1
|
Kavaliers M, Wah DTO, Bishnoi IR, Ossenkopp KP, Choleris E. Disgusted snails, oxytocin, and the avoidance of infection threat. Horm Behav 2023; 155:105424. [PMID: 37678092 DOI: 10.1016/j.yhbeh.2023.105424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Disgust is considered to be a fundamental affective state associated with triggering the behavioral avoidance of infection and parasite/pathogen threat. In humans, and other vertebrates, disgust affects how individuals interact with, and respond to, parasites, pathogens and potentially infected conspecifics and their sensory cues. Here we show that the land snail, Cepaea nemoralis, displays a similar "disgust-like" state eliciting behavioral avoidance responses to the mucus associated cues of infected and potentially infected snails. Brief exposure to the mucus of snails treated with the Gram-negative bacterial endotoxin, lipopolysaccharide (LPS), elicited dose-related behavioral avoidance, including acute antinociceptive responses, similar to those expressed by mammals. In addition, exposure to the mucus cues of LPS treated snails led to a subsequent avoidance of unfamiliar individuals, paralleling the recognition of and avoidance responses exhibited by vertebrates exposed to potential pathogen risk. Further, the avoidance of, and antinociceptive responses to, the mucus of LPS treated snails were attenuated in a dose-related manner by the oxytocin (OT) receptor antagonist, L-368,899. This supports the involvement of OT and OT receptor homologs in the expression of infection avoidance, and consistent with the roles of OT in the modulation of responses to salient social and infection threats by rodents and other vertebrates. These findings with land snails are indicative of evolutionarily conserved disgust-like states associated with OT/OT receptor homolog modulated behavioral avoidance responses to infection and pathogen threat.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Deanne T O Wah
- Department of Psychology, University of Western Ontario, London, Canada
| | - Indra R Bishnoi
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
2
|
Solntseva SV, Nikitin VP, Kozyrev SA, Nikitin PV. DNA methylation inhibition participates in the anterograde amnesia key mechanism through the suppression of the transcription of genes involved in memory formation in grape snails. Behav Brain Res 2023; 437:114118. [PMID: 36116736 DOI: 10.1016/j.bbr.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The study of the amnesia mechanisms is of both theoretical and practical importance. The mechanisms of anterograde amnesia are the least studied, due to the lack of an experimental model that allows studying this amnesia type molecular and cellular mechanisms. Previously, we found that conditional food aversion memory reconsolidation impairment in snails by NMDA glutamate receptor antagonists led to the amnesia induction, in the late stages of which (>10 days) repeated training did not cause long-term memory formation. In the same animals, long-term memory aversion to a new food type was formed. We characterized this amnesia as specific anterograde amnesia. In the present work we studied the role of epigenetic DNA methylation processes as well as protein and mRNA synthesis in the mechanisms of anterograde amnesia and memory recovery. DNMT methyltransferase inhibitors (iDNMT: zebularine, RG108 (N-Phthalyl-1-tryptophan), and 5-AZA (5-Aza-2'-deoxycytidine)) were used to alter DNA methylation. It was found that in amnesic animals the iDNMT administration before or after shortened repeated training led to the rapid long-term conditional food aversion formation (Ebbinghaus saving effect). This result suggests that amnestic animals retain a latent memory, which is the basis for accelerated memory formation during repeated training. Protein synthesis inhibitors administration (cycloheximide) before or immediately after repeated training or administration of RNA synthesis inhibitor (actinomycin D) after repeated training prevented memory formation under iDNMT action. The earlier protein synthesis inhibitor effect suggests that the proteins required for memory formation are translated from the pre-existing, translationally repressed mRNAs. Thus, we have shown for the first time that the anterograde amnesia key mechanism is DNMT-dependent suppression of the transcription of genes involved in memory mechanisms. Inhibition of DNMT during repeated training reversed these genes expression blockade, opening access to them by transcription factors synthesized during training from the pre-existing mRNAs.
Collapse
Affiliation(s)
- S V Solntseva
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - V P Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - S A Kozyrev
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| | - P V Nikitin
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia.
| |
Collapse
|
3
|
Gao ZR, Liu Q, Zhao J, Zhao YQ, Tan L, Zhang SH, Zhou YH, Chen Y, Guo Y, Feng YZ. A comprehensive analysis of the circRNA-miRNA-mRNA network in osteocyte-like cell associated with Mycobacterium leprae infection. PLoS Negl Trop Dis 2022; 16:e0010379. [PMID: 35500036 PMCID: PMC9098081 DOI: 10.1371/journal.pntd.0010379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/12/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bone formation and loss are the characteristic clinical manifestations of leprosy, but the mechanisms underlying the bone remodeling with Mycobacterium leprae (M. leprae) infection are unclear. METHODOLOGY/PRINCIPAL FINDINGS Osteocytes may have a role through regulating the differentiation of osteogenic lineages. To investigate osteocyte-related mechanisms in leprosy, we treated osteocyte-like cell with N-glycosylated muramyl dipeptide (N.g MDP). RNA-seq analysis showed 724 differentially expressed messenger RNAs (mRNAs) and 724 differentially expressed circular RNA (circRNAs). Of these, we filtered through eight osteogenic-related differentially expressed genes, according to the characteristic of competing endogenous RNA, PubMed databases, and bioinformatic analysis, including TargetScan, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Based on these results, we built a circRNA-microRNA (miRNA)-mRNA triple network. Quantitative reverse-transcription polymerase chain reaction and western blots analyses confirmed decreased Clock expression in osteocyte-like cell, while increased in bone mesenchymal stem cells (BMSCs), implicating a crucial factor in osteogenic differentiation. Immunohistochemistry showed obviously increased expression of CLOCK protein in BMSCs and osteoblasts in N.g MDP-treated mice, but decreased expression in osteocytes. CONCLUSIONS/SIGNIFICANCE This analytical method provided a basis for the relationship between N.g MDP and remodeling in osteocytes, and the circRNA-miRNA-mRNA triple network may offer a new target for leprosy therapeutics.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Pinaud S, Tetreau G, Poteaux P, Galinier R, Chaparro C, Lassalle D, Portet A, Simphor E, Gourbal B, Duval D. New Insights Into Biomphalysin Gene Family Diversification in the Vector Snail Biomphalaria glabrata. Front Immunol 2021; 12:635131. [PMID: 33868258 PMCID: PMC8047071 DOI: 10.3389/fimmu.2021.635131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail’s immune arsenal.
Collapse
Affiliation(s)
- Silvain Pinaud
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Guillaume Tetreau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Damien Lassalle
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Elodie Simphor
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
5
|
Jiang K, Nie H, Li D, Yan X. New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics 2020; 21:531. [PMID: 32738896 PMCID: PMC7430831 DOI: 10.1186/s12864-020-06914-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background Manila clam (Ruditapes philippinarum) is a worldwide commercially important marine bivalve species. In recent years, however, microbial diseases caused high economic losses and have received increasing attention. To understand the molecular basis of the immune response to pathogen-associated molecular patterns (PAMPs) in R. philippinarum, transcriptome libraries of clam hepatopancreas were constructed at 24 h post-injection with Lipopolysaccharide (LPS), peptidoglycan (PGN), and polyinosinic-polycytidylic acid (poly(I:C)) and phosphate-buffered saline (PBS) control by using RNA sequencing technology (RNA-seq). Results A total of 832, 839, and 188 differentially expressed genes (DEGs) were found in LPS, PGN, and poly(I:C) challenge group compared with PBS control, respectively. Several immune-related genes and pathways were activated in response to the different PAMPs, suggesting these genes and pathways might specifically participate in the immune response to pathogens. Besides, the analyses provided useful complementary data to compare different PAMPs challenges in vivo. Functional enrichment analysis of DEGs demonstrated that PAMPs responsive signal pathways were related to apoptosis, signal transduction, immune system, and signaling molecules and interaction. Several shared or specific DEGs response to different PAMPs were revealed in R. philippinarum, including pattern recognition receptors (PRRs), antimicrobial peptides (AMPs), interferon-induced proteins (IFI), and some other immune-related genes were found in the present work. Conclusions This is the first study employing high throughput transcriptomic sequencing to provide valuable genomic resources and investigate Manila clam response to different PAMPs through in vivo challenges with LPS, PGN, and poly(I:C). The results obtained here provide new insights to understanding the immune characteristics of R. philippinarum response to different PAMPs. This information is critical to elucidate the molecular basis of R. philippinarum response to different pathogens invasion, which potentially can be used to develop effective control strategies for different pathogens.
Collapse
Affiliation(s)
- Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
6
|
Santos FTJ, Siqueira WN, Santos MLO, Silva HAMF, Sá JLF, Fernandes TS, Silva NH, França EJ, Silva EB, Melo AMMA. Radiosensitizer effect of usnic acid on Biomphalaria glabrata embryos. Int J Radiat Biol 2018; 94:838-843. [DOI: 10.1080/09553002.2018.1492757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- F. T. J. Santos
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - W. N. Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | - M. L. O. Santos
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | - H. A. M. F. Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - J. L. F. Sá
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T. S. Fernandes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - N. H. Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - E. J. França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | - E. B. Silva
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - A. M. M. A. Melo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Comparative immunological study of the snail Physella acuta (Hygrophila, Pulmonata) reveals shared and unique aspects of gastropod immunobiology. Mol Immunol 2018; 101:108-119. [PMID: 29920433 DOI: 10.1016/j.molimm.2018.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
Abstract
The freshwater snail Physella acuta was selected to expand the perspective of comparative snail immunology. Analysis of Physella acuta, belonging to the Physidae, taxonomic sister family to Planorbidae, affords family-level comparison of immune features characterized from Biomphalaria glabrata, the model snail often used to interpret general gastropod immunity. To capture constitutive and induced immune sequences, transcriptomes of an individual Physella acuta snail, 12 h post injection with bacteria (Gram -/+) and one sham-exposed snail were recorded with 454 pyrosequencing. Assembly yielded a combined reference transcriptome containing 24,288 transcripts. Additionally, genomic Illumina reads were obtained (∼15-fold coverage). Recovery of transcripts for two macin-like antimicrobial peptides (AMPs), 12 aplysianins, four LBP/BPIs and three physalysins indicated that Physella acuta shares a similar organization of antimicrobial defenses with Biomphalaria glabrata, contrasting a modest AMP arsenal with a diverse set of antimicrobial proteins. The lack of predicted transmembrane domains in all seven Physella acuta PGRP transcripts supports the notion that gastropods do not employ cell-bound PGRP receptors, different from ecdysozoan invertebrates yet similar to mammals (vertebrate deuterostomes). The well-documented sequence diversification by Biomphalaria glabrata FREPs (immune lectins comprising immunoglobulin superfamily domains and fibrinogen domains), resulting from somatic mutations of a large FREP gene family is hypothesized to be unique to Planorbidae; Physella acuta revealed just two bonafide FREP genes and these were not diversified. Furthermore, the flatworm parasite Echinostoma paraensei, confirmed here to infect both snail species, did not evoke from Physella acuta the abundant expression of FREP proteins at 2, 4 and 8 days post exposure that was previously observed from Biomphalaria glabrata. The Physella acuta reference transcriptome also revealed 24 unique transcripts encoding proteins consisting of a single fibrinogen-related domain (FReDs), with a short N-terminal sequence encoding either a signal peptide, transmembrane domain or no predicted features. The Physella acuta FReDs are candidate immune genes based on implication of similar sequences in immunity of bivalve molluscs. Overall, comparative analysis of snails of sister families elucidated the potential for taxon-specific immune features and investigation of strategically selected species will provide a more comprehensive view of gastropod immunity.
Collapse
|
8
|
Pila EA, Li H, Hambrook JR, Wu X, Hanington PC. Schistosomiasis from a Snail's Perspective: Advances in Snail Immunity. Trends Parasitol 2017; 33:845-857. [PMID: 28803793 DOI: 10.1016/j.pt.2017.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
The snail's immune response is an important determinant of schistosome infection success, acting in concert with host, parasite, and environmental factors. Coordinated by haemocytes and humoral factors, it possesses immunological hallmarks such as pattern recognition receptors, and predicted gastropod-unique factors like the immunoglobulin superfamily domain-containing fibrinogen-related proteins. Investigations into mechanisms that underpin snail-schistosome compatibility have advanced quickly, contributing functional insight to many observational studies. While the snail's immune response is important to continue studying from the perspective of evolutionary immunology, as the foundational determinants of snail-schistosome compatibility continue to be discovered, the possibility of exploiting the snail for schistosomiasis control moves closer into reach. Here, we review the current understanding of immune mechanisms that influence compatibility between Schistosoma mansoni and Biomphalaria glabrata.
Collapse
Affiliation(s)
- Emmanuel A Pila
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada; These authors contributed equally to this manuscript
| | - Hongyu Li
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada; Ocean College, Qinzhou University, Qinzhou, Guangxi 535099, China; These authors contributed equally to this manuscript
| | - Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada; These authors contributed equally to this manuscript
| | - Xinzhong Wu
- Ocean College, Qinzhou University, Qinzhou, Guangxi 535099, China
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| |
Collapse
|
9
|
Zhang SM, Loker ES, Sullivan JT. Pathogen-associated molecular patterns activate expression of genes involved in cell proliferation, immunity and detoxification in the amebocyte-producing organ of the snail Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 56:25-36. [PMID: 26592964 PMCID: PMC5335875 DOI: 10.1016/j.dci.2015.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 05/30/2023]
Abstract
The anterior pericardial wall of the snail Biomphalaria glabrata has been identified as a site of hemocyte production, hence has been named the amebocyte-producing organ (APO). A number of studies have shown that exogenous abiotic and biotic substances, including pathogen associated molecular patterns (PAMPs), are able to stimulate APO mitotic activity and/or enlarge its size, implying a role for the APO in innate immunity. The molecular mechanisms underlying such responses have not yet been explored, in part due to the difficulty in obtaining sufficient APO tissue for gene expression studies. By using a modified RNA extraction technique and microarray technology, we investigated transcriptomic responses of APOs dissected from snails at 24 h post-injection with two bacterial PAMPs, lipopolysaccharide (LPS) and peptidoglycan (PGN), or with fucoidan (FCN), which may mimic fucosyl-rich glycan PAMPs on sporocysts of Schistosoma mansoni. Based upon the number of genes differentially expressed, LPS exhibited the strongest activity, relative to saline-injected controls. A concurrent activation of genes involved in cell proliferation, immune response and detoxification metabolism was observed. A gene encoding checkpoint 1 kinase, a key regulator of mitosis, was highly expressed after stimulation by LPS. Also, seven different aminoacyl-tRNA synthetases that play an essential role in protein synthesis were found to be highly expressed. In addition to stimulating genes involved in cell proliferation, the injected substances, especially LPS, also induced expression of a number of immune-related genes including arginase, peptidoglycan recognition protein short form, tumor necrosis factor receptor, ficolin, calmodulin, bacterial permeability increasing proteins and E3 ubiquitin-protein ligase. Importantly, significant up-regulation was observed in four GiMAP (GTPase of immunity-associated protein) genes, a result which provides the first evidence suggesting an immune role of GiMAP in protostome animals. Moreover, altered expression of genes encoding cytochrome P450, glutathione-S-transferase, multiple drug resistance protein as well as a large number of genes encoding enzymes associated with degradation and detoxification metabolism was elicited in response to the injected substances.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA.
| | - Eric S Loker
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA; Parasite Division, Museum of Southwestern Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - John T Sullivan
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
10
|
Early responses of silkworm midgut to microsporidium infection – A Digital Gene Expression analysis. J Invertebr Pathol 2015; 124:6-14. [DOI: 10.1016/j.jip.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023]
|
11
|
Nystrand M, Dowling DK. Dose-dependent effects of an immune challenge at both ultimate and proximate levels in Drosophila melanogaster. J Evol Biol 2014; 27:876-88. [PMID: 24731072 DOI: 10.1111/jeb.12364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/28/2014] [Accepted: 02/25/2014] [Indexed: 11/28/2022]
Abstract
Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales--the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge--but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level.
Collapse
Affiliation(s)
- M Nystrand
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|