1
|
Li X, Dai X. Molecular Characterization of Anion Exchanger 2 in Litopenaeus vannamei and Its Role in Nitrite Stress. Int J Mol Sci 2025; 26:964. [PMID: 39940733 PMCID: PMC11817657 DOI: 10.3390/ijms26030964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 02/16/2025] Open
Abstract
Anion exchanger 2 (AE2) mediates the Cl-/HCO3- transmembrane exchange process and regulates intracellular pH homeostasis. In this study, the AE2 gene (GenBank: PQ073349) was cloned and characterized from Litopenaeus vannamei using the rapid amplification of cDNA ends (RACE) technique. Employing bioinformatics, real-time fluorescence quantitative PCR, and RNA interference, we explored the gene's sequence characteristics, tissue distribution, and the effects of nitrite on shrimp survival, physiology, and tissue damage following gene silencing. The results showed that AE2 cDNA was 5134 bp in length, encoding 1293 amino acids, which includes both the Band3 and HCO3- structural domains. AE2 was expressed in all tissues, with the highest expression in muscle. After silencing AE2, shrimp survival increased and hemolymph nitrite levels decreased. Notably, the oxidative stress enzyme system was not severely affected, and gill tissue damage was reduced. In addition, the expression level of Na+/K+/2Cl- cotransporter 1 (NKCC1) was significantly reduced (p < 0.05). These findings suggest that AE2 and NKCC1 are jointly involved in regulating the physiological process of nitrite entry into the shrimp body through gill tissue. Overall, this study provides a crucial experimental foundation for addressing the toxicity concerns associated with nitrite.
Collapse
Affiliation(s)
- Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xilin Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Li X, Dai X. Characterization and functional analysis of Litopenaeus vannamei Na +/K +/2Cl - cotransporter 1 under nitrite stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111749. [PMID: 39313182 DOI: 10.1016/j.cbpa.2024.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The function of Litopenaeus vannamei Na+/K+/2Cl- cotransporter 1 (NKCC1) under nitrite stress was investigated. The full-length cDNA sequence of the L. vannamei NKCC1 gene was cloned using the rapid amplification of cDNA ends (RACE) technique, and the sequence was analysed using bioinformatics tools. Expression and localisation of NKCC1 in tissues were assessed using real-time quantitative PCR and in situ hybridisation, respectively. The impact of nitrite stress on the survival, physiology, biochemistry and tissue structure of L. vannamei was investigated following silencing of NKCC1 by RNA interference. The 3143 bp cDNA sequence of L. vannamei NKCC1 encodes a polypeptide of 918 amino acids. It is evolutionarily conserved. NKCC1 expression was highest in gill tissue, particularly within cuticle and gill epithelial cells. After silencing NKCC1, an increase in shrimp survival was observed, accompanied by a significant reduction in nitrite entry into the body (P < 0.05). Moreover, the oxidative stress enzyme system remained unaffected and damage to gill tissue was alleviated. The results suggest that NKCC1 is involved in regulating nitrite uptake, and plays a crucial role in facilitating nitrite entry into the organism through gill tissue. The findings provide a vital experimental basis for addressing concerns related to nitrite toxicity.
Collapse
Affiliation(s)
- Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xilin Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Koiwai K, Kondo H, Hirono I. scRNA-seq Analysis of Hemocytes of Penaeid Shrimp Under Virus Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10221-8. [PMID: 37326798 DOI: 10.1007/s10126-023-10221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The classification of cells in non-model organisms has lagged behind the classification of cells in model organisms that have established cluster of differentiation marker sets. To reduce fish diseases, research is needed to better understand immune-related cells, or hemocytes, in non-model organisms like shrimp and other marine invertebrates. In this study, we used Drop-seq to examine how virus infection affected the populations of hemocytes in kuruma shrimp, Penaeus japonicus, which had been artificially infected with a virus. The findings demonstrated that virus infection reduced particular cell populations in circulating hemolymph and inhibited the expression of antimicrobial peptides. We also identified the gene sets that are likely to be responsible for this reduction. Additionally, we identified functionally unknown genes as novel antimicrobial peptides, and we supported this assumption by the fact that these genes were expressed in the population of hemocytes that expressed other antimicrobial peptides. In addition, we aimed to improve the operability of the experiment by conducting Drop-seq with fixed cells as a source and discussed the impact of methanol fixation on Drop-seq data in comparison to previous results obtained without fixation. These results not only deepen our understanding of the immune system of crustaceans but also demonstrate that single-cell analysis can accelerate research on non-model organisms.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Guan W, Wei X, Nong W, Shao Y, Mao L. Heat shock protein 70 (HSP70) promotes air exposure tolerance of Litopenaeus vannamei by preventing hemocyte apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103844. [PMID: 32861730 DOI: 10.1016/j.dci.2020.103844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Brief pretreatment of cold shock at 13 °C for 3 min proved to be an inducer of heat shock protein 70 (HSP70) and improved stress tolerance as a molecular chaperone. With the improvement of air exposure tolerance, HSP70 in shrimp hemocytes was upregulated in mRNA and protein levels after cold shock. Both HSP70 RNA interference (RNAi) gene knockdown and recombinant HSP70 (rHSP70) injection were successfully established in order to investigate the role of HSP70 in response to air exposure stress. Shrimp receiving rHSP70 showed an improved survival rate (80%) with no significant difference (p > 0.05) compared to cold shock treated shrimp (control, 90%) under air exposure, but the survival rate of HSP70-knockdown shrimp was significantly lower (62%, p < 0.05). Reactive oxygen species (ROS) content, relative expression of cytochrome c, caspase-3 activity, and apoptosis rate in hemocytes of HSP70 enriched shrimp (i.e., cold shock and rHSP70 injection) were significantly lower (p < 0.05) than HSP70-knockdown shrimp. Results suggested that HSP70 could be induced by cold shock and contributed to improve the tolerance of shrimp suffering air exposure by blocking the apoptosis pathway through scavenging intracellular ROS, inhibiting cytochrome c expression, inhibiting release from mitochondria, and inactivating caspase-3. This work updates the understanding of cold shock mechanism in water-free transportation of aquatic animals.
Collapse
Affiliation(s)
- Weiliang Guan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Wenqian Nong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yelin Shao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
5
|
Victorio-De Los Santos M, Vibanco-Pérez N, Soto-Rodriguez S, Pereyra A, Zenteno E, Cano-Sánchez P. The B Subunit of PirAB vp Toxin Secreted from Vibrio parahaemolyticus Causing AHPND Is an Amino Sugar Specific Lectin. Pathogens 2020; 9:E182. [PMID: 32138213 PMCID: PMC7157558 DOI: 10.3390/pathogens9030182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 11/26/2022] Open
Abstract
Vibrio parahaemolyticus (Vp) is the etiological agent of the acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei shrimp. Vp possesses a 63-70 kb conjugative plasmid that encodes the binary toxin PirAvp/PirBvp. The 250 kDa PirABvp complex was purified by affinity chromatography with galactose-sepharose 4B and on a stroma from glutaraldehyde-fixed rat erythrocytes column, as a heterotetramer of PirAvp and PirBvp subunits. In addition, recombinant pirB (rPirBvp) and pirA (rPirAvp) were obtained. The homogeneity of the purified protein was determined by SDS-PAGE analysis, and the yield of protein was 488 ng/100 μg of total protein of extracellular products. The PirABvp complex and the rPirBvp showed hemagglutinating activity toward rat erythrocytes. The rPirAvp showed no hemagglutinating capacity toward the animal red cells tested. Among different mono and disaccharides tested, only GalNH2 and GlcNH2 were able to inhibit hemagglutination of the PirABvp complex and the rPirBvp. Glycoproteins showed inhibitory specificity, and fetuin was the glycoprotein that showed the highest inhibition. Other glycoproteins, such as mucin, and glycosaminoglycans, such as heparin, also inhibited the activity. Desialylation of erythrocytes enhanced the hemagglutinating activity. This confirms that Gal or Gal (β1,4) GlcNAc are the main ligands for PirABvp. The agglutinating activity of the PirABvp complex and the rPirBvp is not dependent on cations, because addition of Mg2+ or Ca2+ showed no effect on the protein capacity. Our results strongly suggest that the PirBvp subunit is a lectin, which is part of the PirA/PirBvp complex, and it seems to participate in bacterial pathogenicity.
Collapse
Affiliation(s)
- Marcelo Victorio-De Los Santos
- Laboratorio de Bacteriología. Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán, Sinaloa 82112, Mexico
- Laboratorio de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura, Tepic, Nayarit 63190, Mexico
| | - Norberto Vibanco-Pérez
- Laboratorio de Investigación en Biología Molecular e Inmunología, Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura, Tepic, Nayarit 63190, Mexico
| | - Sonia Soto-Rodriguez
- Laboratorio de Bacteriología. Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad de Acuacultura y Manejo Ambiental, Av. Sábalo-Cerritos S/N A.P. 711, Mazatlán, Sinaloa 82112, Mexico
| | - Ali Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico; (A.P.); (E.Z.)
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico; (A.P.); (E.Z.)
| | - Patricia Cano-Sánchez
- Laboratorio de Biología Molecular, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, CDMX 04510, Mexico;
| |
Collapse
|
6
|
Yang H, Xiong H, Mi K, Zhang Y, Zhang X, Chen G. The surface syndecan protein from Macrobrachium rosenbergii could function as mediator in bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2020; 96:62-68. [PMID: 31704203 DOI: 10.1016/j.fsi.2019.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the aquatic animal pathogens are numerous and specific, the pathogen invasion mechanisms are more complicated. The cell surface receptors play vital roles to understand these mechanisms. Syndecan is a cell surface protein and could function as a receptor involved bacteria and virus infections. But there are few studies on the function of syndecan in shrimp and their interaction with aquatic bacterial pathogens. In the present study, we identified a syndecan receptor gene from Macrobrachium rosenbergii and analyzed its functions during the bacterial infections. The MrSDC was expressed in various tissues and presented a constitutive expression distribution except in eyestalk. Recombinant MrSDC-his tag protein was expressed in the E. coli BL21 with pET30a/MrSDC plasmid and exhibited a broad bacterial binding activities. The inhibition of MrSDC expression by dsRNA interference and antibody blocked could significantly reduce the number of Aeromonas hydrophila in hepatopancreas compared with the control. The overexpression of MrSDC by mRNA injection could significantly increase the number of A. hydrophila. In addition, the functional role of syndecan heparan sulfate chains in bacterial recognition was also studied. After extra injection of heparan sulfate in vivo, the bacterial numbers and accumulative mortality of M. rosenbergii were significantly higher than control groups and exhibit a dose effect. All these data could indicate that the cell surface syndecan protein could function as mediator in bacterial infections by the heparan sulfate chains. Our present study will provide new insights into the functions of shrimp syndecan.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Gao G, Lin R, Tao M, Aweya JJ, Yao D, Ma H, Li S, Zhang Y, Wang F. Molecular characterization of a novel white spot syndrome virus response protein (dubbed LvWRP) from Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:99-107. [PMID: 31051195 DOI: 10.1016/j.dci.2019.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
White spot syndrome, which is caused by white spot syndrome virus (WSSV), is a highly contagious disease of penaeid shrimp. However, there is currently incomplete understanding of the infection mechanism and pathogenesis of WSSV. In this study, a novel gene of a previously uncharacterized WSSV response protein (LvWRP) in Litopenaeus vannamei was identified and characterized. The LvWRP gene has an open reading frame (ORF) of 879 bp encoding a putative protein of 292 amino acids. Sequence analysis revealed that LvWRP shared 24.9% identity with an uncharacterized protein of Penaeus monodon nudivirus. Real-time qPCR analysis showed that LvWRP was ubiquitously expressed in shrimp tissues, with transcript levels induced in hemocytes upon immune challenge with Vibrio parahaemolyticus, Streptoccocus iniae, lipopolysaccharide (LPS), and WSSV. In addition, RNA interference-mediated knockdown of LvWRP followed by WSSV challenge revealed significant decrease in the transcript levels of WSSV IE1 and VP28 genes coupled with a reduction in WSSV copies in shrimp hemocytes. Moreover, depletion of LvWRP followed by WSSV challenge significantly increased the transcript levels of Vago4 and Vago5 as well as increased the phosphorylation of STAT, while hemocytes apoptosis in terms of caspase 3/7 activity was decreased. These results suggest that LvWRP is important for WSSV replication in shrimp, and therefore one of the vital host factors in WSSV infection.
Collapse
Affiliation(s)
- Guicai Gao
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Ruihong Lin
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Mengyuan Tao
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Fan Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Hui K, Ren Q, Cao J. Insights into the intestine immune of Marsupenaeus japonicus under the white spot syndrome virus challenge using RNA sequencing. Vet Immunol Immunopathol 2019; 208:25-33. [DOI: 10.1016/j.vetimm.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
9
|
Yang H, Li X, Ji J, Yuan C, Gao X, Zhang Y, Lu C, Li F, Zhang X. Changes of microRNAs expression profiles from red swamp crayfish (Procambarus clarkia) hemolymph exosomes in response to WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:169-177. [PMID: 30291984 DOI: 10.1016/j.fsi.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) as short noncoding RNAs play important regulatory roles in diverse biological processes by degrading the target mRNAs, and could be delivered by exosomes. WSSV is a highly pathogenic and prevalent virus, and has brought high mortality of P. clarkia. Till present, no studies focus on the miRNAs changes in exosomes during WSSV infection. To understand the different virulence of WSSV on miRNAs expression in P. clarkia hemolymph exosome, the deep sequencing was performed to compare the small RNA libraries from the hemolymph exosome of P. clarkia individuals with or without WSSV infections. From the TEM observations, NTA and Western Blot analysis, the extracted exosomes were well identified with classic characteristics. The 209 conserved miRNAs and 250 novel miRNAs were identified from the small RNA libraries. In response to WSSV infection, there were about 98 miRNAs significantly up-regulated and 59 miRNAs significantly down-regulated. The target genes prediction, GO and KEGG enrichment analysis revealed that some target genes of P. clarkia miRNAs were grouped mainly into the categories of biological regulation, immune system process, signal pathway and other more functions. This is the first report of comprehensive identification of P. clarkia hemolymph exosome miRNAs being differentially regulated in response to WSSV infection. These results will help to understand the hemolymph exosome miRNAs response to different virulence WSSV infection.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiaojun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chunyou Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Cheng Lu
- Aquaculture Technical Guidance Station, Taizhou, 225300, China
| | - Fenggang Li
- Yellow River Fisheries Research Institute, Chinese Academy of Fishery Science, Xi'an, Shaanxi, 710086, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
10
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Tian Y, Jiang Y, Shang Y, Zhang YP, Geng CF, Wang LQ, Chang YQ. Establishment of lysozyme gene RNA interference systemand its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus). FISH & SHELLFISH IMMUNOLOGY 2017; 65:71-79. [PMID: 28359949 DOI: 10.1016/j.fsi.2017.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K+ and Cl- concentration after lysozyme RNAi injection was lower than in the PC and NC group.
Collapse
Affiliation(s)
- Yi Tian
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China.
| | - Yanan Jiang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yanpeng Shang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Yu-Peng Zhang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Chen-Fan Geng
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Li-Qiang Wang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture, Ministry of Agriculture, Dalian Ocean University, 116023, Dalian, China
| |
Collapse
|
12
|
Cai YM, Chen T, Ren CH, Huang W, Jiang X, Gao Y, Huo D, Hu CQ. Molecular characterization of Pacific white shrimp (Litopenaeus vannamei) sodium bicarbonate cotransporter (NBC) and its role in response to pH stress. FISH & SHELLFISH IMMUNOLOGY 2017; 64:226-233. [PMID: 28257848 DOI: 10.1016/j.fsi.2017.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
The sodium bicarbonate cotransporter (NBC) is an integral membrane ion transporter that can transport HCO3- (or a related species, such as CO32-) across the plasma membrane. Previous researches revealed that NBC might play an important role in the regulation of intracellular pH in vertebrates. In the present study, an NBC cDNA was identified from Pacific white shrimp (Litopenaeus vannamei) and designated as Lv-NBC. The full-length Lv-NBC cDNA is 4479 bp in size, containing a 5'-untranslated region (UTR) of 59 bp, a 3'-UTR of 835 bp and an open reading frame (ORF) of 3585 bp that encodes a protein of 1194 amino acids with a deduced molecular weight of 134.34 kDa. The Lv-NBC protein contains two functional domains (Band_3_cyto and HCO3_cotransp) and twelve transmembrane (TM) domains. Expression of the Lv-NBC mRNA was ubiquitously detected in all selected tissues, with the highest level in the gill. By in situ hybridization (ISH) with Digoxigenin-labeled probe, the Lv-NBC positive cells were shown mainly located in the secondary gill filaments. After low or high pH challenge, the transcript levels of Lv-NBC in the gill were found to be up-regulated. After knockdown of the Lv-NBC level by siRNA, the mortality of shrimp significantly increased under pH stress. Our study, as a whole, may provide evidences for the role of NBC in shrimp responding to pH stress, and give a new insight of the acid/base homeostasis mechanism in crustaceans.
Collapse
Affiliation(s)
- Yi-Ming Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Chun-Hua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yan Gao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| |
Collapse
|
13
|
Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei. Sci Rep 2017; 7:1098. [PMID: 28439089 PMCID: PMC5430884 DOI: 10.1038/s41598-017-01220-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/21/2017] [Indexed: 01/06/2023] Open
Abstract
Exoskeleton construction is an important issue in shrimp. To better understand the molecular mechanism of exoskeleton formation, development and reconstruction, the transcriptome of the entire developmental process in Litopenaeus vannamei, including nine early developmental stages and eight adult-moulting stages, was sequenced and analysed using Illumina RNA-seq technology. A total of 117,539 unigenes were obtained, with 41.2% unigenes predicting the full-length coding sequence. Gene Ontology, Clusters of Orthologous Group (COG), the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and functional annotation of all unigenes gave a better understanding of the exoskeleton developmental process in L. vannamei. As a result, more than six hundred unigenes related to exoskeleton development were identified both in the early developmental stages and adult-moulting. A cascade of sequential expression events of exoskeleton-related genes were summarized, including exoskeleton formation, regulation, synthesis, degradation, mineral absorption/reabsorption, calcification and hardening. This new insight on major transcriptional events provide a deep understanding for exoskeleton formation and reconstruction in L. vannamei. In conclusion, this is the first study that characterized the integrated transcriptomic profiles cover the entire exoskeleton development from zygote to adult-moulting in a crustacean, and these findings will serve as significant references for exoskeleton developmental biology and aquaculture research.
Collapse
|