1
|
Comparative Transcriptome Analysis Reveals That WSSV IE1 Protein Plays a Crucial Role in DNA Replication Control. Int J Mol Sci 2022; 23:ijms23158176. [PMID: 35897756 PMCID: PMC9330391 DOI: 10.3390/ijms23158176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
For DNA viruses, the immediate-early (IE) proteins are generally essential regulators that manipulate the host machinery to support viral replication. Recently, IE1, an IE protein encoded by white spot syndrome virus (WSSV), has been demonstrated to function as a transcription factor. However, the target genes of IE1 during viral infection remain poorly understood. Here, we explored the host target genes of IE1 using RNAi coupled with transcriptome sequencing analysis. A total of 429 differentially expressed genes (DEGs) were identified from penaeid shrimp, of which 284 genes were upregulated and 145 genes were downregulated after IE1 knockdown. GO and KEGG pathway enrichment analysis revealed the identified DEGs are significantly enriched in the minichromosome maintenance (MCM) complex and DNA replication, indicating that IE1 plays a critical role in DNA replication control. In addition, it was found that Penaeus vannamei MCM complex genes were remarkably upregulated after WSSV infection, while RNAi-mediated knockdown of PvMCM2 reduced the expression of viral genes and viral loads at the early infection stage. Finally, we demonstrated that overexpression of IE1 promoted the expression of MCM complex genes as well as cellular DNA synthesis in insect High-Five cells. Collectively, our current data suggest that the WSSV IE1 protein is a viral effector that modulates the host DNA replication machinery for viral replication.
Collapse
|
2
|
Bao S, Zhang C, Aweya JJ, Yao D, Zhao Y, Tuan TN, Ma H, Zhang Y. KLF13 induces apoptotic cell clearance in Penaeus vannamei as an essential part of shrimp innate immune response to pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104242. [PMID: 34450131 DOI: 10.1016/j.dci.2021.104242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Although, in mammals, the Krüppel-like transcription factor 13 (KLF13) plays an essential role in cell proliferation, survival, differentiation, apoptosis, tumorigenesis, immune regulation, and inflammation, its role in penaeid shrimp is unclear. In the current study, we characterized a KLF13 homolog in Penaeus vannamei (PvKLF13), with full-length cDNA of 1677 bp and 1068 bp open reading frame (ORF) encoding a putative protein of 355 amino acids, which contains three ZnF_C2H2 domains. Sequence and phylogenetic analysis revealed that PvKLF13 shares a close evolutionary relationship with KLF13 from invertebrates. Transcript levels of PvKLF13 were ubiquitously expressed in shrimp and induced in hemocytes upon challenge with Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus (WSSV), suggesting the involvement of PvKLF13 in shrimp immune response to pathogens. Besides, knockdown of PvKLF13 decreased hemocytes apoptosis in terms of increased expression of pro-survival PvBcl-2, but decreased expression of pro-apoptotic PvBax and PvCytochrome C, coupled with high PvCaspase3/7 activity, especially upon V. parahaemolyticus challenge. The findings here indicate the involvement of PvKLF13 in apoptotic cell clearance as an essential part of shrimp innate immune response to pathogens.
Collapse
Affiliation(s)
- Shiyuan Bao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Chuchu Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Tran Ngoc Tuan
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
3
|
Gao Y, Liu LK, Wang KJ, Liu HP. A negative elongation factor E inhibits white spot syndrome virus replication by suppressing promoter activity of the viral immediate early genes in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103665. [PMID: 32147597 DOI: 10.1016/j.dci.2020.103665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Invertebrates rely solely on the innate immune system to protect against virus infection, while the viral infection must rely on the transcriptional system of the host cell to achieve the expression of viral genes, which is naturally regulated by the host's transcriptional system. However, the mechanism of the host against viral transcription in host cells is still poorly understood in crustaceans. Previously, we found that the partial transcript sequence of a negative elongation factor E (named as CqNELF-E) was up-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon white spot syndrome virus (WSSV) infection, suggesting a possible role of CqNELF-E in WSSV-host interaction. In the present study, we revealed the function of CqNELF-E. The full-length cDNA sequence of CqNELF-E was identified with 1726 bp from red claw crayfish, which contained an open reading frame of 816 bp, encoding 271 amino acids. Amino acid sequencing analysis revealed that the CqNELF-E had a conserved RNA recognition motif (RRM) and a leucine zipper motif (LZM). Tissue distribution analysis showed that CqNELF-E was widely expressed in various tissues with the highest expression in muscle, relatively abundant in Hpt and the lowest presence in heart. Interestingly, the gene expression of CqNELF-E was significantly up-regulated at both 6 and 12 hpi after WSSV infection in Hpt cell cultures in red claw crayfish. In addition, the expression of both the viral immediately early gene (IE) 1 (IE1) and a late gene envelope protein VP28 were significantly increased after gene silencing of CqNELF-E in Hpt cells, indicating the potential suppression role of CqNELF-E against the viral infection. Further study revealed that the CqNELF-E had an inhibitory effect on the promoter activity of WSSV IE genes WSV051, WSV069 (IE1) and WSV083 by a dual luciferase reporter gene assay. Taken together, these results suggest that CqNELF-E plays an antiviral role, probably via inhibition on the viral transcription activity in WSSV infection in a crustacean.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
4
|
Liu LK, Gao RL, Gao Y, Xu JY, Guo LM, Wang KJ, Liu HP. A histone K-lysine acetyltransferase CqKAT2A-like gene promotes white spot syndrome virus infection by enhancing histone H3 acetylation in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103640. [PMID: 32078959 DOI: 10.1016/j.dci.2020.103640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In contrast to that hypoacetylation of histones is associated with condensed chromatin and gene silencing, the hyperacetylation of histones can promote an "open chromatin" conformation and transcriptional activation, which is recruited by some viruses to enhance the viral genome replication in host cells. However, the function of histone acetylation modification in the infection of white spot syndrome virus (WSSV), one of the most virulent pathogens for crustaceans like shrimp and crayfish at present, is still unknown. Previously, we found that the transcript of a histone K-Lysine acetyltransferase CqKAT2A-like gene was down-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon WSSV infection at 12 hpi. To further reveal its possible role in anti-WSSV response, CqKAT2A-like gene was then identified with an open reading frame (ORF) of 2523 bp encoding 840 amino acids, which contained a conserved PCAF-N domain, acetyltransf1 domain and bromo domain. Gene expression analysis showed that CqKAT2A-like was distributed in all tissues examined with high presence in haemocyte and muscle, and the transcript was significantly down-regulated after WSSV infection in Hpt cells. Furthermore, the level of histone H3 acetylation (H3ac) was strongly reduced by gene silencing of CqKAT2A-like, which was accompanied with the significantly decreased gene expression of WSSV in Hpt cells, suggesting that CqKAT2A-like gene can promote the activity H3ac and the replication of WSSV. When the H3ac was induced by histone deacetyltransferase inhibitor TSA, the transcription of WSSV genes including both IE1 and VP28 genes was significantly increased, indicating that H3ac participated in WSSV infection in Hpt cells. Taken together, these data suggest that CqKAT2A-like gene might promote the replication of WSSV by regulating H3ac, which sheds new light on the pathogenesis of WSSV in crustaceans.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yan Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiao-Yang Xu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Mei Guo
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Yang P, Aweya JJ, Yao D, Wang F, Lun J, Hong Y, Sun K, Zhang Y. The krüppel-like factor of Penaeus vannamei negatively regulates transcription of the small subunit hemocyanin gene as part of shrimp immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 100:397-406. [PMID: 32201349 DOI: 10.1016/j.fsi.2020.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Hemocyanin is a multifunctional respiratory glycoprotein, which has also been implicated in other biological functions in shrimp. Moreover, recent studies have revealed that hemocyanin is also involved in a broad range of immune-related activities in shrimp. However, in spite of the considerable interest in unraveling the reasons behind the multiple immune-related functions of hemocyanin, little is known about its transcriptional regulation. Here, DNA pull-down and Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS) analyses were used to isolate and identify the putative transcription factor(s) that are involved in the transcriptional regulation of the small subunit hemocyanin gene of Penaeus vannamei (PvHMCs). Krüppel-like factor (designated PvKruppel), a zinc finger transcription factor homolog in P. vannamei, was identified among the putative transcription factors, while bioinformatics analysis revealed the presence of Krüppel-like factor binding site (KLF motif) on the core promoter region of PvHMCs. Mutational analysis and electrophoretic mobility shift assay (EMSA) confirmed that PvKruppel could bind to the KLF motif on the core promoter region of PvHMCs. Moreover, in response to lipopolysaccharide (LPS), Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, transcript levels of PvKruppel and PvHMCs were negatively correlated. Furthermore, overexpression of PvKruppel significantly reduced the promoter activity of PvHMCs, while PvKruppel knockdown by RNA interference or lipopolysaccharides (LPS) stimulation resulted in a significant increase in the transcript level of PvHMCs. Taken together, our present study provides mechanistic insights into the transcriptional regulation of PvHMCs by PvKruppel during shrimp immune response to pathogens.
Collapse
Affiliation(s)
- Peikui Yang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jingsheng Lun
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yujian Hong
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Kaihui Sun
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
6
|
Huang Y, Ren Q. A Kruppel-like factor from Macrobrachium rosenbergii (MrKLF) involved in innate immunity against pathogen infection. FISH & SHELLFISH IMMUNOLOGY 2019; 95:519-527. [PMID: 31683000 DOI: 10.1016/j.fsi.2019.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Kruppel-like factors (KLFs) belong to a family of zinc finger-containing transcription factors that are widely present in eukaryotes. In the present study, a novel KLF from the giant river prawn Macrobrachium rosenbergii (designated as MrKLF) was successfully cloned and characterized. The full-length cDNA of MrKLF was 1799 bp with an open reading frame of 1332 bp that encodes a putative protein of 444 amino acids, including three conserved ZnF_C2H2 domains at the C-terminus. Multiple alignment analysis showed that MrKLF and other crustacean KLFs shared high similarity. Quantitative real-time PCR analysis revealed that MrKLF mRNA was found in different tissues of prawns and detected in the gills, hepatopancreas, and intestines. After the challenge with Vibrio parahaemolyticus and Aeromonas hydrophila, different expression patterns of MrKLF in the gills, intestines, and hepatopancreas were observed. RNA interference analysis indicated that MrKLF was involved in regulating the expression of four antimicrobial peptides, namely, Crustin (Crus) 2, Crus8, anti-lipopolysaccharide factor (ALF) 1, and ALF3. These results help promote research on M. rosenbergii innate immunity.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China.
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
7
|
Jaturontakul K, Jatuyosporn T, Laohawutthichai P, Kim SY, Mori T, Supungul P, Hakoshima T, Tassanakajon A, Krusong K. Molecular Characterization of Viral Responsive Protein 15 and Its Possible Role in Nuclear Export of Virus in Black Tiger Shrimp Penaeus monodon. Sci Rep 2017; 7:6523. [PMID: 28747797 PMCID: PMC5529560 DOI: 10.1038/s41598-017-06653-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
A viral responsive protein 15 from Penaeus monodon (PmVRP15) has been reported to be important for white spot syndrome virus (WSSV) infection in vivo. This work aims to characterize PmVRP15 and investigate its possible role in nuclear import/export of the virus. Circular dichroism spectra showed that PmVRP15 contains high helical contents (82%). Analytical ultracentrifugation suggested that PmVRP15 could possibly form oligomers in solution. A subcellular fractionation study showed that PmVRP15 was found in heavy and light membrane fractions, indicating that PmVRP15 may be associated with endoplasmic reticulum. Double-stranded RNAi-mediated knockdown of PmVRP15 gene expression in vitro showed no effect on WSSV copy number in whole hemocyte cells. However, PmVRP15 silencing resulted in an accumulation of WSSV DNA in the nucleus of PmVRP15-silenced hemocytes. Immunofluorescence confocal microscopy showed that PmVRP15 knockdown hemocytes had a much lower level of VP28 (WSSV envelope protein), in comparison to that in the control. It is likely that PmVRP15 may play a role in viral nuclear egress.
Collapse
Affiliation(s)
- Krisadaporn Jaturontakul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thapanan Jatuyosporn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sun-Yong Kim
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Premruethai Supungul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Pan C, Wang W, Yuan H, Yang L, Chen B, Li D, Chen J. The immediate early protein WSV187 can influence viral replication via regulation of JAK/STAT pathway in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:89-96. [PMID: 28232015 DOI: 10.1016/j.dci.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The world production of shrimp is seriously affected by the white spot syndrome virus (WSSV). Viral immediate-early (IE) genes encode regulatory proteins critical for the viral lifecycle. In spite of their importance, only five out of the 21 identified WSSV IE genes are functionally characterized. Here, we report the use of Drosophila melanogaster as a model to explore the role of WSSV IE gene wsv187. In vivo expression of WSV187 in transgenic flies show WSV187 localized in the cytoplasm. Overexpression of wsv187 results wing defects consistent with phenotypes observed in JAK/STAT exacerbated flies. After artificial infection of the DCV virus, the flies expressing wsv187 showed a lower viral load, a higher survival rate and an up-regulated STAT92E expression. These data demonstrate wsv187 plays a role in the controlling of virus replication by activating host JAK/STAT pathway.
Collapse
Affiliation(s)
- Changkun Pan
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| | - Huifang Yuan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Lirong Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Baoru Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Dengfeng Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| |
Collapse
|
9
|
Li C, Li H, Wang S, Song X, Zhang Z, Qian Z, Zuo H, Xu X, Weng S, He J. The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:26-36. [PMID: 25912357 DOI: 10.1016/j.dci.2015.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Growing evidence indicates that activator protein-1 (AP-1) plays a major role in stimulating the transcription of immune effector molecules in cellular response to an incredible array of stimuli, including growth factors, cytokines, cellular stresses and bacterial and viral infection. Here, we reported the isolation and characterization of a cDNA from Litopenaeus vannamei encoding the full-length c-Fos protein (named as Lvc-Fos). The predicted amino acid sequences of Lvc-Fos contained a basic-leucine zipper (bZIP) domain, which was characteristic of members of the AP-1 family. Immunoprecipitation and native-PAGE assays determined that Lvc-Fos could interact with the Lvc-Jun, a homolog of c-Jun family in L. vannamei, in a heterodimer manner. Further investigation demonstrated that Lvc-Fos and Lvc-Jun were expressed in all tested tissues and located in the nucleus. Real-time RT-PCR analysis showed both Lvc-Fos and Lvc-Jun in gills were up-regulated during Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenges. In addition, reporter gene assays indicated Lvc-Fos and Lvc-Jun could activate the expression of antimicrobial peptides (AMPs) of Drosophila and shrimp, as well as WSSV immediate early (IE) genes wsv069 and wsv249, in a different manner. Knockdown of Lvc-Fos or Lvc-Jun by RNA interference (RNAi) resulted in higher mortalities of L. vannamei after infection with V. parahaemolyticus, suggesting that Lvc-Fos and Lvc-Jun might play protective roles in bacterial infection. However, silencing of Lvc-Fos or Lvc-Jun in shrimp caused lower mortalities and virus loads under WSSV infection, suggesting that Lvc-Fos and Lvc-Jun could be engaged for WSSV replication and pathogenesis. In conclusion, our results provided experimental evidence and novel insight into the roles of L. vannamei AP-1 in bacterial and viral infection.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xuan Song
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijian Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Sellars MJ, Trewin C, McWilliam SM, Glaves RSE, Hertzler PL. Transcriptome profiles of Penaeus (Marsupenaeus) japonicus animal and vegetal half-embryos: identification of sex determination, germ line, mesoderm, and other developmental genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:252-265. [PMID: 25634056 DOI: 10.1007/s10126-015-9613-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
There is virtually no knowledge of the molecular events controlling early embryogenesis in Penaeid shrimp. A combination of controlled spawning environment, shrimp embryo micro-dissection techniques, and next-generation sequencing was used to produce transcriptome EST datasets of Penaeus japonicus animal and vegetal half-embryos. Embryos were collected immediately after spawning, and then blastomeres were separated at the two-cell stage and allowed to develop to late gastrulation, then pooled for RNA isolation and cDNA synthesis. Ion Torrent sequencing of cDNA from approximately 500 pooled animal and vegetal half-embryos from multiple spawnings resulted in 560,516 and 493,703 reads, respectively. Reads from each library were assembled and Gene Ontogeny analysis produced 3479 annotated animal contigs and 4173 annotated vegetal contigs, with 159/139 hits for developmental processes in the animal/vegetal contigs, respectively. Contigs were subject to BLAST for selected developmental toolbox genes. Some of the genes found included the sex determination genes sex-lethal and transformer; the germ line genes argonaute 1, boule, germ cell-less, gustavus, maelstrom, mex-3, par-1, pumilio, SmB, staufen, and tudor; the mesoderm genes brachyury, mef2, snail, and twist; the axis determination/segmentation genes β-catenin, deformed, distal-less, engrailed, giant, hairy, hunchback, kruppel, orthodenticle, patched, tailless, and wingless/wnt-8c; and a number of cell-cycle regulators. Animal and vegetal contigs were computationally subtracted from each other to produce sets unique to either half-embryo library. Genes expressed only in the animal half included bmp1, kruppel, maelstrom, and orthodenticle. Genes expressed only in the vegetal half included boule, brachyury, deformed, dorsal, engrailed, hunchback, spalt, twist, and wingless/wnt-8c.
Collapse
Affiliation(s)
- Melony J Sellars
- CSIRO Agriculture Flagship, Integrated Sustainable Aquaculture, Dutton Park, Qld, 4102, Australia,
| | | | | | | | | |
Collapse
|
11
|
Yao D, Ruan L, Xu X, Shi H. Identification of a c-Jun homolog from Litopenaeus vannamei as a downstream substrate of JNK in response to WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:282-289. [PMID: 25530093 DOI: 10.1016/j.dci.2014.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
c-Jun, a major substrate of c-Jun N-terminal kinase (JNK), participates in regulating gene transcription in response to various stimuli, including cytokines, stress signals, bacterial and viral infection. Results from our previous studies suggested that Litopenaeus vannamei JNK (LvJNK) could be utilized by white spot syndrome virus (WSSV) to facilitate viral replication and gene expression. In this article, a c-Jun homolog from Litopenaeus vannamei (designated as Lvc-Jun) was cloned and its role in WSSV infection was studied. Sequence analysis displayed that Lvc-Jun was a novel homolog of c-Jun family, which contained characteristic Jun and basic leucine zipper (bZIP) domains, and two conserved serine phosphorylation sites (Ser49/59). Semi-quantitative RT-PCR analysis showed that Lvc-Jun mRNAs were expressed in all examined tissues. Further investigation determined that Lvc-Jun was located in the nucleus through self-interaction and its phosphorylation levels could be reduced by JNK inhibitor, suggesting that Lvc-Jun could be regulated by LvJNK through phosphorylation and function as a transcription regulator in a homodimer. During the process of WSSV infection, the transcription levels of Lvc-Jun were up-regulated associating with the raising expression and phosphorylation levels of its protein. Moreover, TPA (12-O-tetradecanoylphorbol-13-acetate), a potent inducer of c-Jun, could remarkably promote viral immediate-early gene wsv069 transcription in crayfish hemocytes. Conclusively, our results provided experimental evidences that Lvc-Jun was engaged in WSSV infection and further implied that JNK-c-Jun signaling pathway might be important for WSSV replication and viral gene expression.
Collapse
Affiliation(s)
- Defu Yao
- School of Life Science, Xiamen University, Xiamen 361005, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| |
Collapse
|
12
|
Liu WJ, Lo CF, Kou GH, Leu JH, Lai YJ, Chang LK, Chang YS. The promoter of the white spot syndrome virus immediate-early gene WSSV108 is activated by the cellular KLF transcription factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:7-18. [PMID: 25445906 DOI: 10.1016/j.dci.2014.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
A series of deletion and mutation assays of the white spot syndrome virus (WSSV) immediate-early gene WSSV108 promoter showed that a Krüppel-like factor (KLF) binding site located from -504 to -495 (relative to the transcription start site) is important for the overall level of WSSV108 promoter activity. Electrophoretic mobility shift assays further showed that overexpressed recombinant Penaeus monodon KLF (rPmKLF) formed a specific protein-DNA complex with the (32)P-labeled KLF binding site of the WSSV108 promoter, and that higher levels of Litopenaeus vannamei KLF (LvKLF) were expressed in WSSV-infected shrimp. A transactivation assay indicated that the WSSV108 promoter was strongly activated by rPmKLF in a dose-dependent manner. Lastly, we found that specific silencing of LvKLF expression in vivo by dsRNA injection dramatically reduced both WSSV108 expression and WSSV replication. We conclude that shrimp KLF is important for WSSV genome replication and gene expression, and that it binds to the WSSV108 promoter to enhance the expression of this immediate-early gene.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, College of Science, University of Taipei, Taipei 100, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Guang-Hsiung Kou
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jiann-Horng Leu
- Institute of Marine Biology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ying-Jang Lai
- Department of Food Science, College of Science and Engineering, National Quemoy University, Kinmen 892, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Shiang Chang
- Department of Molecular Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan.
| |
Collapse
|
13
|
Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:364-372. [PMID: 24881625 DOI: 10.1016/j.dci.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.
Collapse
Affiliation(s)
- Ping-Han Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shao-Chia Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Han Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Si Cai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
14
|
Sookruksawong S, Sun F, Liu Z, Tassanakajon A. RNA-Seq analysis reveals genes associated with resistance to Taura syndrome virus (TSV) in the Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:523-533. [PMID: 23921257 DOI: 10.1016/j.dci.2013.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
Outbreak of Taura syndrome virus (TSV) is one of the major pathogens of the Pacific white shrimp Litopenaeus vannamei. Although selective breeding for improvement of TSV resistance in L. vannamei has been successfully developed and has led to a great benefit to the shrimp farming industry worldwide. The molecular mechanisms underlying the viral resistance in shrimp remain largely unknown. In the present study, we conducted the first transcriptomic profiling of host responses in hemolymph and hemocytes in order to identify the differentially expressed genes associated with resistance to TSV in L. vannamei. High-throughput RNA-Seq was employed, obtaining 193.6 and 171.2 million high-quality Illumina reads from TSV-resistant and susceptible L. vannamei lines respectively. A total of 61,937 contigs were generated with an average length of 546.26 bp. BLASTX-based gene annotation (E-value < 10(-5)) allowed the identification of 12,398 unique proteins against the NCBI non-redundant NR database. In addition, comparison of digital gene expression between resistant and susceptible strains revealed 1374 significantly differentially expressed contigs (representing 697 unigenes). Gene pathway analysis of the differentially expressed gene set highlighted several putative genes involved in the immune response activity including (1) pathogen/antigen recognition including immune regulator, adhesive protein and signal transducer; (2) coagulation; (3) proPO pathway cascade; (4) antioxidation; and (5) protease. The expression patterns of 22 differentially expressed genes involving immune response were validated by quantitative real-time RT-PCR (average correlation coefficients 0.94, p-value < 0.001). Our results provide valuable information on gene functions associated with resistance to TSV in L. vannamei.
Collapse
Affiliation(s)
- Suchonma Sookruksawong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
15
|
Xue S, Liu Y, Zhang Y, Sun Y, Geng X, Sun J. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection. PLoS One 2013; 8:e76718. [PMID: 24204661 PMCID: PMC3799976 DOI: 10.1371/journal.pone.0076718] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/26/2013] [Indexed: 12/03/2022] Open
Abstract
Background White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). Results RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. Conclusions This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Shuxia Xue
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
| | - Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
| | - Yan Sun
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, Tianjin, People’s Republic of China
- * E-mail:
| |
Collapse
|
16
|
GAO YAN, LIU XIANFENG, LU XUECHUN, MA CONG, CAO JIAN, FAN LI. Protective effects of atorvastatin against oxidized LDL-induced downregulation of KLF expression in EA.hy926 cells. Int J Mol Med 2012; 30:330-6. [DOI: 10.3892/ijmm.2012.999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/12/2012] [Indexed: 11/06/2022] Open
|