1
|
He J, Chen Z, Jing C, Zhang W, Peng H, Zhou H, Hu F. Behavioral and biochemical responses of the marine polychaete Perinereis aibuhitensis to 2-ethylhexyl-4-methoxycinnamate (EHMC) exposure. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109868. [PMID: 38423197 DOI: 10.1016/j.cbpc.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
2-ethylhexyl-4-methoxycinnamate (EHMC) is a commonly used UV filter, and is receiving increasing concerns due to its ubiquitous occurrence in a variety of environmental media and potential adverse effects. This study was aimed to assess the ecotoxicological potentials of EHMC on the marine polychaete Perinereis aibuhitensis. To this end, ragworms were exposed to 2, 20, 200 μg/L EHMC for 14 days and multiple toxicological endpoints were investigated. The results showed that EHMC significantly reduced burrowing rate, but did not affect AChE activity. Exposure to EHMC significantly elevated the activities of SOD and CAT and decreased the levels of lipid peroxidation. Besides, the induction of AKP activity indicated a stimulated immune response in the ragworms when exposed to high concentration of EHMC. Furthermore, the upregulated expression of caspase-8 suggested that EHMC might induce apoptosis in ragworms via the death receptor-mediated extrinsic pathway. Our findings highlight the potential environmental risks of EHMC to marine ecosystems.
Collapse
Affiliation(s)
- Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Freshwater Fisheries Research Institute of Fujian, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Honglei Zhou
- Fujian Yangze Marine Biotechnology Co., Ltd, Fuzhou 350600, China.
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| |
Collapse
|
2
|
Jeong MA, Jeong YJ, Kim KI. Virulence difference between red sea bream iridovirus mixed subtype I/II and subtype II and the expression of viral and apoptosis-related genes in infected rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:195-202. [PMID: 35643355 DOI: 10.1016/j.fsi.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, the virulence of the red sea bream iridovirus (RSIV) subtype II (17RbGs isolate) and a novel RSIV mixed subtype I/II (17SbTy isolate), which was genetically characterized in a previous study, were compared. The infectivity to rock bream (Oplegnathus fasciatus) determined by infectious dose (ID50) revealed that 17RbGs isolate was significantly more infective than 17SbTy isolate using both intraperitoneal injection and bath immersion. In a cohabitation challenge test that mimicked natural conditions, the cumulative mortality of the donor (RSIV-injected rock bream) and the recipient (cohabited naïve rock bream) was significantly higher in the 17RbGs group than in the 17SbTy group, regardless of RSIV injected doses, supporting the correlation between genetic mutation and pathogenicity. In addition, the maximum viral shedding ratio identified from RSIV-infected rock bream suggested that viral transmission through infection with the 17SbTy isolate could have a lower relative risk than that of infection with the 17RbGs isolate. In particular, the odds ratio based on the spleen index after 17RbGs infection was 55.00, which was inconsistent with that of 17SbTy infection (19.38), hence supporting the virulence difference between RSIVs. Furthermore, the expression of viral genes, including DNA membrane and myristoylated protein genes with insertion and deletion mutations, and that of caspase-8, which is related to caspase-dependent apoptosis induced by RSIV infection, were significantly upregulated at 11 days post 17RbGs-infection compared to that following 17SbTy infection. Notably, although viral genes were highly expressed in the early infection stage and caspase-8 was upregulated, the low caspase-3 expression may have inhibited apoptosis, reflecting the difference in virulence between different RSIV isolates. Several virulence factors, including pathogenicity, viral shedding ratio, odds ratio, and gene expression, support that RSIV mixed subtype I/II may be a less pathogenic RSIV isolate compared with general RSIV subtype II in a natural environment.
Collapse
Affiliation(s)
- Min A Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ye Jin Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Kwang Il Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
3
|
Ning YJ, Chen SY, Lu XJ, Lu JF, Chen J. Glucocorticoid receptor in ayu (Plecoglossus altivelis): Genomic and non-genomic effects on monocytes/macrophages function. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1151-1161. [PMID: 30597252 DOI: 10.1016/j.fsi.2018.12.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The glucocorticoid receptor (GR) is an important feedback regulator of the hypothalamic-pituitary-interrenal (HPI) axis. However, there are a limited number of studies focused on host-pathogen interactions in which an association between GR and immune response has been evaluated in monocytes/macrophages (MO/MФ) after being challenged with highly pathogenic bacteria. Here, we cloned the cDNA sequence of the glucocorticoid receptor (PaGR) gene from ayu fish. The PaGR transcript was expressed in all tissues, and changes in expression were observed in immune tissues and MO/MФ after live Vibrio anguillarum infection. Subsequently, PaGR was expressed and purified to prepare anti-PaGR antibodies. We analyzed the subcellular localization of PaGR. PaGR was expressed not only in the intracellular space but also in the plasma membrane. PaGR activation decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines. However, PaGR activation suppressed the phagocytosis activity of V. anguillarum-infected ayu MO/MФ via a non-genomic pathway. Interestingly, PaGR activation could enhance MO/MФ bacterial killing capability and apoptosis. Therefore, PaGR may modulate the immune response in ayu MO/MФ by genomic and non-genomic pathways.
Collapse
Affiliation(s)
- Ying-Jun Ning
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Si-Ying Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jian-Fei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Ning YJ, Lu XJ, Chen J. Molecular characterization of a tissue factor gene from ayu: A pro-inflammatory mediator via regulating monocytes/macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:37-47. [PMID: 29408399 DOI: 10.1016/j.dci.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 06/07/2023]
Abstract
Tissue factor (TF) plays an important role in the host's immune system as the principal initiator of coagulation. However, the precise function of TF in teleosts remains unclear. We determined the cDNA sequence of TF from ayu Plecoglossus altivelis (PaTF). The PaTF transcript was expressed in all tested tissues, and changes in expression were observed in tissues and monocytes/macrophages (MO/MФ) upon infection with Vibrio anguillarum. PaTF was prokaryotically expressed and purified to prepare anti-PaTF antibodies. Western blot analysis revealed that native PaTF was glycosylated in thrombocytes, but not in ayu MO/MФ. Microparticles could transfer PaTF to thrombocytes. PaTF neutralization or knockdown led to anti-inflammatory status in ayu MO/MФ upon V. anguillarum infection. PaTF neutralization reduced the apoptosis of ayu MO/MФ and improve survival rate in V. anguillarum-infected ayu. Our results indicate that PaTF plays a role in ayu immune response against bacterial infection as a pro-inflammatory mediator.
Collapse
Affiliation(s)
- Ying-Jun Ning
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Jeswin J, Jeong JM, Shim JD, Bae JS, Park CI. Protective responses of two paralogs of granulocyte colony stimulating factor (GCSF) in rock bream, Oplegnathus fasciatus during bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2017; 65:206-212. [PMID: 28408239 DOI: 10.1016/j.fsi.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/01/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Granulocyte colony stimulating factor (GCSF) has a key role in the production of neutrophilic granulocytes during normal hematopoietic development and release of neutrophils into the blood circulation. In this study we have identified and characterized two paralogs of GCSF (RbGCSF) in rock bream. Although RbGCSF-1 and RbGCSF-2 share low sequence conservation, its domains and protein structure still share significant similarity. Basal levels of RbGCSF-1 gene expression was high in peripheral blood leukocytes (PBLs), spleen and intestine whereas the RbGCSF-2 was highly expressed in PBLs and kidney, of healthy animals. A significant induction of RbGCSFs were observed after the challenge with Streptococcus iniae in kidney, spleen and gills during initial hours of infection. Whereas Edwarsiella tarda infection caused a reasonable expression in kidney. Red seabream iridovirus caused induction of RbGCSF-1 transcription only in gills during initial hours. This higher expression of RbGCSF in early hours may be its response to induce emergency hematopoiesis, due to shortage of neutrophils to combat the surge in pathogens. The difference in induction of RbGCSF paralogs during infection may constitute to its different roles or overlapping functions.
Collapse
Affiliation(s)
- Joseph Jeswin
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Jae-Dong Shim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea.
| |
Collapse
|