1
|
A New Gene SCY3 Homologous to Scygonadin Showing Antibacterial Activity and a Potential Role in the Sperm Acrosome Reaction of Scylla paramamosain. Int J Mol Sci 2023; 24:ijms24065689. [PMID: 36982761 PMCID: PMC10053787 DOI: 10.3390/ijms24065689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the study, a new gene homologous to the known antimicrobial peptide Scygonadin was identified in mud crab Scylla paramamosain and named SCY3. The full-length sequences of cDNA and genomic DNA were determined. Similar to Scygonadin, SCY3 was dominantly expressed in the ejaculatory ducts of male crab and the spermatheca of post-mating females at mating. The mRNA expression was significantly up-regulated after stimulation by Vibrio alginolyticus, but not by Staphylococcus aureus. The recombinant protein rSCY3 had a killing effect on Micrococcus luteus and could improve the survival rate of mud crabs infected with V. alginolyticus. Further analysis showed that rSCY3 interacted with rSCY1 or rSCY2 using Surface Plasmon Resonance (SPR, a technology for detecting interactions between biomolecules using biosensor chips) and Mammalian Two-Hybrid (M2H, a way of detecting interactions between proteins in vivo). Moreover, the rSCY3 could significantly improve the sperm acrosome reaction (AR) of S. paramamosain and the results demonstrated that the binding of rSCY3, rSCY4, and rSCY5 to progesterone was a potential factor affecting the sperm AR by SCYs on. This study lays the foundation for further investigation on the molecular mechanism of SCYs involved in both immunity and physiological effects of S. paramamosain.
Collapse
|
2
|
Jiang M, Chen R, Zhang J, Chen F, Wang KJ. A Novel Antimicrobial Peptide Spampcin 56-86 from Scylla paramamosain Exerting Rapid Bactericidal and Anti-Biofilm Activity In Vitro and Anti-Infection In Vivo. Int J Mol Sci 2022; 23:ijms232113316. [PMID: 36362111 PMCID: PMC9653689 DOI: 10.3390/ijms232113316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The abuse of antibiotics leads to the increase of bacterial resistance, which seriously threatens human health. Therefore, there is an urgent need to find effective alternatives to antibiotics, and antimicrobial peptides (AMPs) are the most promising antibacterial agents and have received extensive attention. In this study, a novel potential AMP was identified from the marine invertebrate Scylla paramamosain and named Spampcin. After bioinformatics analysis and AMP database prediction, four truncated peptides (Spa31, Spa22, Spa20 and Spa14) derived from Spampcin were screened, all of which showed potent antimicrobial activity with different antibacterial spectrum. Among them, Spampcin56-86 (Spa31 for short) exhibited strong bactericidal activity against a variety of clinical pathogens and could rapidly kill the tested bacteria within minutes. Further analysis of the antibacterial mechanism revealed that Spa31 disrupted the integrity of the bacterial membrane (as confirmed by scanning electron microscopy observation, NPN, and PI staining assays), leading to bacterial rupture, leakage of cellular contents (such as elevated extracellular ATP), increased ROS production, and ultimately cell death. Furthermore, Spa31 was found to interact with LPS and effectively inhibit bacterial biofilms. The antibacterial activity of Spa31 had good thermal stability, certain ion tolerance, and no obvious cytotoxicity. It is worth noting that Spa31 could significantly improve the survival rate of zebrafish Danio rerio infected with Pseudomonas aeruginosa, indicating that Spa31 played an important role in anti-infection in vivo. This study will enrich the database of marine animal AMPs and provide theoretical reference and scientific basis for the application of marine AMPs in medical fields.
Collapse
Affiliation(s)
- Manyu Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jingrong Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| |
Collapse
|
3
|
Wang X, Hong X, Chen F, Wang KJ. A truncated peptide Spgillcin177–189 derived from mud crab Scylla paramamosain exerting multiple antibacterial activities. Front Cell Infect Microbiol 2022; 12:928220. [PMID: 36061863 PMCID: PMC9435603 DOI: 10.3389/fcimb.2022.928220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) may be the most promising substitute for antibiotics due to their effective bactericidal activity and multiple antimicrobial modes against pathogenic bacteria. In this study, a new functional gene named Spgillcin was identified in Scylla paramamosain, which encoded 216 amino acids of mature peptide. In vivo, Spgillcin was dominantly expressed in the gills of male and female crabs, offering the highest expression level among all tested organs or tissues. The expression pattern of Spgillcin was significantly altered when challenged by Staphylococcus aureus, indicating a positive immune response. In vitro, a functional truncated peptide Spgillcin177–189 derived from the amino acid sequence of Spgillcin was synthesized and showed a broad-spectrum and potent antibacterial activity against several bacterial strains, including the clinical isolates of multidrug-resistant (MDR) strains, with a range of minimum inhibitory concentrations from 1.5 to 48 μM. Spgillcin177–189 also showed rapid bactericidal kinetics for S. aureus and Pseudomonas aeruginosa but did not display any cytotoxicity to mammalian cells and maintained its antimicrobial activity in different conditions. Mechanistic studies indicated that Spgillcin177–189 was mainly involved in the disruption of cell membrane integrity where the membrane components lipoteichoic acid and lipopolysaccharide could significantly inhibit the antimicrobial activity in a dose-dependent manner. In addition, Spgillcin177–189 could change the membrane permeability and cause the accumulation of intracellular reactive oxygen species. No resistance was generated to Spgillcin177–189 when the clinical isolates of methicillin-resistant S. aureus and MDR P. aeruginosa were treated with Spgillcin177–189 and then subjected to a long term of continuous culturing for 50 days. In addition, Spgillcin177–189 exerted a strong anti-biofilm activity by inhibiting biofilm formation and was also effective at killing extracellular S. aureus in the cultural supernatant of RAW 264.7 cells. Taken together, Spgillcin177–189 has strong potential as a substitute for antibiotics in future aquaculture and medical applications.
Collapse
Affiliation(s)
- Xiaofei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiao Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Ke-Jian Wang,
| |
Collapse
|
4
|
A Novel Antimicrobial Peptide Sparanegtin Identified in Scylla paramamosain Showing Antimicrobial Activity and Immunoprotective Role In Vitro and Vivo. Int J Mol Sci 2021; 23:ijms23010015. [PMID: 35008449 PMCID: PMC8744658 DOI: 10.3390/ijms23010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
The abuse of antibiotics in aquaculture and livestock no doubt has exacerbated the increase in antibiotic-resistant bacteria, which imposes serious threats to animal and human health. The exploration of substitutes for antibiotics from marine animals has become a promising area of research, and antimicrobial peptides (AMPs) are worth investigating and considering as potential alternatives to antibiotics. In the study, we identified a novel AMP gene from the mud crab Scylla paramamosain and named it Sparanegtin. Sparanegtin transcripts were most abundant in the testis of male crabs and significantly expressed with the challenge of lipopolysaccharide (LPS) or Vibrio alginolyticus. The recombinant Sparanegtin (rSparanegtin) was expressed in Escherichia coli and purified. rSparanegtin exhibited activity against Gram-positive and Gram-negative bacteria and had potent binding affinity with several polysaccharides. In addition, rSparanegtin exerted damaging activity on the cell walls and surfaces of P. aeruginosa with rougher and fragmented appearance. Interestingly, although rSparanegtin did not show activity against V. alginolyticus in vitro, it played an immunoprotective role in S. paramamosain and exerted an immunomodulatory effect by modulating several immune-related genes against V. alginolyticus infection through significantly reducing the bacterial load in the gills and hepatopancreas and increasing the survival rate of crabs.
Collapse
|
5
|
Yang Y, Chen F, Chen HY, Peng H, Hao H, Wang KJ. A Novel Antimicrobial Peptide Scyreprocin From Mud Crab Scylla paramamosain Showing Potent Antifungal and Anti-biofilm Activity. Front Microbiol 2020; 11:1589. [PMID: 32849331 PMCID: PMC7396596 DOI: 10.3389/fmicb.2020.01589] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Natural antimicrobial peptides (AMPs) are potential antibiotic alternatives. Marine crustaceans are thought to generate more powerful and various AMPs to protect themselves from infections caused by pathogenic microorganisms in their complex aquatic habitat, thus becoming one of the most promising sources of AMPs or other bioactive substances. In the study, a novel protein was identified as an interacting partner of male-specific AMP SCY2 in Scylla paramamosain and named scyreprocin. The recombinant product of scyreprocin (rScyreprocin) was successfully expressed in Escherichia coli. rScyreprocin exerted potent, broad-spectrum antifungal, antibacterial, and anti-biofilm activity (minimum inhibitory concentrations from 0.5 to 32 μM) through differential modes of action, including disruption of cell membrane integrity and induction of cell apoptosis, and has rapid bactericidal (in 0.5–2 h) and fungicidal (in 8–10 h) kinetics. In addition to its fungicidal activity against planktonic fungi, rScyreprocin also prevented the adhesion of fungal cells, inhibited biofilm formation, and eradicated the mature biofilms. Moreover, rScyreprocin showed a profound inhibitory effect on spore germination of Aspergillus spp. (minimum inhibitory concentrations from 4 to 8 μM). This peptide was not cytotoxic to murine and mammalian cells and could increase the survival rate of Oryzias melastigma under the challenge of Vibrio harveyi. Taken together, the novel AMP scyreprocin would be a promising alternative to antibiotics used in aquaculture and medicine.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Chen F, Wang K. Characterization of the innate immunity in the mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2019; 93:436-448. [PMID: 31362092 DOI: 10.1016/j.fsi.2019.07.076] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Mud crabs, Scylla paramamosain, are one of the most economical and nutritious crab species in China and South Asia. Inconsistent with the high development of commercial mud crab aquaculture, effective immunological methods to prevent frequently-occurring diseases have not yet been developed. Thus, high mortalities often occur throughout the different developmental stages of this species resulting in large economic losses. In recent years, numerous attempts have been made to use various advanced biological technologies to understand the innate immunity of S. paramamosain as well as to characterize specific immune components. This review summarizes these research advances regarding cellular and humoral responses of the mud crab during pathogen infection, highlighting hemocytes and gills defense, pattern recognition, immune-related signaling pathways (Toll, IMD, JAK/STAT, and prophenoloxidase (proPO) cascades), immune effectors (antimicrobial peptides), production of reactive oxygen species and the antioxidant system. Diseases affecting the development of mud crab aquaculture and potential disease control strategies are discussed.
Collapse
Affiliation(s)
- Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Suleiman S, Smith VJ, Dyrynda EA. Unusual tissue distribution of carcinin, an antibacterial crustin, in the crab, Carcinus maenas, reveals its multi-functionality. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:274-284. [PMID: 28655578 DOI: 10.1016/j.dci.2017.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Crustins are whey acidic four-disulphide core (WFDSC) domain-containing proteins in decapods that are widely regarded as antimicrobial agents that contribute to host defence. Whilst there have been many analyses of crustin gene expression in tissues, few studies have been made of the distribution of the natural proteins. Here we report an immunostaining investigation of carcinin, a native crustin from Carcinus maenas, in the body organs. The results show that the protein is largely confined to the haemocytes with only a weak signal detected in the heart, hepatopancreas and midgut caecum where it is restricted to the outer surfaces. Importantly, carcinin was seen to be deposited by the haemocytes on these surfaces. Higher levels of staining were detected in the gonads with carcinin particularly abundant in the capsule of ovary as well as some oocytes. Conspicuous staining was further evident in the cuticle of the eyestalk peduncles. Ablation of the eyestalks resulted in a reduction of carcinin in the maturing ovary with the mature eggs rarely displaying a strong signal for the protein. Interestingly, the degree of carcinin also strongly increased in the healing peduncle, indicating that the protein may be associated with wounding, cell damage and/or tissue regeneration.
Collapse
Affiliation(s)
- Suzanne Suleiman
- Centre for Marine Biodiversity and Biotechnology, Institute of Life and Earth Sciences, Heriot Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Valerie J Smith
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, Scotland KY16 8LB, United Kingdom.
| | - Elisabeth A Dyrynda
- Centre for Marine Biodiversity and Biotechnology, Institute of Life and Earth Sciences, Heriot Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| |
Collapse
|
8
|
Shan ZG, Zhu KX, Chen FY, Liu J, Chen B, Qiao K, Peng H, Wang KJ. In vivo activity and the transcriptional regulatory mechanism of the antimicrobial peptide SpHyastatin in Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2016; 59:155-165. [PMID: 27751917 DOI: 10.1016/j.fsi.2016.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
A new gene homologous to the reported antimicrobial peptide (AMP) hyastatin from Hyas araneus was screened in the SSH library constructed from the hemocytes of Scylla paramamosain, and named SpHyastatin. In vivo study showed that SpHyastatin was predominantly expressed in hemocytes of S. paramamosain. With the challenge of either Vibrio parahaemolyticus or lipopolysaccharide (LPS), SpHyastatin showed a positive response, meaning that it was probably involved in the immune reaction against bacterial infection in vivo. A distinctive feature of SpHyastatin in comparison with six other known AMPs tested was that SpHyastatin could maintain a higher transcription level from megalopas to the adult crab, indicating a potential consistent resistance against pathogens conferred by this peptide existing in the blood circulation of crabs. RNA interference assay was performed to inhibit SpHyastatin transcription in vivo and the result demonstrated that silencing SpHyastatin mRNA transcripts could decrease the survival rate of crabs challenged with V. parahaemolyticus. To further understand the molecular mechanisms that regulate SpHyastatin expression, a 576 bp 5'-flanking sequence of SpHyastatin was obtained using genome walking. Here, we focused our experiments on investigating the roles of the putative NF-κB binding site in LPS-mediated transcriptional regulation of the SpHyastatin gene using endothelial progenitor cells and Hela cells. Luciferase reporter analyses demonstrated that the putative NF-κB element acted as a positive regulatory element and was essential for the induction of SpHyastatin promoter by LPS. These results should shed light on the in vivo functional property and the molecular mechanism of regulation for the crab AMP SpHyastatin.
Collapse
Affiliation(s)
- Zhong-Guo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ke-Xin Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, 361005, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Jie Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Bei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, 361005, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, 361005, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
9
|
Qiao K, Xu WF, Chen HY, Peng H, Zhang YQ, Huang WS, Wang SP, An Z, Shan ZG, Chen FY, Wang KJ. A new antimicrobial peptide SCY2 identified in Scylla Paramamosain exerting a potential role of reproductive immunity. FISH & SHELLFISH IMMUNOLOGY 2016; 51:251-262. [PMID: 26911409 DOI: 10.1016/j.fsi.2016.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
A new antimicrobial peptide named SCY2 with 65.08% identity in amino acid sequence to the known scygonadin (SCY1) was first characterized in Scylla paramamosain based on its cloned full-length cDNA and genomic DNA sequences. The SCY2 gene was dominantly expressed in the ejaculatory duct of male crabs and its mRNA transcripts were discerned mainly in the glandular epithelium of the inner wall and the secretion inside the ejaculatory duct. Although the SCY2 gene could not be induced with the challenge of the bacteria and fungi tested, its induction reached the highest level at the peak period of mating in mature male crabs either in June or November, suggesting its induction was likely related to seasonal reproduction changes. Moreover, it was interesting to note that, from analysis of its transcripts and protein, SCY2 was significantly expressed only in the ejaculatory duct of pre-copulatory males before mating, however it was clearly detected in the spermatheca of post-copulatory females after mating accompanied by the decreased level of SCY2 expression in the ejaculatory duct. These results suggested that the SCY2 was probably transferred from the male during mating action with the female for the purpose of protecting fertilization. The recombinant SCY2 was more active against the Gram-positive than the Gram-negative bacteria tested. It was further observed that the SCY2 transcripts were significantly increased with addition of exogenous progesterone in tissue cultures whereas the several other hormones tested had no any effect on SCY2 expression, indicating that there might be a relationship between the SCY2 expression and the induction of hormones in vivo. In summary, this study demonstrated that one role of SCY2 was likely to be involved in crab reproduction and it exerted its reproductive immune function through the mating action and the maintenance of inner sterility in the spermatheca of the female, thus leading to successful fertilization of S. paramamosain.
Collapse
Affiliation(s)
- Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wan-Fang Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ya-Qun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-Shu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Shu-Ping Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhe An
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhong-Guo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
10
|
Chen F, Bo J, Ma X, Dong L, Shan Z, Cui Q, Chen H, Wang K. A New Membrane Lipid Raft Gene SpFLT-1 Facilitating the Endocytosis of Vibrio alginolyticus in the Crab Scylla paramamosain. PLoS One 2015; 10:e0133443. [PMID: 26186350 PMCID: PMC4506021 DOI: 10.1371/journal.pone.0133443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 11/23/2022] Open
Abstract
Pathogens can enter their host cells by way of endocytosis in which the membrane lipid raft gene flotillins are probably involved in the invasion process and this is an important way to cause infection. In this study, a new gene SpFLT-1 was identified in Scylla paramamosain, which shared high identity with the flotillin-1 of other species. The SpFLT-1 gene was widely distributed in tissues and showed the highest level of mRNA transcripts in the hemocytes. This gene might be a maternal gene based on the evident results that it was highly expressed in maternal ovaries and in the early developmental stages of the zygote and early embryo stage whereas it gradually decreased in zoea 1. SpFLT-1 positively responded to the challenge of Vibrio alginolyticus with a significantly increased level of mRNA expression in the hemocytes and gills at 3 hours post infection (hpi). The SpFLT-1 protein was detected densely in the same fraction layer where the Vibrio protein was most present in the hemocytes and gills at 3 hpi. Furthermore, it was found that the expression of SpFLT-1 decreased to the base level following disappearance of the Vibrio protein at 6 hpi in the gills. Silencing SpFLT-1 inhibited the endocytosis rate of V. alginolyticus but overexpression of the gene could facilitate bacterial entry into the epithelioma papulosum cyprinid cells. Our study indicated that SpFLT-1 may act as a key protein involved in the process of bacterial infection and this sheds light on clarifying the pathogenesis of pathogens infecting S. paramamosain.
Collapse
Affiliation(s)
- Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jun Bo
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
| | - Xiaowan Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Lixia Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhongguo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Qian Cui
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Huiyun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, P. R. China
- Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, P. R. China
- * E-mail:
| |
Collapse
|
11
|
Recombinant Production of Crab Antimicrobial Protein Scygonadin Expressed as Thioredoxin and SUMO Fusions in Escherichia coli. Appl Biochem Biotechnol 2013; 169:1847-57. [DOI: 10.1007/s12010-013-0102-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 01/13/2013] [Indexed: 10/27/2022]
|
12
|
Peng H, Liu HP, Chen B, Hao H, Wang KJ. Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expr Purif 2011; 82:37-44. [PMID: 22108619 DOI: 10.1016/j.pep.2011.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023]
Abstract
The crab antimicrobial peptide scygonadin is confirmed to have antimicrobial activity against bacteria and it is probably associated with the reproductive immunity in Scylla paramamosain. To obtain large quantity of scygonadin for further biological assays, a 306 bp cDNA sequence encoding the mature peptide of scygonadin was cloned into a secretion vector of pPIC9K, and a high-level of the recombinant scygonadin was achieved in Pichia pastoris. The optimal expression condition was determined as incubation with 0.5% methanol for 48 h at 28 °C under pH 6.0, and a total of 70 mg scygonadin was expressed in 1L culture medium. The recombinant product was purified and 97% pure scygonadin was obtained using immobilized metal affinity chromatography with a yield of 46 mg/L. The recombinant scygonadin was confirmed using SDS-PAGE analysis and MS-fingerprinting. P. pastoris-derived scygonadin exhibited relatively higher antimicrobial activities against bacteria than Escherichia coli-derived scygonadin. The antimicrobial activity of the recombinant scygonadin against pathogenic Aeromonas hydrophila showed salt resistant and the killing kinetics of A. hydrophila was time dependent. Besides, the antiviral assay demonstrated that scygonadin could interfere with white spot syndrome virus (WSSV) replication in vitro-cultured crayfish haematopoietic (Hpt) cells. Taken together, this is the first report on the heterologous expression of scygonadin in P. pastoris, and P. pastoris is an effective expression system for producing large quantities of biological active scygonadin for both research and agricultural application.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, Fujian 361005, PR China
| | | | | | | | | |
Collapse
|