1
|
Ryu T, Yoshino M, Tse WKF, Ansai S, Iguchi T, Kumar A, Somamoto T, Nakao M, Ogino Y. Local immune response induced by intra-fin antigen injection in Japanese medaka (Oryzias latipes) is a useful model for immunological studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105344. [PMID: 39961406 DOI: 10.1016/j.dci.2025.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Teleost fishes play a pivotal role in advancing our understanding of immune system evolution because they retain the ancient characteristics of vertebrate immunity, encompassing both innate and adaptive immune systems. Among these, innate immunity plays a critical role in fish as the first line of defense, coordinating rapid responses to pathogen infections. However, the lack of fish-specific immunological methodologies has limited progress in elucidating fish immune mechanisms. To better understand how the innate immune response develops and resolves in fish, detailed observation and integrative analysis of leukocytes at multiple time points is necessary. In the present study, an intra-fin injection method for observing local immune responses in Japanese medaka (Oryzias latipes) was tested and optimized to analyze the progression of zymosan-induced innate immune responses. Zymosan-injected medaka showed a rapid immune response characterized by leukocyte recruitment and phagocytosis. Using TG(FmpxP:mCherry) transgenic medaka with mCherry fluorescence driven by myeloperoxidase (mpx) promoter, granulocyte chemotaxis towards the site of zymosan entry was successfully visualized. The rapid increase in tumor necrosis factor α (tnfa), interleukin-1β (il1b), interleukin-6 (il6), and CXC motif chemokine ligand 8 (cxcl8) expressions in zymosan-injected anal fins provided a molecular basis for the visualized tissue-specific cellular response. Our study underscores the dynamic orchestration of immune components during the innate immune response in Japanese medaka and highlights their potential as a promising model for immunological research.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mizuki Yoshino
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biology, Kyushu University, Fukuoka, 819-0395, Japan
| | - William Ka Fai Tse
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Developmental Disorders and Toxicology, Kyushu University, Fukuoka, 819-0395, Japan; Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Satoshi Ansai
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation, CSIRO Environment, 40 Waite Road, Gate 4 Reception, Urrbrae, 5064, South Australia, Australia
| | - Tomonori Somamoto
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan; Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yukiko Ogino
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Aquatic Molecular Developmental Biology, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Sukeda M, Prakash H, Nagasawa T, Nakao M, Somamoto T. Non-specific cytotoxic cell receptor protein-1 (NCCRP-1) is involved in anti-parasite innate CD8 + T cell-mediated cytotoxicity in ginbuna crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023:108904. [PMID: 37353062 DOI: 10.1016/j.fsi.2023.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
CD8+ cytotoxic T cells (CTLs) are a main cellular component of adaptive immunity. Our previous research has shown that CD8+ cells demonstrate spontaneous cytotoxic activity against the parasite Ichthyophthirius multifiliis in ginbuna crucian carp, suggesting that CD8+ cells play an important role in innate immunity. Herein, we investigated the molecules and cellular signal pathways involved in the cytotoxic response of ginbuna crucian carp. We considered non-specific cytotoxic receptor protein-1 (NCCRP-1) as candidate molecule for parasite recognition. We detected NCCRP-1 protein in CD8+ cells and the thymus as well as in other cells and tissues. CD8+ cells expressed mRNA for NCCRP-1, Jak2, and T cell-related molecules. In addition, treatment with a peptide containing the presumed antigen recognition site of ginbuna NCCRP-1 significantly inhibited the cytotoxic activity of CD8+ cells against the parasites. The cytotoxic activity of CD8+ cells was significantly inhibited by treatment with the JAK1/2 inhibitor baricitinib. These results suggest that teleost CTLs recognize I. multifiliis through NCCRP-1 and are activated by JAK/STAT signaling.
Collapse
Affiliation(s)
- Masaki Sukeda
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Miyazawa R, Iijima Y, Nakanishi T. Induction of both local and systemic immunity by in vivo injection of PHA into ginbuna carp fin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104329. [PMID: 34919981 DOI: 10.1016/j.dci.2021.104329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Phytohemagglutinin (PHA) is a well-known mitogen inducing activation and proliferation of lymphocytes, particularly T lymphocytes in vitro. PHA has also been used in vivo for assessing cell-mediated immunity in non-mammalian vertebrates, particularly in birds. However, it has been suggested that local inflammation as a direct result of tissue damage could be responsible for skin swelling after PHA injection, in addition to induction of T lymphocyte mitogenesis. In order to understand the complex nature of this response in fish we investigated the accumulation of cell types chronologically in dorsal fin of ginbuna crucian carp Carassius auratus langsdorfii after PHA injection. Neutrophils appeared first and showed a peak response on day 1, decreasing gradually and followed by macrophages and blast cells while lymphocytes increased later with a peak response on day 5. The number of accumulated cells was significantly higher in PHA-injected fish than controls in most cases. Lymphocytes identified as CD4-1+and CD8α+ were significantly more abundant in PHA-injected fish than in control fish throughout the 7-day experimental period except on day 1, while the number of IgM+ lymphocytes was higher in PHA-injected fish only on day 1. In the blast cell fraction, the number of CD4-1+ lymphocytes was significantly higher in PHA-injected fish than in control fish throughout experimental period, except on day 1. We also document the migration of neutrophils from the kidney to the fin through blood, followed by granulopoiesis in the kidney. These results suggest that adaptive immunity as well as innate immunity was induced by in vivo stimulation with PHA.
Collapse
Affiliation(s)
- Ryuichiro Miyazawa
- Division of Molecular Immunology, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Yuri Iijima
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan; Goto Aquaculture Institute Co., Ltd, Sayama City, Saitama, 350-1332, Japan.
| |
Collapse
|
4
|
Shiota K, Sukeda M, Prakash H, Kondo M, Nakanishi T, Nagasawa T, Nakao M, Somamoto T. Local immune responses to two stages of Ichthyophthirius multifiliis in ginbuna crucian carp. FISH & SHELLFISH IMMUNOLOGY 2021; 118:19-24. [PMID: 34450269 DOI: 10.1016/j.fsi.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Ichthyophthirius multifiliis is a ciliated protozoan parasite and is known to infect many freshwater teleosts. Characterizing the immune system in epithelial tissues, where the parasites penetrate and settle, is key to understanding host-parasite interactions. This study examined local immune responses in vivo to the infective stage (theront and trophont) of the parasites using intra-fin administration, which has been developed to analyze in vivo immune responses using fish fin. CD8α+ and CD4+ T-cell compositions were increased significantly in the fin cavity injected with theront or trophont antigens. The expression of GATA-3 and T-bet mRNA, which regulate differentiation of helper T-cells, was upregulated significantly in leukocytes from the trophont antigen-injected site. In contrast, the percentages of macrophages and neutrophils, which are innate immunity components, were decreased significantly in the injection sites. These results suggest that I. multifiliis antigens inhibit the migration of macrophages and neutrophils, and T-cells are the first responders to I. multifiliis. Thus, to better understand the interaction of host immunity and I. multifiliis, further studies should focus on exploring the inhibitory factors from I. multifiliis or examining innate functions of teleost T-cells.
Collapse
Affiliation(s)
- Koumei Shiota
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masaki Sukeda
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan; Goto Aquaculture Institute Co., Ltd, Sayama City, Saitama, 350-1332, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Teruyuki Nakanishi
- Goto Aquaculture Institute Co., Ltd, Sayama City, Saitama, 350-1332, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Goes CAG, Silva DMZDA, Utsunomia R, Yasui GS, Artoni RF, Foresti F, Porto-Foresti F. Establishment of rapid and non-invasive protocols to identify B-carrying individuals of Psalidodon paranae. Genet Mol Biol 2021; 44:e20200003. [PMID: 33769429 PMCID: PMC7995683 DOI: 10.1590/1678-4685-gmb-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Supernumerary, or B, chromosomes are present in several eukaryotes, including characid fish of the genus Psalidodon. Notably, Psalidodon paranae carries the most studied B chromosome variant, a macro-B chromosome. The origin of this element was determined to be an isochromosome; however, data regarding its inheritance remain unavailable due to methodological barriers such as the lack of an efficient, non-invasive, and rapid protocol for identifying B-carrying individuals that would enable the design of efficient crossing experiments. Thus, in this study, we primarily aimed was to develop two non-invasive and fast (approximately 2 h) methods to identify the presence of B chromosomes in live specimens of P. paranae based on satellite DNA (satDNA) sequences known to be present in this element. The methods include fluorescence in situ hybridization in interphase nuclei and relative gene quantification of satDNAs using quantitative polymerase chain reaction. Our results reveal the efficiency of quick-fluorescence in situ hybridization and quantitative polymerase chain reaction for identifying B-carrying individuals using the proposed satDNA sequences and open up new possibilities to study B chromosomes.
Collapse
Affiliation(s)
- Caio Augusto Gomes Goes
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências, Bauru, SP, Brazil
| | | | - Ricardo Utsunomia
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Biológicas e da Saúde, ICBS, Seropédica, RJ, Brazil
| | - George Shigueki Yasui
- Centro nacional de Pesquisa e Conservação da Biota Aquática Continental (CEPTA-ICMBIO), Pirassununga, SP, Brazil
| | - Roberto Ferreira Artoni
- Universidade Estadual de Ponta Grossa, Setor de Ciências Biológicas e da Saúde, Ponta Grossa, PR, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Botucatu, SP, Brazil
| | - Fábio Porto-Foresti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências, Bauru, SP, Brazil
| |
Collapse
|
6
|
Somamoto T, Nakanishi T. Mucosal delivery of fish vaccines: Local and systemic immunity following mucosal immunisations. FISH & SHELLFISH IMMUNOLOGY 2020; 99:199-207. [PMID: 31911291 DOI: 10.1016/j.fsi.2020.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
The mucosal organs of fishes are directly exposed to their aquatic environment, which is suited to the colonization and growth of microorganisms, and thus these barriers are considered to play an important role in maintaining homeostasis and preventing entry of invasive pathogens. Research on fish mucosal immunity have shown that mucosal organs such as gills, skin, intestines and olfactory organs harbor lymphoid cells, including T and B cells as well as dendritic-like cells. Findings related to immune responses following direct administration of antigens into the mucosal organs could help to shed light upon the development of fish mucosal vaccines. The present review highlights vaccine delivery via mucosal organs, in particular focusing on methods other than those of typical mucosal vaccine platforms, such as oral and immersion vaccines. In addition, we propose the hypothesis that mucosal tissues are important sites for generating cell-mediated immunity following vaccination with extracellular antigens.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan.
| | - Teruyuki Nakanishi
- Goto Aquaculture Institute Co., Ltd, Sayama City, Saitama, 350-1332, Japan
| |
Collapse
|
7
|
Chai Y, Cong B, Yu S, Liu Y, Man X, Wang L, Zhu Q. Effect of a LECT2 on the immune response of peritoneal lecukocytes against Vibrio anguillarum in roughskin sculpin. FISH & SHELLFISH IMMUNOLOGY 2018; 74:620-626. [PMID: 29331349 DOI: 10.1016/j.fsi.2017.12.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a multi-functional protein that is mainly synthesized by the liver. However, its role in roughskin scalping is less known. Here, we cloned a leukocyte cell-derived chemotaxin 2 (TfLECT2) genes in the liver of roughskin scalping, Trachidermus fasciatus, and studied its possible role involved in the immune response against Vibrio anguillarum (V. anguillarum) of peritoneal lecukocytes under in vivo conditions. The cDNA sequence of TfLECT2 is 566 bp in size. Its deduced amino acid (aa) sequence comprises 151 residues, of which the first 16 residues form a putative signal peptide and 101 residues compose a typical peptidase M23 domain in the C-terminal region. The domain structure is conserved in all LECT2 proteins, which suggests a close phylogenetic relationship between TfLECT2 and LECT2 in other fish species. Real-time quantitative PCR analysis revealed that TfLECT2 gene expression was dramatically increased in liver after V. anguillarum stimulation. Subsequently, TfLECT2 was prokaryotic expressed and purified to prepare anti-TfLECT2 antibody. After V. anguillarum challenge, leukocytes recruitment and LECT2 levels in peritoneal exudates were increased, and positively correlated with each other. Moreover, recombinant TfLECT2 administration significantly improved immune responses after infection, principally in stimulating the recruitment, phagocytosis and respiratory burst of leukocytes at the site of infection; however, anti-TfLECT2 treatment neutralized these abilities. Therefore, TfLECT2 may trigger the early immune events of peritoneal leukocytes and it will be useful to induce innate immune response of fish.
Collapse
Affiliation(s)
- Yingmei Chai
- Marine College, Shandong University (Weihai), Weihai 264209, PR China.
| | - Bailin Cong
- The First Institute of Oceanography, Marine Ecological Center, State Oceanic Administration, Qingdao, 266061, PR China
| | - Shanshan Yu
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Yingying Liu
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Xin Man
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Lujie Wang
- Marine College, Shandong University (Weihai), Weihai 264209, PR China
| | - Qian Zhu
- Marine College, Shandong University (Weihai), Weihai 264209, PR China.
| |
Collapse
|