1
|
Wang J, Wang Q, Chen Y, Wang L, Zhao A, Sha Z. Cloning, expression profile of the complement component C9 gene and influence of the recombinant C9 protein on peripheral mononuclear leukocytes transcriptome in half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2020; 104:101-110. [PMID: 32464273 DOI: 10.1016/j.fsi.2020.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The ninth complement component (C9) is a terminal complement component (TCC) that is involved in creating the membrane attack complex (MAC) on the target cell surface. In this study, the CsC9 (C9 of Cynoglossus semilaevis) cDNA sequence was cloned and characterized. The full-length CsC9 cDNA measured 2,150 bp, containing an open reading frame (ORF) of 1,803 bp, a 5'-untranslated region (UTR) of 24 bp and a 3'-UTR of 323 bp. A domain search revealed that the CsC9 protein contains five domains, including two TSP1s, an LDLRA, an EGF, and a MACPF. Quantitative real-time PCR analysis showed that CsC9 at the mRNA level was expressed in all the tested tissues, with the highest expression being observed in the liver. CsC9 expression is significantly upregulated in the tested tissues after challenge with Vibrio anguillarum. To further characterize the role of CsC9, peripheral blood mononuclear cells of C. semilaevis were used for transcriptome analysis after incubation with recombinant CsC9 (rCsC9) protein. A total of 3,775 significant differentially expressed genes (DEGs) were identified between the control and the rCsC9-treated group, including 2,063 upregulated genes and 1,712 downregulated genes. KEGG analyses revealed that the DEGs were enriched in cell adhesion molecules, cytokine-cytokine receptor interactions, T cell receptor signaling pathways, B cell receptor signaling pathways and Toll-like receptor signaling pathways. The results of this study indicate that in addition to participating in MAC formation, CsC9 might play multiple roles in the innate and adaptive immunity of C. semilaevis.
Collapse
Affiliation(s)
- Jingchao Wang
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Qian Wang
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yadong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Linqing Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Aiyun Zhao
- College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- College of Life Science, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Hua XT, Fan K, Zhang Z, Li X, Xia Y, Liu PF, Liu Y. Characterization and expression analysis of the C8α and C9 terminal complement components from pufferfish (Takifugu rubripes). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103634. [PMID: 32004542 DOI: 10.1016/j.dci.2020.103634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
C8α and C9 mediate the membrane attack complex formation and bacterial lysis and are important components in the complement system. The cDNA sequences of the C8α and C9 genes were cloned from Takifugu rubripes. The full-length cDNA of Tr-C8α was 1893 bp and included a 5'-UTR of 69 bp and 3'-UTR of 83 bp. The full-length cDNA of Tr-C9 was 2083 bp and included a 5'-UTR of 72 bp and 3'-UTR of 250 bp. The expression of Tr-C8α and Tr-C9 was detected in newly fertilized eggs of T. rubripes. The expression of these two genes was at a higher level in the liver than in other tissues tested. After lipopolysaccharide (LPS) challenge, the gene expression of Tr-C8α and Tr-C9 increased more significantly in the liver. With these combined results, we further understood how Tr-C8α and Tr-C9 function in the innate immunity of pufferfish. Our findings could deepen the understanding of immune regulation in pufferfish.
Collapse
Affiliation(s)
- Xin-Tong Hua
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Kunpeng Fan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Zhiqiang Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Xiaohao Li
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
3
|
Liyanage DS, Omeka WKM, Godahewa GI, Lee S, Nam BH, Lee J. Membrane attack complex-associated molecules from redlip mullet (Liza haematocheila): Molecular characterization and transcriptional evidence of C6, C7, C8β, and C9 in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 81:1-9. [PMID: 29981471 DOI: 10.1016/j.fsi.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
The redlip mullet (Liza haematocheila) is one of the most economically important fish in Korea and other East Asian countries; it is susceptible to infections by pathogens such as Lactococcus garvieae, Argulus spp., Trichodina spp., and Vibrio spp. Learning about the mechanisms of the complement system of the innate immunity of redlip mullet is important for efforts towards eradicating pathogens. Here, we report a comprehensive study of the terminal complement complex (TCC) components that form the membrane attack complex (MAC) through in-silico characterization and comparative spatial and temporal expression profiling. Five conserved domains (TSP1, LDLa, MACPF, CCP, and FIMAC) were detected in the TCC components, but the CCP and FIMAC domains were absent in MuC8β and MuC9. Expression analysis of four TCC genes from healthy redlip mullets showed the highest expression levels in the liver, whereas limited expression was observed in other tissues; immune-induced expression in the head kidney and spleen revealed significant responses against Lactococcus garvieae and poly I:C injection, suggesting their involvement in MAC formation in response to harmful pathogenic infections. Furthermore, the response to poly I:C may suggest the role of TCC components in the breakdown of the membrane of enveloped viruses. These findings may help to elucidate the mechanisms behind the complement system of the teleosts innate immunity.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
4
|
Sun P, Bao P, Tang B. Transcriptome analysis and discovery of genes involved in immune pathways in large yellow croaker (Larimichthys crocea) under high stocking density stress. FISH & SHELLFISH IMMUNOLOGY 2017; 68:332-340. [PMID: 28698122 DOI: 10.1016/j.fsi.2017.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
The large yellow croaker, Larimichthys crocea, is an economically important maricultured species in southeast China. Owing to the importance of stocking densities in commercial fish production, it is crucial to establish the physiological responses and molecular mechanisms that govern adaptation to crowding in order to optimize welfare and health. In the present study, an extensive immunity-related analysis was performed at the transcriptome level in L. crocea in response to crowding stress. Over 145 million high-quality reads were generated and de novo assembled into a final set of 40,123 unigenes. Gene Ontology and genome analyses revealed that molecular function, biological process, intracellular, ion binding, and cell process were the most highly enriched pathways among genes that were differentially expressed under stress. Among all of the pathways involved, 16 pathways were related to the immune system, among which the complement and coagulation cascades pathway was the most enriched for differentially expressed immunity-related genes, followed by the chemokine signaling pathway, toll-like receptor signaling pathway, and leukocyte transendothelial migration pathway. The consistently high expression of immune-related genes in the complement and coagulation cascades pathway (from 24 to 96 h after being subjected to stress) suggested its importance in both response to stress and resistance against bacterial invasion at an early stage. These results also demonstrated that crowding can significantly induce immunological responses in fish. However, long-term exposure to stress eventually impairs the defense capability in fish.
Collapse
Affiliation(s)
- Peng Sun
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| | - Peibo Bao
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Baojun Tang
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
5
|
Qin C, Shao T, Zhao D, Duan H, Wen Z, Yuan D, Li H, Qi Z. Effect of ammonia-N and pathogen challenge on complement component 8α and 8β expression in the darkbarbel catfish Pelteobagrus vachellii. FISH & SHELLFISH IMMUNOLOGY 2017; 62:107-115. [PMID: 28027983 DOI: 10.1016/j.fsi.2016.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The complement components C8α and C8β mediate the formation of the membrane attack complex (MAC) to resist pathogenic bacteria and play important roles in innate immunity. Full-length complement C8α (Pv-C8α) and C8β (Pv-C8β) cDNA were identified in the darkbarbel catfish Pelteobagrus vachellii, and their mRNA expression levels were analyzed after ammonia-N and pathogen treatment. The Pv-C8α gene contained 1983 bp, including a 1794-bp open reading frame (ORF) encoding 598 amino acids. The Pv-C8β gene contained 1952 bp, including a 1761-bp ORF encoding 587 amino acids. Pv-C8α and Pv-C8β had the highest amino acid identity with rainbow trout Oncorhynchus mykiss C8α (62%) and Japanese flounder Paralichthys olivaceus C8β (83%), respectively. Sequence analysis indicated that both Pv-C8α and Pv-C8β contained a thrombospondin type-1 (TSP1) domain, a low-density lipoprotein receptor class A (LDLR-A) domain, a membrane attack complex/perforin (MACPF) domain and an epidermal growth factor-like (EGF-like) domain. In addition, Pv-C8α and Pv-C8β were mainly distributed in the liver, head kidney, spleen, and eggs. Under ammonia-N stress, the Pv-C8α and Pv-C8β mRNA levels significantly decreased (P < 0.05), with minimum levels, respectively, attained at 24 and 48 h in the liver, 48 and 24 h in the head kidney, and 24 and 24 h in the spleen. After Aeromonas hydrophila challenge, the Pv-C8α and Pv-C8β mRNA levels significantly increased (P < 0.05), with maximum levels, respectively, attained at 48 and 24 h in the liver, 24 and 48 h in the head kidney, and 48 and 48 h in the spleen. The present study indicated that Pv-C8α and Pv-C8β exhibited important immune responses to infection and that ammonia-N in water decreased the immune responses of Pv-C8α and Pv-C8β.
Collapse
Affiliation(s)
- Chuanjie Qin
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China.
| | - Ting Shao
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China; College of Life Science, Sichuan Normal University, Chengdu 610101, PR China
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Jiangxi 330031, PR China
| | - Huiguo Duan
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Zhengyong Wen
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Dengyue Yuan
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Huatao Li
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Zemin Qi
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| |
Collapse
|
6
|
Godahewa GI, Perera NCN, Bathige SDNK, Nam BH, Noh JK, Lee J. Complement factor D homolog involved in the alternative complement pathway of rock bream (Oplegnathus fasciatus): Molecular and functional characterization and immune responsive mRNA expression analysis. FISH & SHELLFISH IMMUNOLOGY 2016; 55:423-433. [PMID: 27311435 DOI: 10.1016/j.fsi.2016.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
The complement system serves conventional role in the innate defense against common invading pathogens. Complement factor D (CfD) is vital to alternative complement pathway activation in cleaving complement factor B. This catalytic reaction forms the alternative C3 convertase that is crucial for complement-mediated pathogenesis. In this study, rock bream (Oplegnathus fasciatus) CfD (OfCfD) was characterized and OfCfD mRNA expression was investigated. OfCfD encodes 277 amino acids (aa) for a 30-kDa polypeptide. A domain analysis of the deduced OfCfD aa sequence showed a single serine protease trypsin superfamily domain, a serine active region, three active sites, and three substrate-binding sites. Pairwise sequence comparisons indicated that OfCfD has the highest identity (84.5%) with Oreochromis niloticus CfD. The phylogenetic tree revealed a common ancestral origin of CfD members, with fish CfD distinct from other vertebrate orthologs. The structural arrangement of the OfCfD gene (2451 bp) contained five exons interrupted by four introns. A spatial transcriptional analysis indicated that OfCfD transcripts constitutively expressed in all of the examined rock bream tissues, and that they were highest in the spleen and liver. In addition, OfCfD transcripts were immunologically upregulated by lipopolysaccharide (LPS) (12 h p.i.), Streptococcus iniae (12 h p.i.), rock bream iridovirus (RBIV) (6-12 h p.i.), and poly I:C (6 h p.i.) in spleen tissue. OfCfD is a trypsin protease and its recombinant protein showed strong protease activity similar to that of trypsin, indicating its catalytic function in the alternative pathway. Together, our findings suggest that OfCfD might be involved in immune responses in rock bream.
Collapse
Affiliation(s)
- G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - N C N Perera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
7
|
Molecular Characterization and Expression Analyses of the Complement Component C8α, C8β and C9 Genes in Yellow Catfish (Pelteobagrus fulvidraco) after the Aeromonas hydrophila Challenge. Int J Mol Sci 2016; 17:345. [PMID: 27005612 PMCID: PMC4813206 DOI: 10.3390/ijms17030345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
The complement components C8α, C8β and C9 have important roles in the innate immune system against invading microorganisms. Partial cDNA sequences of the Pf_C8α, Pf_C8β and Pf_C9 genes (Pf: abbreviation of Pelteobagrusfulvidraco) were cloned from yellow catfish. The Pf_C8α, Pf_C8β and Pf_C9 genes showed the greatest amino acid similarity to C8α (54%) and C8β (62%) of zebrafish and to C9 (52%) of grass carp, respectively. Ontogenetic expression analyses using real-time quantitative PCR suggested that the three genes may play crucial roles during embryonic and early larval development. The mRNA expressions of the three genes were all at the highest levels in liver tissue, and at lower or much lower levels in 16 other tissues, demonstrating that the liver is the primary site for the protein synthesis of Pf_C8α, Pf_C8β and Pf_C9. Injection of Aeromonashydrophila led to up-regulation of the three genes in the spleen, head kidney, kidney, liver and blood tissues, indicating that the three genes may contribute to the host’s defense against invading pathogenic microbes. An increased understanding of the functions of the Pf_C8α, Pf_C8β and Pf_C9 genes in the innate immunity of yellow catfish will help enhance production of this valuable freshwater species.
Collapse
|
8
|
Godahewa GI, Bathige SDNK, Herath HMLPB, Noh JK, Lee J. Characterization of rock bream (Oplegnathus fasciatus) complement components C1r and C1s in terms of molecular aspects, genomic modulation, and immune responsive transcriptional profiles following bacterial and viral pathogen exposure. FISH & SHELLFISH IMMUNOLOGY 2015; 46:656-668. [PMID: 26241508 DOI: 10.1016/j.fsi.2015.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
The complement components C1r and C1s play a crucial role in innate immunity via activation of the classical complement cascade system. As initiators of the pathogen-induced signaling cascade, C1r and C1s modulate innate immunity. In order to understand the immune responses of teleost C1r and C1s, Oplegnathus fasciatus C1r and C1s genes (OfC1r and OfC1s) were identified and characterized. The genomic sequence of OfC1r was enclosed with thirteen exons that represented a putative peptide with 704 amino acids (aa), whereas eleven exons of OfC1s represented a 691 aa polypeptide. In addition, genomic analysis revealed that both OfC1r and OfC1s were located on a single chromosome. These putative polypeptides were composed of two CUB domains, an EGF domain, two CCP domains, and a catalytically active serine protease domain. Phylogenetic analysis of C1r and C1s showed that OfC1r and OfC1s were evolutionary close to the orthologs of Pundamilia nyererei (identity = 73.4%) and Oryzias latipes (identity = 58.0%), respectively. Based on the results of quantitative real-time qPCR analysis, OfC1r and OfC1s transcripts were detected in all the eleven different tissues, with higher levels of OfC1r in blood and OfC1s in liver. The putative roles of OfC1r and OfC1s in response to pathogenic bacteria (Edwardsiella tarda and Streptococcus iniae) and virus (rock bream iridovirus, RBIV) were investigated in liver and head kidney tissues. The transcription of OfC1r and OfC1s was found to be significantly upregulated in response to pathogenic bacterial and viral infections. Overall findings of the present study demonstrate the potential immune responses of OfC1r and OfC1s against invading microbial pathogens and the activation of classical signaling cascade in rock bream.
Collapse
Affiliation(s)
- G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - H M L P B Herath
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
9
|
Luo S, Xie F, Liu Y, Wang WN. Molecular cloning, characterization and expression analysis of complement component C8 beta in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge. Gene 2015; 558:291-8. [DOI: 10.1016/j.gene.2015.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/09/2014] [Accepted: 01/10/2015] [Indexed: 01/08/2023]
|
10
|
Bathige SDNK, Whang I, Umasuthan N, Wickramaarachchi WDN, Wan Q, Lim BS, Park MA, Lee J. Three complement component 1q genes from rock bream, Oplegnathus fasciatus: genome characterization and potential role in immune response against bacterial and viral infections. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1442-1454. [PMID: 23994081 DOI: 10.1016/j.fsi.2013.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 07/20/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
Complement component 1q (C1q) is a subcomponent of the C1 complex and the key protein that recognizes and binds to a broad range of immune and non-immune ligands to initiate the classical complement pathway. In the present study, we identified and characterized three novel C1q family members from rock bream, Oplegnathus fasciatus. The full-length cDNAs of C1q A-like (RbC1qAL), C1q B-like (RbC1qBL), and C1q C-like (RbC1qCL) consist of 780, 720 and 726 bp of nucleotide sequence encoding polypeptides of 260, 240 and 242 amino acids, respectively. All three RbC1qs possess a leading signal peptide and collagen-like region(s) (CLRs) in the N-terminus, and a C1q domain at the C-terminus. The C1q characteristic Gly-X-Y repeats are present in all three RbC1qs, while the CLR-associated sequence that enhances phagocytic activity is present in RbC1qAL ((49)GEKGEP(54)) and RbC1qCL ((70)GEKGEP(75)). Moreover, the coding region was distributed across six exons in RbCqAL and RbC1qCL, but only five exons in RbC1qBL. Phylogenetic analysis revealed that the three RbC1qs tightly cluster with the fish clade. All three RbC1qs are most highly expressed in the spleen and liver, as indicated by qPCR tissue profiling. In addition, all three are transcriptionally responsive to immune challenge, with liver expression being significantly up-regulated in the early phase of infection with intact, live bacteria (Edwardsiella tarda and Streptococcus iniae) and virus (rock bream iridovirus) and in the late phase of exposure to purified endotoxin (lipopolysaccharide). These data collectively suggest that the RbC1qs may play defense roles as an innate immune response to protect the rock bream from bacterial and viral infections.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|