1
|
Jung S, Kim MJ, Lim C, Elvitigala DAS, Lee J. Molecular insights into two ferritin subunits from red-lip mullet (Liza haematocheila): Detectable antibacterial activity with its expressional response against immune stimulants. Gene X 2023; 851:146923. [DOI: 10.1016/j.gene.2022.146923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/08/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
|
2
|
Yaacob EN, De Geest BG, Goethals J, Bajek A, Dierckens K, Bossier P, Vanrompay D. Recombinant ferritin-H induces immunosuppression in European sea bass larvae (Dicentrarchus labrax) rather than immunostimulation and protection against a Vibrio anguillarum infection. Vet Immunol Immunopathol 2018; 204:19-27. [DOI: 10.1016/j.vetimm.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
|
3
|
Ding Z, Zhao X, Zhan Q, Cui L, Sun Q, Wang W, Liu H. Comparative analysis of two ferritin subunits from blunt snout bream (Megalobrama amblycephala): Characterization, expression, iron depriving and bacteriostatic activity. FISH & SHELLFISH IMMUNOLOGY 2017; 66:411-422. [PMID: 28535971 DOI: 10.1016/j.fsi.2017.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Iron is an essential microelement for almost all living organisms, while an excess of iron is toxic, thus maintenance of iron homeostasis is vital. As iron storage protein, ferritin plays an important role in iron metabolism. In the present study, we cloned and characterized the ferritin H subunit from Megalobrama amblycephala, termed as MamFerH. An iron-responsive element (IRE) was predicted in the 5' untranslated region (UTR) of MamFerH, while its bulge structural was different from that of the reported ferritin M subunit (MamFerM). The MamFerH and MamFerM genes exhibited similar expression patterns during early development with specifically high expression post hatching, whereas their tissue expression patterns were different. Specifically, MamFerM was highly expressed in the spleen, liver and kidney, while MamFerH was predominantly expressed in the blood and brain, indicating their different functions. In addition, the expression of the two genes was induced upon Aeromonas hydrophila infection at both transcriptional and translational levels, and MamFerH was more efficient. Immunohistochemistry and immunofluorescence analysis confirmed their significant changes at protein level and distribution in the liver post infection, indicating their participation in host immune response. Furthermore, bacteriostatic experiment revealed that recombinant MamFerH displayed more significant inhibitory effect on the growth of A. hydrophila.
Collapse
Affiliation(s)
- Zhujin Ding
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xiaoheng Zhao
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qifeng Zhan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Lei Cui
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Sun S, Zhu J, Ge X, Zhang W. Molecular characterization and gene expression of ferritin in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2016; 57:87-95. [PMID: 27539708 DOI: 10.1016/j.fsi.2016.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Ferritins are conserved iron storage proteins that exist in most living organisms and play an essential role in iron homeostasis. In this study, we reported the identification and analysis of a ferritin middle-chain (M) subunit, MaFerM, from blunt snout bream, Megalobrama amblycephala. The full length cDNA of MaFerM contains a 5'-untranslated region (UTR) of 152 bp, an open reading frame (ORF) of 522 bp and a 3'-UTR of 270 bp. The ORF encodes a putative protein of 174 amino acids, which shares extensive sequence identities with the M ferritins of several fish species. In silico analysis identified both the ferroxidase center of mammalian heavy-chain (H) ferritins and the iron nucleation site of mammalian light-chain (L) ferritins in MaFerM. Quantitative real-time reverse transcription polymerase chain reaction analysis indicated that MaFerM expression was highest in the liver and lowest in the heart and responded positively to experimental challenges with Aeromonas hydrophila. The exposure of cultured M. amblycephala to treatment with stress inducers (iron and H2O2) significantly up-regulated the expression of MaFerM in a dose-dependent manner. Iron chelation analysis showed that recombinant MaFerM purified from Escherichia coli exhibited apparent iron binding activity. These results suggest that MaFerM is a functional M ferritin and is likely to play a role in iron sequestration and protection against oxidative stress and immune stimulus.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China.
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China.
| | - Wxuxiao Zhang
- Wuxi Fishery College Nanjing Agricultural University, Wuxi 214081, PR China
| |
Collapse
|
5
|
Oh M, Umasuthan N, Elvitigala DAS, Wan Q, Jo E, Ko J, Noh GE, Shin S, Rho S, Lee J. First comparative characterization of three distinct ferritin subunits from a teleost: Evidence for immune-responsive mRNA expression and iron depriving activity of seahorse (Hippocampus abdominalis) ferritins. FISH & SHELLFISH IMMUNOLOGY 2016; 49:450-460. [PMID: 26747640 DOI: 10.1016/j.fsi.2015.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Ferritins play an indispensable role in iron homeostasis through their iron-withholding function in living beings. In the current study, cDNA sequences of three distinct ferritin subunits, including a ferritin H, a ferritin M, and a ferritin L, were identified from big belly seahorse, Hippocampus abdominalis, and molecularly characterized. Complete coding sequences (CDS) of seahorse ferritin H (HaFerH), ferritin M (HaFerM), and ferritin L (HaFerL) subunits were comprised of 531, 528, and 522 base pairs (bp), respectively, which encode polypeptides of 177, 176, and 174 amino acids, respectively, with molecular masses of ∼20-21 kDa. Our in silico analyses demonstrate that these three ferritin subunits exhibit the typical characteristics of ferritin superfamily members including iron regulatory elements, domain signatures, and reactive centers. The coding sequences of HaFerH, M, and L were cloned and the corresponding proteins were overexpressed in a bacterial system. Recombinantly expressed HaFer proteins demonstrated detectable in vivo iron sequestrating (ferroxidase) activity, consistent with their putative iron binding capability. Quantification of the basal expression of these three HaFer sequences in selected tissues demonstrated a gene-specific ubiquitous spatial distribution pattern, with abundance of mRNA in HaFerM in the liver and predominant expression of HaFerH and HaFerL in blood. Interestingly, the basal expression of all three ferritin genes was found to be significantly modulated against pathogenic stress mounted by lipopolysaccharides (LPS), poly I:C, Streptococcus iniae, and Edwardsiella tarda. Collectively, our findings suggest that the three HaFer subunits may be involved in iron (II) homeostasis in big belly seahorse and that they are important in its host defense mechanisms.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Eunyoung Jo
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jiyeon Ko
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Gyeong Eon Noh
- Corea Cheju Origin Roh's Aquariums, Jongdal-ri, Gujwa-eup, Jeju Self-Governing Province 63364, Republic of Korea
| | - Sangok Shin
- Corea Cheju Origin Roh's Aquariums, Jongdal-ri, Gujwa-eup, Jeju Self-Governing Province 63364, Republic of Korea
| | - Sum Rho
- Corea Cheju Origin Roh's Aquariums, Jongdal-ri, Gujwa-eup, Jeju Self-Governing Province 63364, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
6
|
Otho SA, Chen K, Zhang Y, Wang P, Lu Z. Silkworm ferritin 1 heavy chain homolog is involved in defense against bacterial infection through regulation of haemolymph iron homeostasis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:152-158. [PMID: 26522340 DOI: 10.1016/j.dci.2015.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Iron functions as a nutrient and a potential toxin in all organisms. It plays a key role in the interaction between microbes and their hosts as well. Microbial infection disrupts iron homeostasis in the host; meanwhile the host endeavors to keep the homeostasis through iron transport and storage. Transferrins and ferritins are the major iron-binding proteins that affect iron distribution in insects. In this study, we investigated a possible involvement of Bombyx mori ferritin 1 (BmFer1) heavy chain homolog in the defense against bacterial infection in the silkworm larvae. The BmFer1 mRNA abundance was up-regulated in hemocytes, but not in fat body, after Pseudomonas aeruginosa or Staphylococcus aureus infection. The infection resulted in elevated iron levels in the hemolymph. Injection of recombinant BmFer1 protein into hemocoel reduced the plasma iron level after infection, limited the bacterial growth in the hemolymph, and resulted in a lower mortality caused by infection. Our study indicated that B. mori ferritin-1 may restrict iron access of the invading bacteria to block their growth as a defense strategy.
Collapse
Affiliation(s)
- Sohail Ahmed Otho
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongdong Zhang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Hennebert E, Leroy B, Wattiez R, Ladurner P. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J Proteomics 2015; 128:83-91. [DOI: 10.1016/j.jprot.2015.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/02/2015] [Indexed: 01/04/2023]
|
8
|
Wang JJ, Sun L. Ferritin M of Paralichthys olivaceus possesses antimicrobial and antioxidative properties. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:951-959. [PMID: 25981106 DOI: 10.1007/s10695-015-0060-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Ferritin is an evolutionarily conserved protein that plays a vital role in maintaining iron homeostasis. In this study, we identified a ferritin M (PoFerM) from Japanese flounder (Paralichthys olivaceus) and analyzed its biological property. PoFerM is composed of 176 amino acid residues and contains the conserved ferroxidase diiron center and the ferrihydrite nucleation center typical of M ferritins. Expression of PoFerM occurred in multiple tissues and was most abundant in blood. Bacterial infection upregulated PoFerM expression in head kidney, spleen, and liver in a time-dependent manner. Recombinant PoFerM (rPoFerM) purified from Escherichia coli exhibited iron-chelating activity and inhibited bacterial growth, whereas rPoFerMM, the mutant protein that bears alanine substitution at two conserved residues of the ferroxidase center and the ferrihydrite nucleation center, failed to do so. Oxidative protection analysis showed that rPoFerM, but not rPoFerMM, was able to alleviate the deleterious effect of H2O2-induced free radicals on plasmid DNA and primary flounder cells. Together these results indicate that PoFerM is an iron chelator with antimicrobial and antioxidative properties, all which depend on the conserved ferroxidase center and the ferrihydrite nucleation site.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | | |
Collapse
|
9
|
Edwardsiella tarda-regulated proteins in Japanese flounder (Paralichthys olivaceus): Identification and evaluation of antibacterial potentials. J Proteomics 2015; 124:1-10. [DOI: 10.1016/j.jprot.2015.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
|
10
|
Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta. Parasitol Res 2015; 114:2301-8. [PMID: 25786607 PMCID: PMC4430585 DOI: 10.1007/s00436-015-4425-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/06/2015] [Indexed: 12/03/2022]
Abstract
Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.
Collapse
|