1
|
Tiritelli R, Cilia G, Gómez-Moracho T. The trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites in bees: A review on their environmental circulation, impacts and implications. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100106. [PMID: 39925747 PMCID: PMC11803887 DOI: 10.1016/j.cris.2025.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Trypanosomatids, obligate parasites capable of impacting insects' hindgut, have recently obtained considerable attention, especially about their effects on bees. While Crithidia mellificae and C. bombi were initially discovered and studied in honey bees and bumblebees, respectively, molecular techniques revealed Lotmaria passim as the predominant trypanosomatid in honey bees globally. New species like C. expoeki and C. acanthocephali have also been identified. These parasites have complex life cycles involving various host developmental stages and are transmitted horizontally within and outside colonies through direct contact, oral interactions, and contaminating flowers with infected faeces. The impact of trypanosomatids on honey bee colony health remains uncertain. In bumblebees, studies highlighted the widespread presence of C. bombi, affecting colony and individual fitness, development, and foraging behaviour. Bee trypanosomatids have been detected in various species, including other insects, and mammals, suggesting diverse epidemiological pathways and potential effects that warrant further investigation. Biotic factors, including co-infections, gut microbiota, food contamination, and abiotic factors like environmental conditions, pesticides, and urbanization, play crucial roles in infection dynamics. This review aimed to summarise key research on trypanosomatid transmission and infection in both managed and wild bees, focusing on the influence of biotic and abiotic factors. The work highlights significant gaps in current knowledge and provides a valuable foundation for future studies. Understanding the pathogenicity and infection dynamics of trypanosomatids, along with the impact of environmental factors, is essential for developing effective conservation strategies that support pollinator health and overall ecosystem resilience.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Tamara Gómez-Moracho
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Blasco-Lavilla N, López-López A, De la Rúa P, Barribeau SM. Infection by Crithidia bombi increases relative abundance of Lactobacillus spp. in the gut of Bombus terrestris. Mol Ecol 2024; 33:e17478. [PMID: 39075965 DOI: 10.1111/mec.17478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Gut microbial communities confer protection against natural pathogens in important pollinators from the genera Bombus and Apis. In commercial species B. terrestris and B. impatiens, the microbiota increases their resistance to the common and virulent trypanosomatid parasite Crithidia bombi. However, the mechanisms by which gut microorganisms protect the host are still unknown. Here, we test two hypotheses: microbiota protect the host (1) through stimulation of its immune response or protection of the gut epithelium and (2) by competing for resources with the parasite inside the gut. To test them, we reduced the microbiota of workers and then rescued the microbial community by feeding them with microbiota supplements. We then exposed them to an infectious dose of C. bombi and characterised gene expression and gut microbiota composition. We examined the expression of three antimicrobial peptide genes and Mucin-5AC, a gene with a putative role in gut epithelium protection, using qPCR. Although a protective effect against C. bombi was observed in bumblebees with supplemented microbiota, we did not observe an effect of the microbiota on gene expression that could explain alone the protective effect observed. On the other hand, we found an increased relative abundance of Lactobacillus bacteria within the gut of infected workers and a negative correlation of this genus with Gilliamella and Snodgrassella genera. Therefore, our results point to a displacement of bumblebee endosymbionts by C. bombi that might be caused by competition for space and nutrients between the parasite and the microbiota within the gut.
Collapse
Affiliation(s)
- Nuria Blasco-Lavilla
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Department of Ecology, Evolution and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alejandro López-López
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Seth Michael Barribeau
- Department of Ecology, Evolution and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Wolmuth-Gordon HS, Sharmin A, Brown MJF. Methods matter: the influence of method on infection estimates of the bumblebee parasite Crithidia bombi. Parasitology 2023; 150:1236-1241. [PMID: 37859420 PMCID: PMC10941228 DOI: 10.1017/s0031182023001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The bumblebee gut parasite, Crithidia bombi, is widespread and prevalent in the field. Its interaction with Bombus spp. is a well-established epidemiological model. It is spread faecal-orally between colonies via the shared use of flowers when foraging. Accurately measuring the level of infection in bumblebees is important for assessing its distribution in the field, and also when conducting epidemiological experiments. Studies generally use 1 of 2 methods for measuring infection. One approach measures infection in faeces whereas the other method measures infection in guts. We tested whether the method of measuring infection affected the estimation of infection. Bumblebees were inoculated with a standardized inoculum and infection was measured 1 week later using either the faecal or gut method. We found that when the gut method was used to measure infection intensity estimates were significantly different to and approximately double those from the faecal method. These results have implications for the interpretation of previous study results and for the planning of future studies. Given the importance of bumblebees as pollinators, the impact of C. bombi on bumblebee health, and its use as an epidemiological model, we call on researchers to move towards consistent quantification of infections to enable future comparisons and meta-analyses of studies.
Collapse
|
4
|
Barranco-Gómez O, De Paula JC, Parada JS, Gómez-Moracho T, Marfil AV, Zafra M, Orantes Bermejo FJ, Osuna A, De Pablos LM. Development of a TaqMan qPCR assay for trypanosomatid multi-species detection and quantification in insects. Parasit Vectors 2023; 16:69. [PMID: 36788540 PMCID: PMC9930332 DOI: 10.1186/s13071-023-05687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Trypanosomatid parasites are widely distributed in nature and can have a monoxenous or dixenous life-cycle. These parasites thrive in a wide number of insect orders, some of which have an important economic and environmental value, such as bees. The objective of this study was to develop a robust and sensitive real-time quantitative PCR (qPCR) assay for detecting trypanosomatid parasites in any type of parasitized insect sample. METHODS A TaqMan qPCR assay based on a trypanosomatid-conserved region of the α-tubulin gene was standardized and evaluated. The limits of detection, sensitivity and versatility of the α-tubulin TaqMan assay were tested and validated using field samples of honeybee workers, wild bees, bumblebees and grasshoppers, as well as in the human infective trypanosomatid Leishmania major. RESULTS The assay showed a detection limit of 1 parasite equivalent/µl and successfully detected trypanosomatids in 10 different hosts belonging to the insect orders Hymenoptera and Orthoptera. The methodology was also tested using honeybee samples from four apiaries (n = 224 worker honeybees) located in the Alpujarra region (Granada, Spain). Trypanosomatids were detected in 2.7% of the honeybees, with an intra-colony prevalence of 0% to 13%. Parasite loads in the four different classes of insects ranged from 40.6 up to 1.1 × 108 cell equivalents per host. CONCLUSIONS These results show that the α-tubulin TaqMan qPCR assay described here is a versatile diagnostic tool for the accurate detection and quantification of trypanosomatids in a wide range of environmental settings.
Collapse
Affiliation(s)
- Olga Barranco-Gómez
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain.,Institute of Biotechnology, University of Granada, Granada, Spain
| | - Jessica Carreira De Paula
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain.,Institute of Biotechnology, University of Granada, Granada, Spain
| | - Jennifer Solano Parada
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain.,Institute of Biotechnology, University of Granada, Granada, Spain
| | - Tamara Gómez-Moracho
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain.,Institute of Biotechnology, University of Granada, Granada, Spain
| | - Ana Vic Marfil
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | - María Zafra
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | | | - Antonio Osuna
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain.,Institute of Biotechnology, University of Granada, Granada, Spain
| | - Luis Miguel De Pablos
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain. .,Institute of Biotechnology, University of Granada, Granada, Spain.
| |
Collapse
|
5
|
Barribeau SM, Schmid-Hempel P, Walser JC, Zoller S, Berchtold M, Schmid-Hempel R, Zemp N. Genetic variation and microbiota in bumble bees cross-infected by different strains of C. bombi. PLoS One 2022; 17:e0277041. [PMID: 36441679 PMCID: PMC9704641 DOI: 10.1371/journal.pone.0277041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The bumblebee Bombus terrestris is commonly infected by a trypanosomatid gut parasite Crithidia bombi. This system shows a striking degree of genetic specificity where host genotypes are susceptible to different genotypes of parasite. To a degree, variation in host gene expression underlies these differences, however, the effects of standing genetic variation has not yet been explored. Here we report on an extensive experiment where workers of twenty colonies of B. terrestris were each infected by one of twenty strains of C. bombi. To elucidate the host's genetic bases of susceptibility to infection (measured as infection intensity), we used a low-coverage (~2 x) genome-wide association study (GWAS), based on angsd, and a standard high-coverage (~15x) GWAS (with a reduced set from a 8 x 8 interaction matrix, selected from the full set of twenty). The results from the low-coverage approach remained ambiguous. The high-coverage approach suggested potentially relevant genetic variation in cell surface and adhesion processes. In particular, mucin, a surface mucoglycoprotein, potentially affecting parasite binding to the host gut epithelia, emerged as a candidate. Sequencing the gut microbial community of the same bees showed that the abundance of bacterial taxa, such as Gilliamella, Snodgrassella, or Lactobacillus, differed between 'susceptible' and 'resistant' microbiota, in line with earlier studies. Our study suggests that the constitutive microbiota and binding processes at the cell surface are candidates to affect infection intensity after the first response (captured by gene expression) has run its course. We also note that a low-coverage approach may not be powerful enough to analyse such complex traits. Furthermore, testing large interactions matrices (as with the full 20 x 20 combinations) for the effect of interaction terms on infection intensity seems to blur the specific host x parasite interaction effects, likely because the outcome of an infection is a highly non-linear process dominated by variation in individually different pathways of host defence (immune) responses.
Collapse
Affiliation(s)
- Seth M. Barribeau
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| | | | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Martina Berchtold
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | | | - Niklaus Zemp
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| |
Collapse
|
6
|
Michalczyk M, Sokół R. Detection of Lotmaria passim and Crithidia mellificae in Selected Bumblebee Species. Pathogens 2022; 11:pathogens11091053. [PMID: 36145485 PMCID: PMC9504464 DOI: 10.3390/pathogens11091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Bumblebees (Bombus spp.) are an essential element of the ecosystem and the global economy. They are valued pollinators in many countries around the word. Unfortunately, there has been a decline in the bumblebee population, which is attributed to, among others, pathogens and reduced access to food due to the loss of natural nesting sites. Lotmaria passim and Crithidia mellificae, protozoan pathogens of the family Trypanosomatidae, commonly infect bumblebees, including in Poland. In this study, a Polish population of bumblebees was screened for L. passim and C. mellificae. The experiment was performed on 13 adult bumblebees belonging to 4 species: B. lapidarius, B. lucorum, B. pascuorum, and B. terrestris. Protozoa of the family Trypanosomatidae were identified by PCR. Only L. passim was identified in one B. pascuorum individual. Further research is needed to confirm the effect of concurrent pathogens on the decline of bumblebee populations.
Collapse
|
7
|
Martin VN, Schaeffer RN, Fukami T. Potential effects of nectar microbes on pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210155. [PMID: 35491594 DOI: 10.1098/rstb.2021.0155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant-microbe-pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
| | | | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
No effect of dual exposure to sulfoxaflor and a trypanosome parasite on bumblebee olfactory learning. Sci Rep 2022; 12:8611. [PMID: 35597818 PMCID: PMC9124203 DOI: 10.1038/s41598-022-12714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Bees are important pollinators in wild and agricultural ecosystems, and understanding the factors driving their global declines is key to maintaining these pollination services. Learning, which has been a focus of previous ecotoxicological studies in bees, may play a key role in driving colony fitness. Here we move beyond the standard single-stressor approach to ask how multiple stressors, an agrochemical (sulfoxaflor, a relatively new insecticide) and a parasite (Crithidia bombi, a prevalent gut parasite of bumblebees), impact learning in the bumblebee Bombus terrestris. We developed a modified version of the classic proboscis extension reflex assay to assess the combined effects of acute oral sulfoxaflor exposure and infection by C. bombi on olfactory learning of bumblebee workers. We found no evidence that either sulfoxaflor, C. bombi, or their combination had any significant effect on bumblebee olfactory learning, despite their known negative impacts on other aspects of bumblebee health. This suggests that losses in cognitive ability, as measured here, are unlikely to explain the impacts of sulfoxaflor and its interactions with other stressors on bumblebees. Our novel methodology provides a model system within which to test interactive effects of other key stressors on bee health.
Collapse
|
9
|
Giacomini JJ, Moore N, Adler LS, Irwin RE. Sunflower pollen induces rapid excretion in bumble bees: Implications for host-pathogen interactions. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104356. [PMID: 35016876 DOI: 10.1016/j.jinsphys.2022.104356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Host diet can have a profound effect on host-pathogen interactions, including indirect effects on pathogens mediated through host physiology. In bumble bees (Bombus impatiens), the consumption of sunflower (Helianthus annuus) pollen dramatically reduces infection by the gut protozoan pathogen Crithidia bombi. One hypothesis for the medicinal effect of sunflower pollen is that consumption changes host gut physiological function, causing rapid excretion that flushes C. bombi from the system. We tested the effect of pollen diet and C. bombi infection on gut transit properties using a 2x2 factorial experiment in which bees were infected with C. bombi or not and fed sunflower or wildflower pollen diet. We measured several non-mutually exclusive physiological processes that underlie the insect excretory system, including gut transit time, bi-hourly excretion rate, the total number of excretion events and the total volume of excrement. Sunflower pollen significantly reduced gut transit time in uninfected bees, and increased the total number of excretion events and volume of excrement by 66 % and 68 %, respectively, in both infected and uninfected bees. Here we show that a sunflower pollen diet can affect host physiology gut function, causing more rapid and greater excretion. These results provide important insight into a mechanism that could underlie the medicinal effect of sunflower pollen for bumble bees.
Collapse
Affiliation(s)
- Jonathan J Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695 USA.
| | - Nicholas Moore
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695 USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
10
|
Davis AE, Deutsch KR, Torres AM, Mata Loya MJ, Cody LV, Harte E, Sossa D, Muñiz PA, Ng WH, McArt SH. Eristalis flower flies can be mechanical vectors of the common trypanosome bee parasite, Crithidia bombi. Sci Rep 2021; 11:15852. [PMID: 34349198 PMCID: PMC8338921 DOI: 10.1038/s41598-021-95323-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Flowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that may be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees, Crithidia bombi, can infect Eristalis tenax flower flies. We also investigated the potential for two confirmed solitary bee hosts of C. bombi, Osmia lignaria and Megachile rotundata, as well as two flower fly species, Eristalis arbustorum and E. tenax, to transmit the parasite at flowers. We found that C. bombi did not replicate (i.e., cause an active infection) in E. tenax flies. However, 93% of inoculated flies defecated live C. bombi in their first fecal event, and all contaminated fecal events contained C. bombi at concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate that Eristalis flower flies are not hosts of C. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or dilute C. bombi in bee communities, though current theoretical work suggests that unless present in large populations, the effects of mechanical vectors will be smaller than hosts.
Collapse
Affiliation(s)
- Abby E Davis
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Environmental and Rural Science, The University of New England, Armidale, NSW, 2351, Australia.
| | - Kaitlin R Deutsch
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alondra M Torres
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Mesly J Mata Loya
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren V Cody
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Emma Harte
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - David Sossa
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Paige A Muñiz
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Wee Hao Ng
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Occurrence of bee viruses and pathogens associated with emerging infectious diseases in native and non-native bumble bees in southern Chile. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02428-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Botías C, Jones JC, Pamminger T, Bartomeus I, Hughes WOH, Goulson D. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J Anim Ecol 2020; 90:415-431. [PMID: 33084067 DOI: 10.1111/1365-2656.13375] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Bumblebees are constantly exposed to a wide range of biotic and abiotic stresses which they must defend themselves against to survive. Pathogens and pesticides represent important stressors that influence bumblebee health, both when acting alone or in combination. To better understand bumblebee health, we need to investigate how these factors interact, yet experimental studies to date generally focus on only one or two stressors. The aim of this study is to evaluate how combined effects of four important stressors (the gut parasite Nosema ceranae, the neonicotinoid insecticide thiamethoxam, the pyrethroid insecticide cypermethrin and the EBI fungicide tebuconazole) interact to affect bumblebees at the individual and colony levels. We established seven treatment groups of colonies that we pulse exposed to different combinations of these stressors for 2 weeks under laboratory conditions. Colonies were subsequently placed in the field for 7 weeks to evaluate the effect of treatments on the prevalence of N. ceranae in inoculated bumblebees, expression levels of immunity and detoxification-related genes, food collection, weight gain, worker and male numbers, and production of worker brood and reproductives. Exposure to pesticide mixtures reduced food collection by bumblebees. All immunity-related genes were upregulated in the bumblebees inoculated with N. ceranae when they had not been exposed to pesticide mixtures, and bumblebees exposed to the fungicide and the pyrethroid were less likely to have N. ceranae. Combined exposure to the three-pesticide mixture and N. ceranae reduced bumblebee colony growth, and all treatments had detrimental effects on brood production. The groups exposed to the neonicotinoid insecticide produced 40%-76% fewer queens than control colonies. Our findings show that exposure to combinations of stressors that bumblebees frequently come into contact with have detrimental effects on colony health and performance and could therefore have an impact at the population level. These results also have significant implications for current practices and policies for pesticide risk assessment and use as the combinations tested here are frequently applied simultaneously in the field. Understanding the interactions between different stressors will be crucial for improving our ability to manage bee populations and for ensuring pollination services into the future.
Collapse
Affiliation(s)
- Cristina Botías
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo, Guadalajara, Spain.,School of Life Sciences, University of Sussex, Brighton, UK
| | - Julia C Jones
- School of Life Sciences, University of Sussex, Brighton, UK.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Tobias Pamminger
- School of Life Sciences, University of Sussex, Brighton, UK.,BASF SE, APD/EE-Li 425, Limburgerhof, Germany
| | - Ignasi Bartomeus
- Estación Biológica de Doñana (EBD-CSIC), Dpto. Ecología Integrativa, Sevilla, Spain
| | | | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
13
|
Zhao X, Zhang J, Yang J, Niu N, Zhang J, Yang Q. Mucin family genes are essential for the growth and development of the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103404. [PMID: 32428561 DOI: 10.1016/j.ibmb.2020.103404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Mucins are highly glycosylated proteins that are characterized by a higher proportion of threonine, serine, and proline residues in their sequences. Although mucins in humans and vertebrates have been implicated in many biological processes, their roles in growth and development in invertebrates such as in insects remain largely unknown. Based on bioinformatic analyses, we identified eight mucin or mucin-like genes in the migratory locust, Locusta migratoria. RNA interference against these genes demonstrated that three Lmmucin genes were essential for the survival of L. migratoria nymphs, and one Lmmucin was required for adult wing development. Indeed, knockdown of Lmhemomucin and Lmmucin-12 caused lethal phenotypes, with an observed defect of the gastric caeca in which cells were detached from cell junctions. Deficiency of LmIIM3 resulted in lethality of nymphs, with defects of the peritrophic membrane in midgut. Suppression of Lmmucin-17 greatly impaired the structural integrity of the wing cuticle during nymph-adult molting. The present study revealed the significance of mucin and mucin-like genes in insect growth and development, using the orthopteran insect locust as a model.
Collapse
Affiliation(s)
- Xiaoming Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jing Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jiapeng Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
14
|
Liu Q, Lei J, Darby AC, Kadowaki T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol 2020; 3:51. [PMID: 32005933 PMCID: PMC6994608 DOI: 10.1038/s42003-020-0775-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
It is still not understood how honey bee parasite changes the gene expression to adapt to the host environment and how the host simultaneously responds to the parasite infection by modifying its own gene expression. To address this question, we studied a trypanosomatid, Lotmaria passim, which can be cultured in medium and inhabit the honey bee hindgut. We found that L. passim decreases mRNAs associated with protein translation, glycolysis, detoxification of radical oxygen species, and kinetoplast respiratory chain to adapt to the anaerobic and nutritionally poor honey bee hindgut during the infection. After the long term infection, the host appears to be in poor nutritional status, indicated by the increase and decrease of take-out and vitellogenin mRNAs, respectively. Simultaneous gene expression profiling of L. passim and honey bee during infection by dual RNA-seq provided insight into how both parasite and host modify their gene expressions.
Collapse
Affiliation(s)
- Qiushi Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Jing Lei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
15
|
Liu Q, Lei J, Kadowaki T. Gene Disruption of Honey Bee Trypanosomatid Parasite, Lotmaria passim, by CRISPR/Cas9 System. Front Cell Infect Microbiol 2019; 9:126. [PMID: 31080782 PMCID: PMC6497781 DOI: 10.3389/fcimb.2019.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Two trypanosomatid species, Lotmaria passim and Crithidia mellificae, have been shown to parasitize honey bees to date. L. passim appears to be more prevalent than C. mellificae and specifically infects the honey bee hindgut. Although the genomic DNA has been sequenced, the effects of infection on honey bee health and colony are poorly understood. To identify the genes that are important for infecting honey bees and to understand their functions, we applied the CRISPR/Cas9 system to establish a method to manipulate L. passim genes. By electroporation of plasmid DNA and subsequent selection by drug, we first established an L. passim clone expressing tdTomato or Cas9. We also successfully disrupted the endogenous miltefosine transporter and tyrosine aminotransferase genes by replacement with drug (hygromycin) resistant gene using the CRISPR/Cas9-induced homology-directed repair pathway. The L. passim clone expressing fluorescent marker, as well as the simple method for editing specific genes, could become useful approaches to understand the underlying mechanisms of honey bee-trypanosomatid parasite interactions.
Collapse
Affiliation(s)
| | | | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
16
|
Immune-cognitive system connectivity reduces bumblebee foraging success in complex multisensory floral environments. Sci Rep 2018; 8:5953. [PMID: 29654316 PMCID: PMC5899130 DOI: 10.1038/s41598-018-24372-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Bumblebees are declining at alarming rate worldwide, posing a significant threat to the function and diversity of temperate ecosystems. These declines have been attributed, in part, to the direct effect of specific pathogens on bumblebee survival. However, pathogens may also have a negative impact on host populations indirectly through immune-induced cognitive deficits in infected individuals. To gain greater insight into mechanisms and potential conservation implications of such 'immune-brain crosstalk' in bumblebees, we non-pathogenetically activated humoral and cellular immune pathways in individuals and then tested for long-term reductions in cognitive performance and foraging proficiency. We show that chronic activation of humoral, but not a cellular, immune pathways and effectors in foragers significantly reduces their ability to flexibly and efficiently harvest resources in multi-sensory floral environments for at least 7 days post-treatment. Humoral defense responses thus have the potential to confer significant foraging costs to bumblebee foragers over timeframes that would negatively impact colony growth and reproductive output under natural conditions. Our findings indicate that fitness effects of immune-brain crosstalk should be considered before attributing wild bumblebee decline to a particular pathogen species.
Collapse
|
17
|
Omar R, Igoli JO, Zhang T, Gray AI, Ebiloma GU, Clements CJ, Fearnley J, Edrada Ebel R, Paget T, de Koning HP, Watson DG. The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei. Sci Rep 2017; 7:923. [PMID: 28424496 PMCID: PMC5430459 DOI: 10.1038/s41598-017-01038-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b. brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b. brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS2 data, could be correlated to denticulatain isomers in the extracts.
Collapse
Affiliation(s)
- Ruwida Omar
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - John O Igoli
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK.,Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi, Nigeria
| | - Tong Zhang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | - Alexander I Gray
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Carol J Clements
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | | | - RuAngeli Edrada Ebel
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Tim Paget
- Department of Pharmacy, Health and Well-being, University of Sunderland, Wharncliffe Street, Sunderland, SR1 3SD, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - David G Watson
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
18
|
Barribeau SM, Schmid-Hempel P. Sexual healing: mating induces a protective immune response in bumblebees. J Evol Biol 2016; 30:202-209. [PMID: 27538716 DOI: 10.1111/jeb.12964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
Abstract
The prevalence of sexual, as opposed to clonal, reproduction given the many costs associated with sexual recombination has been an enduring question in evolutionary biology. In addition to these often discussed costs, there are further costs associated with mating, including the induction of a costly immune response, which leaves individuals prone to infection. Here, we test whether mating results in immune activation and susceptibility to a common, ecologically important, parasite of bumblebees. We find that mating does result in immune activation as measured by gene expression of known immune genes, but that this activation improves resistance to this parasite. We conclude that although mating can corrupt immunity in some systems, it can also enhance immunity in others.
Collapse
Affiliation(s)
- S M Barribeau
- Department of Biology, East Carolina University, Greenville, NC, USA.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - P Schmid-Hempel
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Chemical and Antimicrobial Profiling of Propolis from Different Regions within Libya. PLoS One 2016; 11:e0155355. [PMID: 27195790 PMCID: PMC4873177 DOI: 10.1371/journal.pone.0155355] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/27/2016] [Indexed: 11/19/2022] Open
Abstract
Extracts from twelve samples of propolis collected from different regions of Libya were tested for their activity against Trypanosoma brucei, Leishmania donovani, Plasmodium falciparum, Crithidia fasciculata and Mycobacterium marinum and the cytotoxicity of the extracts was tested against mammalian cells. All the extracts were active to some degree against all of the protozoa and the mycobacterium, exhibiting a range of EC50 values between 1.65 and 53.6 μg/ml. The toxicity against mammalian cell lines was only moderate; the most active extract against the protozoan species, P2, displayed an IC50 value of 53.2 μg/ml. The extracts were profiled by using liquid chromatography coupled to high resolution mass spectrometry. The data sets were extracted using m/z Mine and the accurate masses of the features extracted were searched against the Dictionary of Natural Products (DNP). A principal component analysis (PCA) model was constructed which, in combination with hierarchical cluster analysis (HCA), divided the samples into five groups. The outlying groups had different sets of dominant compounds in the extracts, which could be characterised by their elemental composition. Orthogonal partial least squares (OPLS) analysis was used to link the activity of each extract against the different micro-organisms to particular components in the extracts.
Collapse
|
20
|
Omar RMK, Igoli J, Gray AI, Ebiloma GU, Clements C, Fearnley J, Ebel RAE, Zhang T, De Koning HP, Watson DG. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:107-115. [PMID: 26662866 DOI: 10.1002/pca.2605] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. OBJECTIVE To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. METHODOLOGY Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . RESULTS Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. CONCLUSION Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level.
Collapse
Affiliation(s)
- Ruwida M K Omar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| | - John Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi, Nigeria
| | - Alexander I Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| | - Godwin Unekwuojo Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Carol Clements
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| | | | - Ru Angeli Edrada Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, UK
| |
Collapse
|
21
|
Experimental Evolution of a Trypanosome Parasite of Bumblebees and its Implications for Infection Success and Host Immune Response. Evol Biol 2016. [DOI: 10.1007/s11692-015-9366-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
McTaggart SJ, Cézard T, Garbutt JS, Wilson PJ, Little TJ. Transcriptome profiling during a natural host-parasite interaction. BMC Genomics 2015; 16:643. [PMID: 26311167 PMCID: PMC4551569 DOI: 10.1186/s12864-015-1838-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). RESULTS We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. CONCLUSIONS We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Timothée Cézard
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Jennie S Garbutt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Phil J Wilson
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. .,Centre for Immunity, Infection and Evolution, School of Biological Sciences; Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| |
Collapse
|
23
|
Piot N, Snoeck S, Vanlede M, Smagghe G, Meeus I. The Effect of Oral Administration of dsRNA on Viral Replication and Mortality in Bombus terrestris. Viruses 2015; 7:3172-85. [PMID: 26110584 PMCID: PMC4488732 DOI: 10.3390/v7062765] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/01/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022] Open
Abstract
Israeli acute paralysis virus (IAPV), a single-stranded RNA virus, has a worldwide distribution and affects honeybees as well as other important pollinators. IAPV infection in honeybees has been successfully repressed by exploiting the RNA interference (RNAi) pathway of the insect's innate immune response with virus-specific double stranded RNA (dsRNA). Here we investigated the effect of IAPV infection in the bumblebee Bombus terrestris and its tissue tropism. B. terrestris is a common pollinator of wild flowers in Europe and is used for biological pollination in agriculture. Infection experiments demonstrated a similar pathology and tissue tropism in bumblebees as reported for honeybees. The effect of oral administration of virus-specific dsRNA was examined and resulted in an effective silencing of the virus, irrespective of the length. Interestingly, we observed that non-specific dsRNA was also efficient against IAPV. However further study is needed to clarify the precise mechanism behind this effect. Finally we believe that our data are indicative of the possibility to use dsRNA for a broad range viral protection in bumblebees.
Collapse
Affiliation(s)
- Niels Piot
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Simon Snoeck
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Maarten Vanlede
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Ivan Meeus
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Hartmann U, Forsgren E, Charrière JD, Neumann P, Gauthier L. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites. Viruses 2015; 7:2654-67. [PMID: 26008705 PMCID: PMC4452924 DOI: 10.3390/v7052654] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/27/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.
Collapse
Affiliation(s)
- Ulrike Hartmann
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern 3003, Switzerland.
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden.
| | - Jean-Daniel Charrière
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern 3003, Switzerland.
| | - Peter Neumann
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern 3003, Switzerland.
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland.
| | - Laurent Gauthier
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern 3003, Switzerland.
| |
Collapse
|
25
|
Woodard SH, Lozier JD, Goulson D, Williams PH, Strange JP, Jha S. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. Mol Ecol 2015; 24:2916-36. [PMID: 25865395 DOI: 10.1111/mec.13198] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/15/2023]
Abstract
Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well-studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population-level processes, large-scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics- and genomics-enabled research aids in the preservation of this threatened group.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35401, USA
| | - David Goulson
- Evolution, Behaviour & Environment, School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | - Paul H Williams
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - James P Strange
- USDA-ARS, Pollinating Insect Research Unit, Utah State University, Logan, UT, 84322, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
| |
Collapse
|
26
|
Barribeau SM, Sadd BM, du Plessis L, Brown MJF, Buechel SD, Cappelle K, Carolan JC, Christiaens O, Colgan TJ, Erler S, Evans J, Helbing S, Karaus E, Lattorff HMG, Marxer M, Meeus I, Näpflin K, Niu J, Schmid-Hempel R, Smagghe G, Waterhouse RM, Yu N, Zdobnov EM, Schmid-Hempel P. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol 2015; 16:83. [PMID: 25908406 PMCID: PMC4408586 DOI: 10.1186/s13059-015-0628-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/11/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. Results We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. Conclusions The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0628-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seth M Barribeau
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland. .,Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Ben M Sadd
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland. .,School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| | - Louis du Plessis
- Theoretical Biology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland. .,Computational Evolution, Department of Biosystems Science and Evolution, ETH Zürich, 4058, Basel, Switzerland. .,Swiss Institute of Bioinformatics, 1211, Lausanne, Switzerland.
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, London, TW20 0EX, UK.
| | - Severine D Buechel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Kaat Cappelle
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - James C Carolan
- Maynooth University Department of Biology, Maynooth University, Maynooth, Kildare, Ireland.
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Thomas J Colgan
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, 2, Ireland. .,School of Biological and Chemical Sciences, Queen Mary University of London, E1 41NS, London, UK.
| | - Silvio Erler
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania. .,Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06120, Germany.
| | - Jay Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Sophie Helbing
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06120, Germany.
| | - Elke Karaus
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - H Michael G Lattorff
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06120, Germany. .,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany. .,Institut für Biologie, Tierphysiologie, Martin-Luther-Universität Halle-Wittenberg, Wittenberg, 06099, Germany.
| | - Monika Marxer
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Kathrin Näpflin
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Jinzhi Niu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium. .,College of Plant Protection, Southwest University, Chongqing, 400716, PR China.
| | - Regula Schmid-Hempel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium. .,College of Plant Protection, Southwest University, Chongqing, 400716, PR China.
| | - Robert M Waterhouse
- Swiss Institute of Bioinformatics, 1211, Lausanne, Switzerland. .,Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland. .,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Evgeny M Zdobnov
- Swiss Institute of Bioinformatics, 1211, Lausanne, Switzerland. .,Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland.
| | - Paul Schmid-Hempel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| |
Collapse
|
27
|
Brunner FS, Schmid-Hempel P, Barribeau SM. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris. Proc Biol Sci 2015; 281:rspb.2014.0128. [PMID: 24850921 DOI: 10.1098/rspb.2014.0128] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host-parasite interactions.
Collapse
Affiliation(s)
- Franziska S Brunner
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Paul Schmid-Hempel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Seth M Barribeau
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
28
|
Hu J, Xu Q, Hu S, Yu X, Liang Z, Zhang W. Hemomucin, an O-glycosylated protein on embryos of the wasp Macrocentrus cingulum that protects it against encapsulation by hemocytes of the host Ostrinia furnacalis. J Innate Immun 2014; 6:663-75. [PMID: 24776378 DOI: 10.1159/000360819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
It is unclear how endoparasites passively evade their host's immune reactions in most parasite-host systems. Hemomucin from the parasitoid wasp Macrocentrus cingulum (McHEM) is a 97-kDa transmembrane protein containing 51 potential O-glycosylation sites that can be specifically recognized by Arachis hypogaea lectin. Mchem mRNA is highly expressed in M. cingulum eggs, morulae and secondary embryos, and McHEM protein is mainly located on the extraembryonic membrane of embryos. When secondary embryos of M. cingulum were transplanted into naïve larvae of their host, Ostrinia furnacalis, the embryos proliferated to generate dozens of embryos. However, more than 90% of these embryos were encapsulated by host hemocytes after blocking with anti-McHEM serum. Similarly, following knockdown of Mchem expression using double-stranded RNA encoding Mchem (dshem), many more embryos were encapsulated by host hemocytes after transplantation compared to controls (p < 0.01). Furthermore, approximately 70% of the embryos were encapsulated by host hemocytes following digestion with O-glycosidase, which specifically digests β-gal (1→3) linkages between GalNAc and Ser/Thr of proteins. Western blotting results showed that O-glycosidase digested McHEM into a smaller product. These results indicate that McHEM may protect embryos from being encapsulated by their host and that the McHEM sugar chains play an important role.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Runckel C, DeRisi J, Flenniken ML. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One 2014; 9:e95057. [PMID: 24743507 PMCID: PMC3990616 DOI: 10.1371/journal.pone.0095057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/23/2014] [Indexed: 12/02/2022] Open
Abstract
Since 2006, honey bee colonies in North America and Europe have experienced increased annual mortality. These losses correlate with increased pathogen incidence and abundance, though no single etiologic agent has been identified. Crithidia mellificae is a unicellular eukaryotic honey bee parasite that has been associated with colony losses in the USA and Belgium. C. mellificae is a member of the family Trypanosomatidae, which primarily includes other insect-infecting species (e.g., the bumble bee pathogen Crithidia bombi), as well as species that infect both invertebrate and vertebrate hosts including human pathogens (e.g.,Trypanosoma cruzi, T. brucei, and Leishmania spp.). To better characterize C. mellificae, we sequenced the genome and transcriptome of strain SF, which was isolated and cultured in 2010. The 32 megabase draft genome, presented herein, shares a high degree of conservation with the related species Leishmania major. We estimate that C. mellificae encodes over 8,300 genes, the majority of which are orthologs of genes encoded by L. major and other Leishmania or Trypanosoma species. Genes unique to C. mellificae, including those of possible bacterial origin, were annotated based on function and include genes putatively involved in carbohydrate metabolism. This draft genome will facilitate additional investigations of the impact of C. mellificae infection on honey bee health and provide insight into the evolution of this unique family.
Collapse
Affiliation(s)
- Charles Runckel
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph DeRisi
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (JD); (MLF)
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (JD); (MLF)
| |
Collapse
|
30
|
Gene expression differences underlying genotype-by-genotype specificity in a host-parasite system. Proc Natl Acad Sci U S A 2014; 111:3496-501. [PMID: 24550506 DOI: 10.1073/pnas.1318628111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In many systems, host-parasite evolutionary dynamics have led to the emergence and maintenance of diverse parasite and host genotypes within the same population. Genotypes vary in key attributes: Parasite genotypes vary in ability to infect, host genotypes vary in susceptibility, and infection outcome is frequently the result of both parties' genotypic identities. These host-parasite genotype-by-genotype (GH × GP) interactions influence evolutionary and ecological dynamics in important ways. Interactions can be produced through genetic variation; however, here, we assess the role of variable gene expression as an additional source of GH × GP interactions. The bumblebee Bombus terrestris and its trypanosome gut parasite Crithidia bombi are a model system for host-parasite matching. Full-transcriptome sequencing of the bumblebee host revealed that different parasite genotypes indeed induce fundamentally different host expression responses and host genotypes vary in their responses to the infecting parasite genotype. It appears that broadly and successfully infecting parasite genotypes lead to reduced host immune gene expression relative to unexposed bees but induce the expression of genes responsible for controlling gene expression. Contrastingly, a poorly infecting parasite genotype induced the expression of immunologically important genes, including antimicrobial peptides. A targeted expression assay confirmed the transcriptome results and also revealed strong host genotype effects. In all, the expression of a number of genes depends on the host genotype and the parasite genotype and the interaction between both host and parasite genotypes. These results suggest that alongside sequence variation in coding immunological genes, variation that controls immune gene expression can also produce patterns of host-parasite specificity.
Collapse
|
31
|
Deshwal S, Mallon EB. Antimicrobial peptides play a functional role in bumblebee anti-trypanosome defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:240-3. [PMID: 24060502 DOI: 10.1016/j.dci.2013.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 05/03/2023]
Abstract
Bumblebees, amongst the most important of pollinators, are under enormous population pressures. One of these is disease. The bumblebee and its gut trypanosome Crithidia bombi are one of the fundamental models of ecological immunology. Although there is previous evidence of increased immune gene expression upon Crithidia infection, recent work has focussed on the bumblebee's gut microbiota. Here, by knocking down gene expression using RNAi, we show for the first time that antimicrobial peptides (AMPs) have a functional role in anti-Crithidia defense.
Collapse
Affiliation(s)
- Soni Deshwal
- Biology Department, University of Leicester, Leicester LE1 7RH, UK.
| | | |
Collapse
|
32
|
Jayaram A, Pradeep ANR, Awasthi AK, Murthy GN, Ponnuvel KM, Sasibhushan S, Rao GC. Coregulation of host–response genes in integument: switchover of gene expression correlation pattern and impaired immune responses induced by dipteran parasite infection in the silkworm, Bombyx mori. J Appl Genet 2013; 55:209-21. [PMID: 24310719 DOI: 10.1007/s13353-013-0183-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 11/07/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Anitha Jayaram
- Proteomics Division, Seribiotech Research Laboratory, Central Silk Board, Carmelaram. P.O., CSB-Kodathi Campus, Bangalore, 560035, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
33
|
Barribeau SM, Schmid-Hempel P. Qualitatively different immune response of the bumblebee host, Bombus terrestris, to infection by different genotypes of the trypanosome gut parasite, Crithidia bombi. INFECTION GENETICS AND EVOLUTION 2013; 20:249-56. [PMID: 24055962 DOI: 10.1016/j.meegid.2013.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Abstract
Insects have a complex and highly successful immune system that responds specifically to different types of parasites. Different genotypes of a parasite species can differ in infectivity and virulence; which is important for host-parasite co-evolutionary processes, such as antagonistic, fluctuating selection. Such coevolution obviously requires a genetic basis, but little is known about how hosts immunologically respond to different genotypes. The common European bumblebee Bombus terrestris is infected by the highly prevalent trypanosome gut parasite, Crithidia bombi. Here we examined expression of 26 immunological and metabolic genes in response to infection by two clones of C. bombi and compared that with exposure to injection with a bacterial challenge. Exposure to the two clones of C. bombi elicits qualitatively different immune expression responses. Interestingly, infection with one clone results in up regulation of AMP's similar to bees given the bacterial challenge, while genes related to metabolism, signalling, and other effectors were similar between the two Crithidia exposures. Bees given different challenges were distinct enough to discern using linear discriminant analyses. We also found strong correlations, both positive and negative, among genes, which may shed light on how suites of genes are regulated and trade-offs in expression within this gene set.
Collapse
Affiliation(s)
- Seth M Barribeau
- Experimental Ecology, Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| | | |
Collapse
|
34
|
Brunner FS, Schmid-Hempel P, Barribeau SM. Immune gene expression in Bombus terrestris: signatures of infection despite strong variation among populations, colonies, and sister workers. PLoS One 2013; 8:e68181. [PMID: 23869212 PMCID: PMC3712019 DOI: 10.1371/journal.pone.0068181] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/28/2013] [Indexed: 02/03/2023] Open
Abstract
Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging workers. We deliberately included natural variation of the host "environment" by using bees from colonies collected in two locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites). While only the antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise.
Collapse
Affiliation(s)
- Franziska S. Brunner
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Paul Schmid-Hempel
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Seth M. Barribeau
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- * E-mail: .
| |
Collapse
|
35
|
Schwarz RS, Evans JD. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:300-310. [PMID: 23529010 DOI: 10.1016/j.dci.2013.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Frequently encountered parasite species impart strong selective pressures on host immune system evolution and are more apt to concurrently infect the same host, yet molecular impacts in light of this are often overlooked. We have contrasted immune responses in honey bees to two common eukaryotic endoparasites by establishing single and mixed-species infections using the long-associated parasite Crithidia mellificae and the emergent parasite Nosema ceranae. Quantitative polymerase chain reaction was used to screen host immune gene expression at 9 time points post inoculation. Systemic responses in abdomens during early stages of parasite establishment revealed conserved receptor (Down syndrome cell adhesion molecule, Dscam and nimrod C1, nimC1), signaling (MyD88 and Imd) and antimicrobial peptide (AMP) effector (Defensin 2) responses. Late, established infections were distinct with a refined 2 AMP response to C. mellificae that contrasted starkly with a 5 AMP response to N. ceranae. Mixed species infections induced a moderate 3 AMPs. Transcription in gut tissues highlighted important local roles for Dscam toward both parasites and Imd signaling toward N. ceranae. At both systemic and local levels Dscam, MyD88 and Imd transcription was consistently correlated based on clustering analysis. Significant gene suppression occurred in two cases from midgut to ileum tissue: Dscam was lowered during mixed infections compared to N. ceranae infections and both C. mellificae and mixed infections had reduced nimC1 transcription compared to uninfected controls. We show that honey bees rapidly mount complex immune responses to both Nosema and Crithidia that are dynamic over time and that mixed-species infections significantly alter local and systemic immune gene transcription.
Collapse
Affiliation(s)
- Ryan S Schwarz
- US Department of Agriculture, Agricultural Research Services, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| | | |
Collapse
|
36
|
Pradeep ANR, Anitha J, Awasthi AK, Babu MA, Geetha MN, Arun HK, Chandrashekhar S, Rao GC, Vijayaprakash NB. Activation of autophagic programmed cell death and innate immune gene expression reveals immuno-competence of integumental epithelium in Bombyx mori infected by a dipteran parasitoid. Cell Tissue Res 2012; 352:371-85. [PMID: 23161099 DOI: 10.1007/s00441-012-1520-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/27/2012] [Indexed: 01/22/2023]
Abstract
In insects, the integument forms the primary barrier between the environment and internal milieu, but cellular and immune responses of the integumental epithelium to infection by micro- and macro-parasites are mostly unknown. We elucidated cellular and immune responses of the epithelium induced through infection by a dipteran endoparasitoid, Exorista bombycis in the economically important silkworm Bombyx mori. Degradative autophagic vacuoles, lamella-like bodies, a network of cytoplasmic channels with cellular cargo, and an RER network that opened to vacuoles were observed sequentially with increase in age after infection. This temporal sequence culminated in apoptosis, accompanied by the upregulation of the caspase gene and fragmentation of DNA. The infection significantly enhanced the tyrosine level and phenol oxidase activity in the integument. Proteomic analysis revealed enhanced expression of innate immunity components of toll and melanization pathways, cytokines, signaling molecules, chaperones, and proteolytic enzymes demonstrating diverse host responses. qPCR analysis revealed the upregulation of spatzle, BmToll, and NF kappa B transcription factors Dorsal and BmRel. NF kappa B inhibitor cactus showed diminished expression when Dorsal and BmRel were upregulated, revealing a negative correlation (R = (-)0.612). During melanization, prophenol oxidase 2 was expressed, a novel finding in integumental epithelium. The integument showed a low level of melanin metabolism and localized melanism in order to prevent the spreading of cytotoxic quinones. The gene-encoding proteolytic enzyme, beta-N-acetylglucosaminidase, was activated at 24 h post-infection, whereas chitinase, was activated at 96 h post-infection; however, most of the immune genes enhanced their expression in the early stages of infection. Thus the integument contributes to humoral immune responses that enhance resistance against macroparasite invasion.
Collapse
Affiliation(s)
- Appukuttan Nair R Pradeep
- Proteomics Division, Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Salathé R, Tognazzo M, Schmid-Hempel R, Schmid-Hempel P. Probing mixed-genotype infections I: extraction and cloning of infections from hosts of the trypanosomatid Crithidia bombi. PLoS One 2012; 7:e49046. [PMID: 23155449 PMCID: PMC3498296 DOI: 10.1371/journal.pone.0049046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
We here present an efficient, precise and reliable method to isolate and cultivate healthy and viable single Crithidia bombi cells from bumblebee faeces using flow cytometry. We report a precision of >99% in obtaining single trypanosomatid cells for further culture and analysis (“cloning”). In the study, we have investigated the use of different liquid media to cultivate C. bombi and present an optimal medium for obtaining viable clones from all tested, infected host donors. We show that this method can be applied to genotype a collection of clones from natural infections. Furthermore, we show how to cryo-preserve C. bombi cells to be revived to become infective clones after at least 4 years of storage. Considering the high prevalence of infections in natural populations, our method provides a powerful tool in studying the level and diversity of these infections, and thus enriches the current methodology for the studies of complex host-parasite interactions.
Collapse
Affiliation(s)
- Rahel Salathé
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (RS); (PSH)
| | | | | | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (RS); (PSH)
| |
Collapse
|
38
|
Popp M, Erler S, Lattorff HMG. Seasonal variability of prevalence and occurrence of multiple infections shape the population structure of Crithidia bombi, an intestinal parasite of bumblebees (Bombus spp.). Microbiologyopen 2012; 1:362-72. [PMID: 23233373 PMCID: PMC3535382 DOI: 10.1002/mbo3.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 11/07/2022] Open
Abstract
Ergonomic growth phases of annual social insect societies strongly influence horizontally transmitted parasites. Herein, we focused on the impact of temporal changes in host demography on the population structure of a horizontally transmitted parasite. Seasonal fluctuations in prevalence and the occurrence of multiple infections of the gut parasite Crithidia bombi were analyzed in repeatedly sampled populations of two common bumblebee (Bombus spp.) species. Prevalence of C. bombi was greatest in the middle of the foraging season and coincided with the maximal occurrence of multiple infections. Both decline later in the season. The genetic structure of the parasite population also showed strong seasonal fluctuations with a drastic decline in effective population size and an increase in linkage disequilibrium when infection rates were highest. These effects are mainly attributable to significant changes in parasite allele frequencies leading to selection of specific alleles and increasing the frequency of homozygote genotypes in the middle of the season. Within host, competition between parasite genotypes might explain the observed pattern leading to selection of these alleles, and thus a boost of homozygote genotypes in the middle of the season. Toward the end of the season, selection appears to relax and we observed a recovery in linkage equilibrium, as well as an increase in effective population size. This might be explained by genetic exchange in these trypanosomes in natural populations.
Collapse
Affiliation(s)
- Mario Popp
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06099, Halle (Saale), Germany.
| | | | | |
Collapse
|
39
|
Koch H, Schmid-Hempel P. Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol Lett 2012; 15:1095-103. [PMID: 22765311 DOI: 10.1111/j.1461-0248.2012.01831.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 05/31/2012] [Accepted: 06/14/2012] [Indexed: 01/15/2023]
Abstract
Specific interactions between parasite genotypes and host genotypes (G(p) × G(h)) are commonly found in invertebrate systems, but are largely lacking a mechanistic explanation. The genotype of invertebrate hosts can be complemented by the genomes of microorganisms living on or within the host ('microbiota'). We investigated whether the bacterial gut microbiota of bumble bees (Bombus terrestris) can account for the specificity of interactions between individuals from different colonies (previously taken as host genotype proxy) and genotypes of the parasite Crithidia bombi. For this, we transplanted the microbiota between individuals of six colonies. Both the general infection load and the specific success of different C. bombi genotypes were mostly driven by the microbiota, rather than by worker genotype. Variation in gut microbiota can therefore be responsible for specific immune phenotypes and the evolution of gut parasites may be driven by interactions with 'microbiota types' as well as with host genotypes.
Collapse
Affiliation(s)
- Hauke Koch
- Institute of Integrative Biology (IBZ), ETH Zurich, ETH-Zentrum CHN, Zurich, Switzerland.
| | | |
Collapse
|
40
|
Ruiz-González MX, Bryden J, Moret Y, Reber-Funk C, Schmid-Hempel P, Brown MJF. DYNAMIC TRANSMISSION, HOST QUALITY, AND POPULATION STRUCTURE IN A MULTIHOST PARASITE OF BUMBLEBEES. Evolution 2012; 66:3053-66. [DOI: 10.1111/j.1558-5646.2012.01655.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Cisarovsky G, Schmid-Hempel P, Sadd BM. Robustness of the outcome of adult bumblebee infection with a trypanosome parasite after varied parasite exposures during larval development. J Evol Biol 2012; 25:1053-9. [PMID: 22487556 DOI: 10.1111/j.1420-9101.2012.02507.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The outcome of defence by the invertebrate immunity has recently been shown to be more complex than previously thought. In particular, the outcome is affected by biotic and abiotic environmental variation, host genotype, parasite genotype and their interaction. Knowledge of conditions under which environmental variation affects the outcome of an infection is one important question that relates to this complexity. We here use the model system of the bumblebee, Bombus terrestris, infected by the trypanosome, Crithidia bombi, combined with a split-colony design to test the influence of the parasite environment during larval rearing on adult resistance. We find that genotype-specific interactions are maintained and adult resistance is not influenced. This demonstrates that environmental dependence of bumblebee-trypanosome interactions is not ubiquitous, and yet unknown constraints will maintain standard coevolutionary dynamics under such environmental deviations.
Collapse
Affiliation(s)
- G Cisarovsky
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zürich, Switzerland.
| | | | | |
Collapse
|
42
|
Riddell CE, Sumner S, Adams S, Mallon EB. Pathways to immunity: temporal dynamics of the bumblebee (Bombus terrestris) immune response against a trypanosomal gut parasite. INSECT MOLECULAR BIOLOGY 2011; 20:529-540. [PMID: 21615578 DOI: 10.1111/j.1365-2583.2011.01084.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Immune response dynamics in insects from natural host-parasite associations are poorly understood, despite accumulating evidence of ecological immune phenomena in these systems. Using a gene discovery approach, we have identified genes relating to signalling, enzymatic processes and respiration that were up-regulated in the bumblebee, Bombus terrestris, during infection with the trypanosomatid parasite, Crithidia bombi. In addition, we have mapped dynamic changes in the temporal expression of these genes and three candidate antimicrobial peptide (AMP) immune genes, Abaecin, Defensin and Hymenoptaecin, from 1 to 24 h after C. bombi infection. We show that dynamic changes in expression occur for individual genes at distinct phases of the immune response to C. bombi that correspond to early, intermediate and late stages of infection.
Collapse
Affiliation(s)
- C E Riddell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
43
|
Stolle E, Wilfert L, Schmid-Hempel R, Schmid-Hempel P, Kube M, Reinhardt R, Moritz RFA. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758) reveals slow genome and chromosome evolution in the Apidae. BMC Genomics 2011; 12:48. [PMID: 21247459 PMCID: PMC3034698 DOI: 10.1186/1471-2164-12-48] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/19/2011] [Indexed: 12/30/2022] Open
Abstract
Background The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL) mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. Results The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs) and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. Conclusions This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae.
Collapse
Affiliation(s)
- Eckart Stolle
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Allen MR. Bisphosphonates and osteonecrosis of the jaw: moving from the bedside to the bench. Cells Tissues Organs 2008; 189:289-94. [PMID: 18698128 DOI: 10.1159/000151371] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Osteonecrosis of the jaw (ONJ) has received significant attention as a potential side effect of bisphosphonate treatment. The limited understanding of the underlying pathophysiology of the condition emphasizes the need to transition ONJ research from the bedside to the bench, supplementing ongoing clinical research with animal/basic science studies. The goal of this review is to briefly highlight the most commonly proposed mechanisms for ONJ and then summarize our laboratory's recent efforts to begin transitioning ONJ research to an animal model. Remodeling suppression, disrupted angiogenesis and infection have all been proposed to connect bisphosphonates to ONJ, although most supportive data for each of these are either indirect or nonexistent. Our laboratory has begun studying the dog as a potential model of ONJ. We have shown regions of necrotic bone matrix within the mandible of dogs treated with oral or intravenous bisphosphonate. We hypothesize these regions are the result of remodeling suppression, and if combined with additional factors such as dental intervention or infection, would result in manifestation of exposed oral lesions, the clinical definition of ONJ. Although these findings suggest the dog may be a viable animal model to study ONJ, many questions remain unanswered. No matter what animal model is found to mimic the clinical presentation of ONJ, once established it will allow significant progress toward understanding the specific role of bisphosphonates in the pathophysiology of ONJ and if/how the entity of ONJ can best be treated and prevented.
Collapse
Affiliation(s)
- Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Ind. 46202, USA.
| |
Collapse
|