1
|
Rautenschlein S, Schat KA. The Immunological Basis for Vaccination. Avian Dis 2024; 67:366-379. [PMID: 38300658 DOI: 10.1637/aviandiseases-d-23-99996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 02/02/2024]
Abstract
Vaccination is crucial for health protection of poultry and therefore important to maintaining high production standards. Proper vaccination requires knowledge of the key players of the well-orchestrated immune system of birds, their interdependence and delicate regulation, and, subsequently, possible modes of stimulation through vaccine antigens and adjuvants. The knowledge about the innate and acquired immune systems of birds has increased significantly during the recent years but open questions remain and have to be elucidated further. Despite similarities between avian and mammalian species in their composition of immune cells and modes of activation, important differences exist, including differences in the innate, but also humoral and cell-mediated immunity with respect to, for example, signaling transduction pathways, antigen presentation, and cell repertoires. For a successful vaccination strategy in birds it always has to be considered that genotype and age of the birds at the time point of immunization as well as their microbiota composition may have an impact and may drive the immune reactions into different directions. Recent achievements in the understanding of the concept of trained immunity will contribute to the advancement of current vaccine types helping to improve protection beyond the specificity of an antigen-driven immune response. The fast developments in new omics technologies will provide insights into protective B- and T-cell epitopes involved in cross-protection, which subsequently will lead to the improvement of vaccine efficacy in poultry.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Clinic for Poultry, Hannover, Lower Saxony 30559, Germany,
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
2
|
DNA aptamer-based rolling circle amplification product as a novel immunological adjuvant. Sci Rep 2020; 10:22282. [PMID: 33335251 PMCID: PMC7747709 DOI: 10.1038/s41598-020-79420-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
Several agonists to CD40 have shown to induce acquired immune responses. Here, we developed and evaluated the rolling circle amplification (RCA) products that are based on anti-CD40 DNA aptamers as a novel vaccine adjuvant. First, we developed DNA aptamers with specific binding affinity to chicken CD40 extra domain (chCD40ED). Next, we prepared the RCA products that consist of these aptamers to increase the spanning space and overall binding affinity to chCD40ED. Using 8 DNA aptamer candidates, 4 aptamer-based RCA products (aptamer RCAs) were generated, each consisting of two distinct aptamers. We demonstrated that all 4 aptamer RCAs significantly induced the signal transduction in chicken HD11 macrophage cell line (p < 0.05). Finally, we conjugated one of the aptamer RCAs (Aptamer RCA II) to M2e epitope peptide of influenza virus as a model hapten, and the immune complex was injected to chickens. Aptamer RCA II stimulated anti-M2e IgG antibody production to the level significantly higher as compared to the control (M2e epitope alone; p < 0.05). The results of our work suggest that aptamer RCA is a novel platform to boost the efficacy of vaccines, which might find broad applications to other antigens beyond M2e epitope evaluated in this study using chicken infection model.
Collapse
|
3
|
CD205-positive, Sepharose-induced peritoneal exudate cells: a new resource for DC research in the chicken. Vet Res Commun 2019; 43:115-122. [PMID: 30989431 DOI: 10.1007/s11259-019-09751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Dendritic cells (DC) are important antigen-presenting cells and are among the least characterized immune cells in the chicken. In order to obtain chicken DC, current protocols require isolation of bone marrow myeloid progenitor cells and induction of DC differentiation with supplemental cytokines or negative selection of splenic cell preparations. Chicken peritoneal exudate cells (PEC) have traditionally been a source of various immune cells for ex vivo studies, primarily to investigate heterophils and macrophages. In this study, we observe the presence of CD205+ PEC populations, a marker of DC, as an additional resource to isolate and study chicken primary DCs. A panel of monoclonal antibodies was developed against the chicken CD205 DC marker and used to isolate CD205+ DC from the PEC population using magnetic bead cell sorting. This study reports the development of new anti-CD205 monoclonal antibodies as a reagent for chicken DC research, as well as PEC as a potential source of CD205+ DC for ex vivo studies in the chicken.
Collapse
|
4
|
Vuong CN, Chou WK, Briggs W, Faulkner O, Wolfenden A, Jonas M, Kapczynski DR, Hargis BM, Bielke LR, Berghman LR. Crude Inactivated Influenza A Virus Adjuvated with a Bispecific Antibody Complex Targeting Chicken CD40 and AIV M2e Confers Protection Against Lethal HPAI Challenge in Chickens. Monoclon Antib Immunodiagn Immunother 2018; 37:245-251. [PMID: 30592705 DOI: 10.1089/mab.2018.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vivo targeting an immunogen to the CD40 receptor expressed on professional antigen-presenting cells (APCs) dramatically enhances speed, magnitude, and quality of the immune response. Our previous evaluation of this strategy in poultry was limited to immunogenicity studies using CD40-targeted synthetic peptides, which demonstrated significant antigen-specific serum IgG and tracheal IgA levels <1 week after primary administration. In this study, this antibody-guided immunization strategy was modified to permit incorporation of inactivated highly pathogenic avian influenza virions (in lieu of short synthetic peptides) as the immunogen by simply mixing a bispecific antibody complex (anti-CD40/M2e) with crude inactivated virus before injection. Adjuvated avian influenza virus (AIV) induced significant hemagglutination inhibition titers up to 6 weeks postimmunization. In efficacy studies, administration of a single vaccine dose yielded 56%-64% survival against challenge with highly pathogenic H5N1, and 100% protection was achieved upon boosting. These results represent a feasible strategy to effectively target whole inactivated influenza A virus to chicken APCs, regardless of AIV clade and without phenotyping or purifying the virus from crude allantoic fluid. The data represent proof of principle for the unique prophylactic efficacy and versatility of a CD40-targeting adjuvation strategy that can in principle also be harnessed in other poultry vaccines.
Collapse
Affiliation(s)
- Christine N Vuong
- 1 Department of Veterinary Pathobiology and Texas A&M University , College Station, Texas
| | - Wen-Ko Chou
- 2 Department of Poultry Science, Texas A&M University , College Station, Texas
| | - Whitney Briggs
- 3 Department of Animal Science, The Ohio State University , Wooster, Ohio
| | - Olivia Faulkner
- 4 Department of Poultry Science, University of Arkansas , Fayetteville, Arkansas
| | - Amanda Wolfenden
- 4 Department of Poultry Science, University of Arkansas , Fayetteville, Arkansas
| | - Melina Jonas
- 5 Medion Vaccine Company , Bandung, West Java, Indonesia
| | - Darrell R Kapczynski
- 6 Exotic and Emerging Viral Diseases Research Unit, U.S. Department of Agriculture, Agricultural Research Service , Athens, Georgia
| | - Billy M Hargis
- 4 Department of Poultry Science, University of Arkansas , Fayetteville, Arkansas
| | - Lisa R Bielke
- 3 Department of Animal Science, The Ohio State University , Wooster, Ohio
| | - Luc R Berghman
- 1 Department of Veterinary Pathobiology and Texas A&M University , College Station, Texas.,2 Department of Poultry Science, Texas A&M University , College Station, Texas
| |
Collapse
|
5
|
Chou WK, Park J, Carey JB, McIntyre DR, Berghman LR. Immunomodulatory Effects of Saccharomyces cerevisiae Fermentation Product Supplementation on Immune Gene Expression and Lymphocyte Distribution in Immune Organs in Broilers. Front Vet Sci 2017; 4:37. [PMID: 28349053 PMCID: PMC5346889 DOI: 10.3389/fvets.2017.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
A study was conducted to evaluate the molecular and cellular immunomodulatory effects of a Saccharomyces cerevisiae fermentation product (Original XPC, Diamond V) in broilers. Our lab has previously demonstrated that broilers fed XPC generate faster and stronger antigen-specific humoral immune responses to Newcastle disease virus (NDV) vaccination. This study aims at investigating the mechanism behind this increased immunocompetence. One-day-old broilers were randomly assigned to one of two treatments: 1.25 kg/ton S. cerevisiae fermentation product (XPC treatment group) or control diet. Birds were vaccinated against NDV on day 1 (B1 strain) and day 21 (LaSota strain) post-hatch. Innate and adaptive immune-related gene expression profiles in central (thymus and bursa of Fabricius) and peripheral (spleen) immune organs were investigated at 14 and 28 days of age by qPCR array. Fold changes larger than 1.2 (P < 0.05) between treated and control were considered significant. Lymphocyte subpopulations in central and peripheral immune organs and blood leukocytes were analyzed by flow cytometry at 14, 21, 28, and 42 days of age. In the spleen, Th1 immune responses and antiviral genes, such as IFN-γ, and its downstream genes signal transducer and activator of transcription (STAT4) and NFκB, were significantly upregulated in the treated group by 14 days of age. In the thymus, genes belonging to different functional groups were influenced at different time points. Cytokine genes associated with lymphocyte maturation, differentiation, and proliferation, such as IL-1R, IL-2, and IL-15 were significantly upregulated in the treated group by 28 days of age. Genes preferentially expressed in the medulla of the thymus and mature thymocytes, such as Myxovirus resistance gene 1, interferon regulatory factor-1, interferon regulatory factor-7, and STAT1, were upregulated in the birds supplemented with XPC. Birds supplemented with XPC had significantly higher percentages of CD3+, CD4+, and CD8+ T-cells in the thymus at day 28 of age, indicating production of more mature T-cells, which was consistent with gene expression results. Results suggest that XPC supplementation primes broilers to become more immunocompetent, without compromising growth performance.
Collapse
Affiliation(s)
- Wen K. Chou
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Jungwoo Park
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - John B. Carey
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | | | - Luc R. Berghman
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Chou WK, Chen CH, Vuong CN, Abi-Ghanem D, Waghela SD, Mwangi W, Bielke LR, Hargis BM, Berghman LR. Significant mucosal sIgA production after a single oral or parenteral administration using in vivo CD40 targeting in the chicken. Res Vet Sci 2016; 108:112-5. [PMID: 27663378 DOI: 10.1016/j.rvsc.2016.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Many pathogens enter the host through mucosal surfaces and spread rapidly via the circulation. The most effective way to prevent disease is to establish mucosal and systemic immunity against the pathogen. However, current vaccination programs in poultry industry require repeated administrations of live-attenuated virus or large amounts (10 to 100μg) of antigen together with adjuvant to induce specific secretory IgA immune responses at the mucosal effector sites. In the present study, we show that a single administration of 0.4μg of oligopeptide complexed with an agonistic anti-chicken CD40 (chCD40) monoclonal antibody (Mab) effectively targets antigen-presenting cells of the bird's mucosa-associated lymphoid tissue in vivo, and induces peptide-specific secretory IgA (sIgA) in the trachea 7days post administration. Anti-chCD40 Mab-peptide complex was administered once to four-week old male Leghorns via various mucosal routes (orally, via cloacal drinking, or oculo-nasally) or via subcutaneous (s.c.) immunization. Immunization through any of the three mucosal induction routes induced significant peptide-specific mucosal sIgA responses 7 and 14days after immunization. Interestingly, s.c. injection of the complex also induced mucosal sIgA. Our data suggest in vivo targeting of CD40 as a potential adjuvant platform, particularly for the purpose of enhancing and speeding up mucosal vaccine responses in chickens, and potentially other food animals. This is the first study able to elicit specific sIgA immune responses in remote mucosal sites with a single administration of only 0.4μg of antigen.
Collapse
Affiliation(s)
- Wen-Ko Chou
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Chang-Hsin Chen
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Christine N Vuong
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Daad Abi-Ghanem
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Lisa R Bielke
- JKS Poultry Health Laboratory, University of Arkansas, Fayetteville, AR, USA
| | - Billy M Hargis
- JKS Poultry Health Laboratory, University of Arkansas, Fayetteville, AR, USA
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M University, College Station, TX, USA; Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Guo Y, Gao M, Ma B, Sheng Q, Wang Q, Liu D, Wang J. A novel monoclonal antibody against the constant region of goose immunoglobulin light chain. Monoclon Antib Immunodiagn Immunother 2014; 33:121-5. [PMID: 24746153 DOI: 10.1089/mab.2013.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A monoclonal antibody (MAb) against the antigenic determinant of the constant region of goose immunoglobulin light chain (GoIgCL) was produced and characterized for the first time here. Goose immunoglobulin (Ig) in serum was purified by immunoaffinity chromatography and the resulting protein was used as immunogen to immunize BALB/c mice. At the same time, the GoIgCL gene was expressed and purified as the screening antigen for selecting MAb against GoIgCL. One hybridoma that produces antibodies against GoIgCL was selected by indirect ELISA. Then the characterization of the MAb was analyzed by ELISA, Western blot, and flow cytometry. It was found to be IgG1 with κ light chain; the MAB has high specificity to Ig in goose serum, bile, and B lymphocytes from peripheral blood, reacts only with the light chain of goose Ig, and can distinguish Ig from other birds. Therefore, the MAb generated in this study can be used as a specific reagent for detection of goose disease-specific antibodies and as a powerful tool for basic immunology research on geese.
Collapse
Affiliation(s)
- Yongli Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University , Harbin, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Immunization of chickens with an agonistic monoclonal anti-chicken CD40 antibody-hapten complex: rapid and robust IgG response induced by a single subcutaneous injection. J Immunol Methods 2012; 378:116-20. [PMID: 22366632 DOI: 10.1016/j.jim.2012.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
Abstract
Producing diagnostic antibodies in chicken egg yolk represents an alternate animal system that offers many advantages including high productivity at low cost. Despite being an excellent counterpart to mammalian antibodies, chicken IgG from yolk still represents an underused resource. The potential of agonistic monoclonal anti-CD40 antibodies (mAb) as a powerful immunological adjuvant has been demonstrated in mammals, but not in chickens. We recently reported an agonistic anti-chicken CD40 mAb (designated mAb 2C5) and showed that it may have potential as an immunological adjuvant. In this study, we examined the efficacy of targeting a short peptide to chicken CD40 [expressed by the antigen-presenting cells (APCs)] in enhancing an effective IgG response in chickens. For this purpose, an immune complex consisting of one streptavidin molecule, two directionally biotinylated mAb 2C5 molecules, and two biotinylated peptide molecules was produced. Chickens were immunized subcutaneously with doses of this complex ranging from 10 to 90 μg per injection once, and relative quantification of the peptide-specific IgG response showed that the mAb 2C5-based complex was able to elicit a strong IgG response as early as four days post-immunization. This demonstrates that CD40-targeting antigen to chicken APCs can significantly enhance antibody responses and induce immunoglobulin isotype-switching. This immunization strategy holds promise for rapid production of hapten-specific IgG in chickens.
Collapse
|