The red pulp was formed of sinusoids and cords. The penicillar capillaries, which represent the terminal segments of the splenic arterial tree were highly branched, wrapped by prominent ellipsoids and directly connected to the splenic sinusoids, suggesting a closed type of circulation. Immunohistochemically, proliferating cell nuclear antigen (PCNA)-expressing cells were distributed with high counts throughout the splenic parenchyma, being highest within the splenic cords and PELS. Both PHH3- and C.CASP3-expressing cells revealed a similar pattern to that of PCNA, although with fewer counts. Large numbers of T cells were observed throughout the splenic parenchyma, mainly within the cords, as revealed by CD3 and CD8 immunoreaction. The present study provides a clear insight into the precise structure of the spleen in cattle egrets and thus improves our understanding about birds' immunity.
Collapse
Affiliation(s)
- Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
2
|
Wang C, Liu Y, Yang Y, Teng M, Wan X, Wu Z, Zhang Z. Splenic proteome profiling in response to Marek's disease virus strain GX0101 infection. BMC Vet Res 2024; 20:10. [PMID: 38183097 PMCID: PMC10768084 DOI: 10.1186/s12917-023-03852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Marek's disease virus (MDV) strain GX0101 was the first reported field strain of recombinant gallid herpesvirus type 2 (GaHV-2). However, the splenic proteome of MDV-infected chickens remains unclear. In this study, a total of 28 1-day-old SPF chickens were intraperitoneally injected with chicken embryo fibroblast (CEF) containing 2000 PFU GX0101. Additionally, a control group, consisting of four one-day-old SPF chickens, received intraperitoneal equal doses of CEF. Blood and various tissue samples were collected at different intervals (7, 14, 21, 30, 45, 60, and 90 days post-infection; dpi) for histopathological, real-time PCR, and label-free quantitative analyses. The results showed that the serum expressions of MDV-related genes, meq and gB, peaked at 45 dpi. The heart, liver, and spleen were dissected at 30 and 45 dpi, and their hematoxylin-eosin staining indicated that virus infection compromised the normal organizational structure at 45 dpi. Particularly, the spleen structure was severely damaged, and the lymphocytes in the white medulla were significantly reduced. Furthermore, liquid chromatography-mass spectrometry (LC-MS) and label-free techniques were used to analyze the difference in splenic proteome profiles of the experimental and control groups at 30 and 45 dpi. Proteomic analysis identified 1660 and 1244 differentially expressed proteins (DEPs) at 30 and 40 dpi, respectively, compared with the uninfected spleen tissues. According to GO analysis, these DEPs were involved in processes such as organelle organization, cellular component biogenesis, cellular component assembly, anion binding, small molecule binding, metal ion binding, cation binding, cytosol, nuclear part, etc. Additionally, KEGG analysis indicated that the following pathways were linked to MDV-induced inflammation, apoptosis, and tumor: Wnt, Hippo, AMPK, cAMP, Notch, TGF-β, PI3K-Akt, Rap1, Ras, Calcium, NF-κB, PPAR, cGMP-PKG, Apoptosis, VEGF, mTOR, FoxO, TNF, JAK-STAT, MAPK, Prion disease, T cell receptor, and B cell receptor. We finally screened 674 DEPs that were linked to MDV infection in spleen tissue. This study improves our understanding of the MDV response mechanism in the spleen.
Collapse
Affiliation(s)
- Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yuanzi Liu
- Shaanxi Meili-OH Animal Health Co., Ltd, Xi'an, 712034, PR China
| | - Yuze Yang
- Beijing Animal Husbandry Station, Beijing, 100107, PR China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zixiang Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
3
|
Ju X, Wang Z, Cai D, Bello SF, Nie Q. DNA methylation in poultry: a review. J Anim Sci Biotechnol 2023; 14:138. [PMID: 37925454 PMCID: PMC10625706 DOI: 10.1186/s40104-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023] Open
Abstract
As an important epigenetic modification, DNA methylation is involved in many biological processes such as animal cell differentiation, embryonic development, genomic imprinting and sex chromosome inactivation. As DNA methylation sequencing becomes more sophisticated, it becomes possible to use it to solve more zoological problems. This paper reviews the characteristics of DNA methylation, with emphasis on the research and application of DNA methylation in poultry.
Collapse
Affiliation(s)
- Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Zhijun Wang
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Road, Lin'an, 311300, China
| | - Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Semiu Folaniyi Bello
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
4
|
Horvatić A, Guillemin N, Kaab H, McKeegan D, O'Reilly E, Bain M, Kuleš J, Eckersall PD. Quantitative proteomics using tandem mass tags in relation to the acute phase protein response in chicken challenged with Escherichia coli lipopolysaccharide endotoxin. J Proteomics 2019; 192:64-77. [DOI: 10.1016/j.jprot.2018.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/31/2018] [Accepted: 08/11/2018] [Indexed: 12/12/2022]
|
5
|
Pauker VI, Bertzbach LD, Hohmann A, Kheimar A, Teifke JP, Mettenleiter TC, Karger A, Kaufer BB. Imaging Mass Spectrometry and Proteome Analysis of Marek's Disease Virus-Induced Tumors. mSphere 2019; 4:e00569-18. [PMID: 30651403 PMCID: PMC6336081 DOI: 10.1128/msphere.00569-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
The highly oncogenic alphaherpesvirus Marek's disease virus (MDV) causes immense economic losses in the poultry industry. MDV induces a variety of symptoms in infected chickens, including neurological disorders and immunosuppression. Most notably, MDV induces transformation of lymphocytes, leading to T cell lymphomas in visceral organs with a mortality of up to 100%. While several factors involved in MDV tumorigenesis have been identified, the transformation process and tumor composition remain poorly understood. Here we developed an imaging mass spectrometry (IMS) approach that allows sensitive visualization of MDV-induced lymphoma with a specific mass profile and precise differentiation from the surrounding tissue. To identify potential tumor markers in tumors derived from a very virulent wild-type virus and a telomerase RNA-deficient mutant, we performed laser capture microdissection (LCM) and thereby obtained tumor samples with no or minimal contamination from surrounding nontumor tissue. The proteomes of the LCM samples were subsequently analyzed by quantitative mass spectrometry based on stable isotope labeling. Several proteins, like interferon gamma-inducible protein 30 and a 70-kDa heat shock protein, were identified that are differentially expressed in tumor tissue compared to surrounding tissue and naive T cells. Taken together, our results demonstrate for the first time that MDV-induced tumors can be visualized using IMS, and we identified potential MDV tumor markers by analyzing the proteomes of virus-induced tumors.IMPORTANCE Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and causes the most frequent clinically diagnosed cancer in the animal kingdom. Not only is MDV an important pathogen that threatens the poultry industry but it is also used as a natural virus-host model for herpesvirus-induced tumor formation. In order to visualize MDV-induced lymphoma and to identify potential biomarkers in an unbiased approach, we performed imaging mass spectrometry (IMS) and noncontact laser capture microdissection. This study provides a first description of the visualization of MDV-induced tumors by IMS that could be applied also for diagnostic purposes. In addition, we identified and validated potential biomarkers for MDV-induced tumors that could provide the basis for future research on pathogenesis and tumorigenesis of this malignancy.
Collapse
Affiliation(s)
- V I Pauker
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - L D Bertzbach
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - A Hohmann
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - A Kheimar
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - J P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - T C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - A Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - B B Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Xu Q, Gu T, Liu R, Cao Z, Zhang Y, Chen Y, Wu N, Chen G. FTH1 expression is affected by promoter polymorphism and not DNA methylation in response to DHV-1 challenge in duck. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:195-202. [PMID: 29051032 DOI: 10.1016/j.dci.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Ferritin heavy polypeptide 1 (FTH1) plays a pivotal role in response to viral infections. FTH1 expression is modulated by various pathogens, but the regulatory mechanisms are unknown. We firstly construct duck hepatitis virus 1 (DHV-1) infection model, including morbid ducklings, non-morbid ducklings and control ducklings. Then the mRNA expression of duck FTH1 (duFTH1) was measured mRNA expression of duck FTH1 (duFTH1) in the liver and spleen after duck hepatitis virus 1 (DHV-1) infection using quantitative polymerase chain reaction (qPCR) and found that duFTH1 mRNA was down-regulated significantly in morbid ducklings (liver, P < 0.01; spleen, P < 0.05) compared with the control ducklings. We also found that duFTH1 expression was significantly higher in the spleen (P < 0.01) and liver (P < 0.05) of non-morbid ducklings than in morbid ducklings. Moreover, DNA methylation of the duFTH1 promoter was examined by bisulfite sequencing (BSP) and we found that the duFTH1 promoter was hypomethylated, the relative methylation was only 5.9% and 2.0% in the morbid ducklings and non-morbid ducklings, respectively. The promoter contained a -55 C/T mutation in 75% of non-morbid ducklings, and this polymorphism affected promoter activity. Further analysis suggested that this mutation altered the binding site of the transcription factor NRF1. Binding of NRF1 to the FTH1 promoter was confirmed by electrophoretic mobility shift assay (EMSA) analysis. Thus, our findings revealed the NRF1 was a negative regulator, and lossed of binding of NRF1 to duFTH1 promoter due to -55C/T mutation enhances duFTH1 expression in non-morbid ducks, which provided molecular insights into the effect of duFTH1 expression via promoter polymorphisms, but not DNA methylation, in response to DHV-1 challenge.
Collapse
Affiliation(s)
- Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ran Liu
- Jining Animal Husbandry and Veterinary Bureau, Jining, shandong, China
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ningzhao Wu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
7
|
Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R. Animal board invited review: advances in proteomics for animal and food sciences. Animal 2015; 9:1-17. [PMID: 25359324 PMCID: PMC4301196 DOI: 10.1017/s1751731114002602] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023] Open
Abstract
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.
Collapse
Affiliation(s)
- A. M. Almeida
- Instituto de Investigação Científica Tropical, CVZ – Centro de Veterinária e Zootecnia, Av. Univ. Técnica, 1300-477 Lisboa, Portugal
- CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, 1300-477 Lisboa, Portugal
- ITQB – Instituto de Tecnologia Química e Biológica da UNL, 2780-157 Oeiras, Portugal
- IBET – Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona,08193 Cerdanyola del Vallès, Spain
| | - E. Bendixen
- Institute of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M. Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho-73 Kosice, Slovakia
| | - F. Ceciliani
- Department of Veterinary Science and Public Health, Università di Milano, Via Celoria 10, 20133 Milano, Italy
| | - S. Cristobal
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
- IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country,48940 Leioa, Bizkaia, Spain
| | - P. D. Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - K. Hollung
- Nofima AS, PO Box 210, NO-1431 Aas, Norway
| | - F. Lisacek
- Swiss Institute of Bioinformatics, CMU – Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - G. Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - M. McLaughlin
- Division of Veterinary Bioscience, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - I. Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - J. E. Nally
- National Animal Disease Center, Bacterial Diseases of Livestock Research Unit, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - J. Plowman
- Food & Bio-Based Products, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - J. Renaut
- Department of Environment and Agrobiotechnologies, Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - P. Rodrigues
- CCMAR – Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P. Roncada
- Department of Veterinary Science and Public Health, Istituto Sperimentale Italiano L. Spallanzani Milano, University of Milano, 20133 Milano, Italy
| | - J. Staric
- Clinic for Ruminants with Ambulatory Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - R. Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Zhang J, Hu YH, Xiao ZZ, Sun L. Megalocytivirus-induced proteins of turbot (Scophthalmus maximus): identification and antiviral potential. J Proteomics 2013; 91:430-43. [PMID: 23933595 DOI: 10.1016/j.jprot.2013.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Megalocytivirus is an important fish pathogen with a broad host range that includes turbot. In this study, proteomic analysis was conducted to examine turbot proteins modulated in expression by megalocytivirus infection. Thirty five proteins from spleen were identified to be differentially expressed at 2days post-viral infection (dpi) and 7dpi. Three upregulated proteins, i.e. heat shock protein 70 (Hsp70), Mx protein, and natural killer enhancing factor (NKEF), were further analyzed for potential antiviral effect. For this purpose, turbot were administered separately with the plasmids pHsp70, pMx, and pNKEF, which express Hsp70, Mx, and NKEF respectively, before megalocytivirus infection. Viral dissemination and propagation in spleen were subsequently determined. The results showed that the viral loads in fish administered with pNKEF were significantly reduced. To examine the potential of Hsp70, Mx, and NKEF as immunological adjuvant, turbot were immunized with a DNA vaccine in the presence of pHsp70, pMx, or pNKEF. Subsequent analysis showed that the presence of pNKEF and pHsp70, but not pMx, significantly reduced viral infection and enhanced fish survival. Taken together, these results indicate that NKEF exhibits antiviral property against megalocytivirus, and that both NKEF and Hsp70 may be used in DNA vaccine-based control of megalocytivirus infection. BIOLOGICAL SIGNIFICANCE This study provides the first proteomic picture of turbot in response to megalocytivirus infection. We demonstrated that megalocytivirus infection modulates the expression of turbot proteins associated with various cellular functions, and that one of the upregulated proteins, NKEF, exhibits antiviral effect when overexpressed in vivo, while another upregulated protein, Hsp70, exhibits adjuvant effect when co-immunized with a DNA vaccine. These results add molecular insights into turbot immune response induced by megalocytivirus and provide candidate proteins with application potentials in the control of megalocytivirus-associated disease.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
9
|
|
10
|
Hu X, Qin A, Qian K, Shao H, Yu C, Xu W, Miao J. Analysis of protein expression profiles in the thymus of chickens infected with Marek's disease virus. Virol J 2012; 9:256. [PMID: 23116199 PMCID: PMC3545960 DOI: 10.1186/1743-422x-9-256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 10/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV) is a highly cell-associated oncogenic α-herpesvirus that causes a disease characterised by T-cell lymphomas. The pathogenesis, or the nature of the interaction of the virus and the host, in the thymus are still unclear. RESULTS In this study, we identified 119 differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry from the thymuses of chickens infected with the RB1B strain of MDV. These differentially expressed proteins were found mainly at 21, 28 and 35 days post-infection. More than 20 of the differentially expressed proteins were directly associated with immunity, apoptosis, tumour development and viral infection and replication. Five of these proteins, ANXA1, MIF, NPM1, OP18 and VIM, were further confirmed using real-time PCR. The functional associations and roles in oncogenesis of these proteins are discussed. CONCLUSIONS This work provides a proteomic profiling of host responses to MDV in the thymus of chickens and further characterises proteins related to the mechanisms of MDV oncogenesis and pathogenesis.
Collapse
Affiliation(s)
- Xuming Hu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No,12 East Wenhui Road, Yangzhou, Jiangsu 225009, P,R,China
| | | | | | | | | | | | | |
Collapse
|
11
|
Zheng J, Sugrue RJ, Tang K. Mass spectrometry based proteomic studies on viruses and hosts--a review. Anal Chim Acta 2011; 702:149-59. [PMID: 21839192 PMCID: PMC7094357 DOI: 10.1016/j.aca.2011.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023]
Abstract
In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus-host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein-protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and plant have been studied using this approach. As more virus and host genomes are being sequenced, MS-based proteomics is becoming an indispensable tool for virology. In this paper, we provide a brief review of the current technologies and their applications in studying selected viruses and hosts.
Collapse
Affiliation(s)
- Jie Zheng
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Richard J. Sugrue
- Division of Molecular and Cell Biology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kai Tang
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
12
|
Chen C, Li H, Xie Q, Shang H, Ji J, Bai S, Cao Y, Ma Y, Bi Y. Transcriptional profiling of host gene expression in chicken liver tissues infected with oncogenic Marek's disease virus. J Gen Virol 2011; 92:2724-2733. [PMID: 21832007 DOI: 10.1099/vir.0.034066-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Marek's disease virus (MDV), one of the most potent oncogenic herpesviruses, leads to highly contagious immunosuppressive and neoplastic disease in susceptible chickens. Previous studies mainly focused on the roles of host genes modulated by MDV in the virological rather than the neoplastic stage of disease. To investigate the molecular mechanisms of tumorigenesis in Marek's disease further, a microarray analysis with Affymetrix Gene-Chip Chicken Genome Arrays was performed in a non-lymphoid tissue liver during the neoplastic stage. Of the 32 773 chicken transcriptions arrayed on a chip, 269 genes were significantly differentially expressed during the neoplastic stage caused by MDV infection (upregulated, 175; downregulated, 94). The altered genomic expression of 15 randomly selected genes was confirmed by real-time RT-PCR. Biological functions and pathways of the group of 269 differentially expressed genes were analysed by using a bioinformatics tool (ipa, Ingenuity Pathway Analysis). The results revealed that 19 possible gene networks with intermolecular connections and 22 significant metabolic and signalling pathways (P≤0.05) among 137 differentially expressed genes. These 137 genes were classified into a number of functional groups that included genetic disorder, cancer, cellular growth and proliferation, and cell death. In summary, the investigation of global host-gene expression, providing the biological functions of differentially expressed genes in lymphoid tumours of the liver in response to MDV infections, may contribute to a basic understanding of the molecular mechanisms involved in tumorigenesis following MDV infection.
Collapse
Affiliation(s)
- Cuiying Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hongmei Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Huiqin Shang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Ji
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Siwei Bai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yulin Ma
- Department of Animal and Food Science, University of Kentucky, Lexington, KY 40546, USA
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
13
|
Xiong XP, Dong CF, Xu X, Weng SP, Liu ZY, He JG. Proteomic analysis of zebrafish (Danio rerio) infected with infectious spleen and kidney necrosis virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:431-440. [PMID: 21075138 DOI: 10.1016/j.dci.2010.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/07/2010] [Accepted: 11/07/2010] [Indexed: 05/30/2023]
Abstract
Iridovirus infections remain a severe problem in aquaculture industries worldwide. Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytovirus in the family Iridoviridae, has caused significant economic losses among freshwater fish in different Asian countries. To investigate the molecular mechanism of iridoviral pathogenesis, we analyzed the differential proteome from the spleen of ISKNV-infected zebrafish through two-dimensional gel electrophoresis (2-DE). Mass spectrometry revealed 35 altered cellular protein spots, including 15 upregulated proteins and 20 downregulated proteins at five days post-infection. The altered host proteins were classified into 13 categories based on their biological processes: cytoskeletal protein, stress response, lipoprotein metabolism, ubiquitin-proteasome pathway, carbohydrate metabolism, signal transduction, proteolysis, ion binding, transport, metabolic process, catabolic process, biosynthesis, and oxidation reduction. Moreover, 14 corresponding genes of the differentially expressed proteins were validated by RT-PCR. Western blot analysis further demonstrated the changes in α-tubulin, β-actin, HSC70, and major capsid protein (MCP) during infection. β-Actin was selected for further study via co-immunoprecipitation analyses, which confirmed that the cellular β-actin interacts with the MCP protein of ISKNV in the infected zebrafish. These findings provide insight into the interactions between iridoviruses (especially ISKNV) and host, as well as the mechanism and pathogenesis of ISKNV infections.
Collapse
Affiliation(s)
- Xiao-Peng Xiong
- State Key Laboratory of Biocontrol/MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Raoul K. Boughton
- Avian Ecology, Archbold Biological Station, 123 Main Drive, Venus, Florida, USA
| | - Gerrit Joop
- Institute of Integrative Biology,
Experimental Ecology, ETH Zürich, CH‐8092 Zürich, Switzerland
| | - Sophie A.O. Armitage
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D‐48149 Münster, Germany
| |
Collapse
|
15
|
Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens. Vet Immunol Immunopathol 2010; 138:292-302. [PMID: 21067815 DOI: 10.1016/j.vetimm.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
16
|
Lu Z, Qin A, Qian K, Chen X, Jin W, Zhu Y, Eltahir Y. Proteomic analysis of the host response in the bursa of Fabricius of chickens infected with Marek's disease virus. Virus Res 2010; 153:250-7. [PMID: 20723570 DOI: 10.1016/j.virusres.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/07/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|