1
|
Shibasaki Y, Yabu T, Shiba H, Moritomo T, Mano N, Nakanishi T. Characterization of fish-specific IFNγ-related binding with a unique receptor complex and signaling through a novel pathway. FEBS Open Bio 2024; 14:532-544. [PMID: 38321830 PMCID: PMC10988753 DOI: 10.1002/2211-5463.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Unlike mammals, fish express two type II interferons, IFNγ and fish-specific IFNγ (IFNγ-related or IFNγrel). We previously reported the presence of two IFNγrel genes, IFNγrel 1 and IFNγrel 2, which exhibit potent antiviral activity in the Ginbuna crucian carp, Carassius auratus langsdorfii. We also found that IFNγrel 1 increased allograft rejection; however, the IFNγrel 1 receptor(s) and signaling pathways underlying this process have not yet been elucidated. In this study, we examined the unique signaling mechanism of IFNγrel 1 and its receptors. The phosphorylation and transcriptional activation of STAT6 in response to recombinant Ginbuna IFNγrel 1 (rgIFNγrel 1) was observed in Ginbuna-derived cells. Binding of rgIFNγrel 1 to Class II cytokine receptor family members (Crfbs), Crfb5 and Crfb17, which are also known as IFNAR1 and IFNGR1-1, respectively, was detected by flow cytometry. Expression of the IFNγrel 1-inducible antiviral gene, Isg15, was highest in Crfb5- and Crfb17-overexpressing GTS9 cells. Dimerization of Crfb5 and Crfb17 was detected by chemical crosslinking. The results indicate that IFNγrel 1 activates Stat6 through an interaction with unique pairs of receptors, Crfb5 and Crfb17. Indeed, this cascade is distinct from not only that of IFNγ but also that of known IFNs in other vertebrates. IFNs may be classified by their receptor and signal transduction pathways. Taken together, IFNγrel 1 may be classified as a novel type of IFN family member in vertebrates. Our findings provide important information on interferon gene evolution in bony fish.
Collapse
Affiliation(s)
| | - Takeshi Yabu
- College of Bioresource SciencesNihon UniversityFujisawaJapan
- Department of Food and NutritionNitobe Bunka CollegeNakanoJapan
| | - Hajime Shiba
- College of Bioresource SciencesNihon UniversityFujisawaJapan
| | | | - Nobuhiro Mano
- College of Bioresource SciencesNihon UniversityFujisawaJapan
| | - Teruyuki Nakanishi
- College of Bioresource SciencesNihon UniversityFujisawaJapan
- Goto Aquaculture Institute Co., Ltd.SayamaJapan
| |
Collapse
|
2
|
Cao J, Futami K, Maita M, Nakanishi T, Katagiri T. Adjuvant effect of allogeneic blood in vaccines against edwardsiellosis in ginbuna crucian carp Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109133. [PMID: 37923185 DOI: 10.1016/j.fsi.2023.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023]
Abstract
Edwardsiella tarda (E. tarda), an intracellular pathogen, has caused severe economic losses in aquaculture. Effective vaccine development for E. tarda prevention is urgently needed. A previous study indicates that cell-mediated immunity (CMI) might play an important role in E. tarda infection. We believe that the involvement of allograft rejection and CMI has now been well documented in mammals and some fishes. However, there is still little research on the application of blood allograft rejection in vaccine development. In the current study, we investigate the immune response and vaccine effect in fish vaccinated with allogeneic blood + formalin-killed cells vaccine (FKC), allogeneic blood + phosphate-buffered saline (PBS), PBS + FKC and PBS + PBS. In the challenge test, the relative percentage survival (RPS) of the allogeneic + FKC, the allogeneic blood + PBS and the PBS + FKC group was 61.46, 35.41, and 30.63 % respectively. The up-regulated expression of Th1-related genes IFN-γ 1, IFN-γ 1rel2, IL-12p35 and T-bet suggests the protection is via CMI induction. Only in the allogeneic + FKC group, gene expression of IFN-γ 1, IL-12p35 and T-bet is significantly higher, indicating synergy between the two substances. Furthermore, among the fish injected with the allogeneic blood cells, syngeneic blood cells and PBS group, only in the fish of the allogenic blood cells injection group, did expression of IFN-γ 1, IFN-γ 2 and IFN-γ rel2 gene expression significantly increased. The results indicate that the rejection was induced by allogeneic components. Thus, our findings might provide essential information and insights into vaccine development in aquaculture.
Collapse
Affiliation(s)
- Jingjing Cao
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo, 108-8477, Japan
| | - Kunihiko Futami
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo, 108-8477, Japan
| | - Masashi Maita
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo, 108-8477, Japan
| | - Teruyuki Nakanishi
- Goto Aquaculture Institute Co., Ltd, Sayama City, Saitama, 350-1332, Japan
| | - Takayuki Katagiri
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo, 108-8477, Japan.
| |
Collapse
|
3
|
He Z, Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Full-length transcriptome sequencing of lymphocytes respond to IFN-γ reveals a Th1-skewed immune response in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108636. [PMID: 36828199 DOI: 10.1016/j.fsi.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Interferon gamma (IFN-γ), the member of type II interferons, is a major driver and effector cytokine for Th1 cells and plays broad roles in regulating the function of immune cells. Teleost fish represents the oldest living bony vertebrates containing T-lymphocyte subsets. However, whether or how the regulatory mechanisms of IFN-γ on Th1 cells occur in teleost fish remain unknown. In this study, full-length transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and signaling pathways in the IFN-γ stimulated lymphocytes of flounder (Paralichthys olivaceus), the data showed 811 genes were upregulated and 1107 genes were downregulated, Th1 and Th2 cell differentiation pathway was remarkably enriched from DEGs, and the genes in the Th1 cell differentiation pathway were upregulated and verified. Accordingly, variations on Th1 cell differentiation marker genes and CD4+ cells were investigated after IFN-γ stimulation, the results confirmed that CD4+ T lymphocytes proliferated significantly after IFN-γ stimulation, accompanied by eight genes significant upregulation and increased T-bet expression in lymphocytes. In conclusion, the results revealed an induction of IFN-γ on Th1-type immune response, providing novel perspectives into the differentiation of CD4+ T lymphocytes in teleost.
Collapse
Affiliation(s)
- Ziyang He
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
4
|
Matsuura Y, Takano T, Matsuyama T, Sakai T, Terashima S, Nakayasu C. Development of a method to quantify endogenous IFNγ protein in amberjack species. FISH & SHELLFISH IMMUNOLOGY 2020; 107:251-259. [PMID: 33045332 DOI: 10.1016/j.fsi.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Interferon (IFN)γ is a pivotal cytokine that promotes and orchestrates innate cellular and adaptive cell-mediated immunity against intracellular pathogens. The capacity of T cells in mammals to produce IFNγ has been measured using specific antibodies in order to analyze cell-mediated immune responses against infection or immuno-stimulants. In fish, however, measurement of IFNγ protein levels has not been possible due to a lack of research tools. In the present study, therefore, we established antibodies that react with endogenous amberjack IFNγ. An enzyme-linked immunosorbent assay (ELISA) for IFNγ in amberjack species was developed using these antibodies. The ELISA could detect endogenous IFNγ at concentrations less than 100 pg/mL in PMA/ionomycin-stimulated leukocytes culture supernatant. IFNγ production was enhanced and lasted a long time following intracellular bacterial infection with Nocardia seriolae, which is thought to be targeted by cell-mediated immunity. These results demonstrate that quantification of IFNγ using the reported ELISA can be used to estimate the status of cell-mediated immunity in amberjack species.
Collapse
Affiliation(s)
- Yuta Matsuura
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minami-Ise, Mie, Japan.
| | - Tomokazu Takano
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minami-Ise, Mie, Japan
| | - Tomomasa Matsuyama
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minami-Ise, Mie, Japan
| | - Takamitsu Sakai
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minami-Ise, Mie, Japan
| | - Sachiko Terashima
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minami-Ise, Mie, Japan
| | - Chihaya Nakayasu
- Research Center for Fish Diseases, National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minami-Ise, Mie, Japan
| |
Collapse
|
5
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
6
|
Li L, Chen SN, Laghari ZA, Huang B, Huo HJ, Li N, Nie P. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:98-112. [PMID: 30922782 DOI: 10.1016/j.dci.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ, as the sole member of mammalian type II IFN, is a multifunctional cytokine which exerts its effects through two distinct IFN-γ receptors, IFNGR1 and IFNGR2. However, in teleost fish, another IFN-γ homologous gene, namely IFN-γ related gene (IFN-γrel), has been identified. Although IFN-γ and IFN-γrel genes have been described in some fish species, many important aspects remain poorly understood in relation with their signalling and function. In the present study, IFN-γ and IFN-γrel, as well as their receptors, cytokine receptor family B (CRFB) 17, CRFB13, two of which are homologous to IFNGR1 in mammals, and CRFB6, homolomous to IFNGR2, have been characterized in mandarin fish, Siniperca chuatsi. It was revealed that the two type IFN members exhibit antiviral activity, and IFN-γ transduces downstream signalling through CRFB13 and CRFB6, while IFN-γrel interacts with CRFB17 to activate downstream signalling. Moreover, IFN-γ and IFN-γrel have been shown to exert antiviral biological activity in a STAT1-dependent manner. Intracellular domain analysis of CRFB17 and CRFB13 demonstrated that the Y386 tyrosine residue of CRFB13 is required for the activation of the IFN-γ-mediated biologic response, and the Y324 and Y370 residues in CRFB17 are required to activate IFN-γrel signalling.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
7
|
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: An update. FISH & SHELLFISH IMMUNOLOGY 2019; 90:150-164. [PMID: 31028897 DOI: 10.1016/j.fsi.2019.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain; Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain.
| |
Collapse
|
8
|
Xu Q, Luo K, Zhang S, Gao W, Zhang W, Wei Q. Sequence analysis and characterization of type I interferon and type II interferon from the critically endangered sturgeon species, A. dabryanus and A. sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 84:390-403. [PMID: 30336282 DOI: 10.1016/j.fsi.2018.10.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
In the present study, we identify three type I interferon (IFN) genes (Ad/AsIFNe1-3) and a type II IFN gene (Ad/AsIFNγ) from the Dabry's sturgeon (Acipenser dabryanus) and the Chinese sturgeon (Acipenser sinensis). Sequence analysis revealed that Ad/AsIFNe1-3 and Ad/AsIFNγ contain several conserved characteristics, including signal peptides, interferon alpha, beta, and delta (IFabd) domains, and N-glycosylation sites. Ad/AsIFNe1-3 belongs to the type I IFN group I subgroup, possessing two conserved cysteines residues (C1 and C3), and Ad/AsIFNγ contained a conserved nuclear localization sequence (NLS) motif. Ad/AsIFNe1-3 and Ad/AsIFNγ contain signature motifs indicative of their corresponding IFN group. The Ad/AsIFNe1-3 and Ad/AsIFNγ genes were found to consist of 5 exons/4 introns and 4 exons/3 introns, respectively. These IFNs were separated by four phase 0 introns (type I IFN) and three phase 0 introns (type II IFN). The sequences of IFNe1-3 and IFNγ from the Dabry's sturgeon and the Chinese sturgeon were closely aligned, suggested that these two species are closely related. Phylogenetic analysis revealed that Ad/AsIFNe1-3 and Ad/AsIFNγ clustered together with the corresponding homologous proteins from other fish species. AdIFNe1-3 were found to be high expressed in early embryonic development, suggesting that AdIFNe1-3 might indicate maternal transmission, while AdIFNγ may not mediate embryonic development. Tissue distribution analysis revealed that AdIFNe1-3 and AdIFNγ carry out biological functions in immune and non-immune tissues compartments. AdIFNe1-3 and AdIFNγ can be stimulated by polyinosinic-polycytidylic acid (poly I:C) and lipopolysaccharides (LPS). AdIFNe1-3 have stronger antiviral activity than AdIFNγ, and AdIFNγ has a stronger antibacterial activity than AdIFNe1-3. The differential responses of these genes to poly I:C and LPS suggest differences in the mechanisms of defense against viruses and bacteria.
Collapse
Affiliation(s)
- Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Guangxi Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, 536006, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Changsha, 410081, China
| | - Kai Luo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China.
| | - Shuhuan Zhang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Weihua Gao
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Guangxi Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, 536006, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Changsha, 410081, China
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, PR China
| | - Qiwei Wei
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
9
|
Luo K, Zhang S, Tang D, Xia L, Gao W, Tian G, Qi Z, Xu Q, Zhang W. Analysis of the expression patterns of the cytokine receptor family B (CRFB) and interferon gamma receptor (IFNGR) in Dabry's sturgeon (Acipenser dabryanus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:420-426. [PMID: 29555551 DOI: 10.1016/j.dci.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Teleost fish have more complex interferon receptor systems than mammals. In the present study, genes encoding four cytokine receptor family B (CRFBs) and two interferon gamma receptors (IFNGRs) in Dabry's sturgeon (Acipenser dabryanus) were identified by RNA-sequencing. Sequence analysis revealed that the Dabry's sturgeon CRFBs and IFNGRs contained several conserved characteristics features, including signal peptides and a transmembrane domain. Phylogenetic analysis suggested that they belong to the CRFB3, CRFB5, and IFNGR protein families, and were named CRFB3a, CRFB3b, CRFB5a, CRFB5b, IFNGR1, and IFNGR2. The expression patterns of the CRFB and IFNGR genes were investigated in Dabry's sturgeon. The expression levels of CRFB5a, CRFB5b, and IFNGR1 showed no significant changes, suggesting that those genes do not mediate embryonic development. By contrast, the high expression levels of CRFB3a, CRFB3b, and IFNGR2 in the fertilized egg, 16-cell phase, and initial blastula stage implied the existence of maternally expression in the oocyte and association with embryonic development. Tissue distribution analysis revealed that the CRFB and IFNGR proteins have potential functions in immune and non-immune tissue compartments. Comprehensive analysis in Dabry's sturgeon revealed that the expression fold changes of CRFB3a, CRFB3b, CRFB5a, and CRFB5b in Dabry's sturgeon stimulated with poly I:C were higher than those in fish administrated with lipopolysaccharide (LPS). Conversely, the fold changes IFNGRs mRNA levels stimulated with LPS were higher than those in fish administrated with poly I: C. CRFB5a and IFNGR2 genes showed the earliest responses to the poly I: C, and the CRFB5a and IFNGR1 genes showed the earliest responses to LPS. These results implied that CRFB5a has important role in the IFN immune response. Our findings indicated that the Dabry's sturgeon CRFB and IFNGR genes have important functions in antiviral and antibacterial immune responses. The differential responses of these genes to poly I: C and LPS implied differences in the defense mechanisms against viruses and bacteria.
Collapse
Affiliation(s)
- Kai Luo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Shuhuan Zhang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Dongdong Tang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Lihai Xia
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Weihua Gao
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Guangming Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Zhitao Qi
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China.
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.
| |
Collapse
|
10
|
Embregts CWE, Rigaudeau D, Veselý T, Pokorová D, Lorenzen N, Petit J, Houel A, Dauber M, Schütze H, Boudinot P, Wiegertjes GF, Forlenza M. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response. Front Immunol 2017; 8:1340. [PMID: 29114248 PMCID: PMC5660689 DOI: 10.3389/fimmu.2017.01340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Dimitri Rigaudeau
- INRA, Infectiologie Expérimentale Rongeurs Poissons, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | - Jules Petit
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Armel Houel
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Malte Dauber
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Insel Riems, Germany
| | - Heike Schütze
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Insel Riems, Germany
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
11
|
Secombes CJ, Zou J. Evolution of Interferons and Interferon Receptors. Front Immunol 2017; 8:209. [PMID: 28303139 PMCID: PMC5332411 DOI: 10.3389/fimmu.2017.00209] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
The earliest jawed vertebrates (Gnathostomes) would likely have had interferon (IFN) genes, since they are present in extant cartilaginous fish (sharks and rays) and bony fish (lobe-finned and ray-finned fish, the latter consisting of the chondrostei, holostei, and teleostei), as well as in tetrapods. They are thought to have evolved from a class II helical cytokine ancestor, along with the interleukin (IL)-10 cytokine family. The two rounds of whole genome duplication (WGD) that occurred between invertebrates and vertebrates (1) may have given rise to additional loci, initially containing an IL-10 ancestor and IFN ancestor, which have duplicated further to give rise to the two loci containing the IL-10 family genes, and potentially the IFN type I and IFN type III loci (2). The timing of the divergence of the IFN type II gene from the IL-10 family genes is not clear but was also an early event in vertebrate evolution. Further WGD events at the base of the teleost fish, and in particular teleost lineages (cyprinids, salmonids), have duplicated the loci further, giving rise to additional IFN genes, with tandem gene duplication within a locus a common occurrence. Finally, retrotransposition events have occurred in different vertebrate lineages giving rise to further IFN loci, with large expansions of genes at these loci in some cases. This review will initially explore the likely IFN system present in the earliest Gnathostomes by comparison of the known cartilaginous fish genes with those present in mammals and will then explore the changes that have occurred in gene number/diversification, gene organization, and the encoded proteins during vertebrate evolution.
Collapse
Affiliation(s)
- Chris J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen , Aberdeen , UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen , Aberdeen , UK
| |
Collapse
|