1
|
Lee D, Lee JH, Kim KH, Choi CY, Kang JC, Kim JH. Expression of antioxidant and stress-related genes in olive flounder, Paralichthys olivaceus exposed to high temperatures after pre-heating. Comp Biochem Physiol C Toxicol Pharmacol 2025; 291:110147. [PMID: 39965750 DOI: 10.1016/j.cbpc.2025.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The rising sea surface temperatures driven by climate change cause thermal stress, leading to oxidative stress, metabolic disorders, and increased disease susceptibility, thereby impairing the physiological functions of fish. Therefore, understanding the adaptation mechanisms of fish to high temperatures is essential for mitigating the negative impacts of thermal stress on aquaculture productivity and fish health. In this study, Paralichthys olivaceus were subjected to high temperatures following pre-heating to evaluate the advantages of pre-stimulation prior to exposure to the critical temperature. The P. olivaceus were exposed to four groups; Acute (subjected to acute heat shock at 32 °C), AH-S (exposed to acquired heat shock at 28 °C followed by short recovery of 2 h and subsequent heat shock at 32 °C), AH-L (exposed to acquired heat shock at 28 °C followed by long recovery of 2 days and subsequent heat shock at 32 °C) and AH-SL (combined of AH-S and AH-L protocols). In terms of antioxidant response, mRNA expression (caspase 10, thioredoxin (Trx), superoxide dismutase (SOD), peroxiredoxin (Prx), glutathione-S-transferase (GST), and transferrin (TF)) and enzyme activities (SOD, CAT, and GST) were significantly upregulated in P. olivaceus pre-heated prior to high-temperature exposure (AH-S, AH-L, and AH-SL groups). In addition, the stress gene expressions such as heat shock protein 70 (HSP70), HSP60, HSP90, warm-temperature-acclimation-associated 65-kDa protein (Wap65-1), and glucose-regulated protein 78 (GRP78) was significantly upregulated in AH-S, AH-L and AH-SL groups. Pre-heating has been found to be effective in mitigating thermal stress, with the efficacy varying according to the differences in pre-heating methods.
Collapse
Affiliation(s)
- Dain Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, South Korea
| | - Ju-Hyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Kyung-Hee Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
2
|
Zhang R, Wang Y, Xu C, Chen F, Yu Q, Sun Y, Zhang J. Characterization of peroxiredoxin from Neocaridina denticulata sinensis and its antioxidant and DNA protection activity analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:211-218. [PMID: 35738486 DOI: 10.1016/j.fsi.2022.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Peroxiredoxin (Prx) is an antioxidant protein that widely exists in various organisms. To further investigate the role of Prx in the antioxidant and immune responses of Neocaridina denticulata sinensis, the full-length cDNA sequence of a Prx gene (Nd-Prx) from N. denticulata sinensis was obtained. The open reading frame (ORF) of Nd-Prx is 597 bp and encodes 198 amino acids. Amino acid similarity alignment showed that Nd-Prx contained a conserved sequence region "FYPLDFTFVCPTEI". qRT-PCR assay showed that Nd-Prx was expressed in all tested tissues and its expression was highest in the ovary. Nd-Prx was most highly expressed at 36 h after copper stimulation. Nd-Prx expression levels in hepatopancreas were significantly upregulated after Vibrio parahaemolyticus challenge (P < 0.05). In addition, the recombinant Nd-Prx was prepared and its enzyme activity was most stable at 70 °C with pH of 6.0. The antioxidant activity and DNA protection of recombinant Nd-Prx was also demonstrated. In summary, this study investigated the role of Prx in antioxidant and immune responses of N. denticulata sinensis, which might provide a foundation for further exploring Prx in immune system of crustaceans and for the application in disease control.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ying Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ce Xu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Fei Chen
- Xiaoshan Donghai Aquaculture Co., Ltd, Xiaoshan, 310012, China
| | - Qili Yu
- Xiaoshan Donghai Aquaculture Co., Ltd, Xiaoshan, 310012, China
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Wang Y, Zhang R, Xu C, Sun Y, Zhang J. Characterization and functional analysis of peroxiredoxin 4 gene in the Neocaridina denticulata sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 122:162-169. [PMID: 35063604 DOI: 10.1016/j.fsi.2022.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Peroxiredoxin (Prx) is an antioxidant protein family, which widely exists in organisms and plays an important role in innate immunity. In this study, the full-length cDNA of a Prx gene (NdPrx) was obtained from Neocaridina denticulata sinensis, which contains a 735 bp open reading frame (ORF) and encodes a polypeptide of 244 amino acids. It is inferred that the molecular weight of the encoded amino acid is 27261.20 Da and the theoretical isoelectric point is 6.16. Phylogenetic analysis shows that NdPrx and Prx4 have high homology, so it was named NdPrx4. Multiple alignment analysis showed that the amino acid sequence of NdPrx4 had high homology with Prx4 of other species, and the similarity with Homarus americanus was the highest, 92.86%. Quantitative real-time PCR analysis showed that NdPrx4 was expressed in various tissues of N. denticulata sinensis, and the expression in ovary was the highest. It was speculated that NdPrx4 may be related to maternal immune function. Under the stimulation of Cu2+, the expression of NdPrx4 reached the peak at 36 h, and showed a downward trend until 72 h, indicating that NdPrx4 may play an important role in the stress response of N. denticulata sinensis. Then, NdPrx4 was recombinantly expressed in E. coli, and its enzymatic characteristics of rNdPrx4 were detected. The result showed that the activity of rNdPrx4 was the highest at pH 5.0 and 55 °C. It was found that Mn2+ and Ca2+ can inhibit the activity of rNdPrx4, and Zn2+ increases the activity of rNdPrx4.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ruirui Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ce Xu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Wang Y, Duan Y, Huang J, Wang J, Zhou C, Jiang S, Lin H, Zhang Z. Characterization and functional study of nuclear factor erythroid 2-related factor 2 (Nrf2) in black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2021; 119:289-299. [PMID: 34656756 DOI: 10.1016/j.fsi.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a member of the Cap'n'collar basic region leucine zipper (CNC-bZIP) transcription factor family, and is activated by diverse oxidants, pro-oxidants, antioxidants and chemopreventive agents. The full-length cDNA of Nrf2 from Penaeus monodon (PmNrf2; 2024 bp long with 729 bp coding region, GenBank accession no. MW390830) was cloned. The 242-amino-acid polypeptide encoded by this gene had a predicted molecular mass of 27.80 kDa. Sequence homology and phylogenetic analysis showed that PmNrf2 was similar to the insect Cap'n'Collar (CNC) transcription factor and mammalian Nrf2. Tissue expression profile analyzed by quantitative real-time RT-PCR (qRT-PCR) demonstrated that PmNrf2 was constitutively expressed in all examined tissues, with the highest expression observed in the intestines and the weakest expression observed in the hemocyte. PmNrf2 expression profiles were detected in the hepatopancreas of shrimp after bacterial challenge. The results suggested that PmNrf2 was involved in the responses to bacterial challenge, but the temporal expression pattern trend of PmNrf2 differed between the gram-negative and gram-positive bacterial challenges in the shrimp hepatopancreas. The recombinant PmNrf2 protein was expressed and purified through affinity chromatography. Furthermore, an anti-PmNrf2 polyclonal antibody was obtained, which was able to clearly detect PmNrf2 protein expression in the hepatopancreas of shrimp. Knockdown of PmNrf2 by RNA interference (RNAi) resulted in a reduction in the expression of PmGPx gene. Taken together, the results of our study indicated that PmNrf2 played a role in regulation the transcription of PmGPx antioxidant enzyme genes.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, PR China
| | - Yafei Duan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Jianhua Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Shigui Jiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, PR China
| | - Heizhao Lin
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, PR China.
| |
Collapse
|
5
|
Zhao C, Peng C, Fan S, Bu R, Wang P, Yan L, Qiu L. Novel 2-Cys Peroxiredoxin gene confers biotic and abiotic stress resistance in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2020; 106:768-775. [PMID: 32828846 DOI: 10.1016/j.fsi.2020.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Peroxiredoxins (Prxs) are crucial antioxidant proteins that protect against biotic and abiotic stresses in many organisms, ranging from bacteria to mammals. In the present work, a novel 2-Cys Peroxiredoxin gene (PmPrxn), which contains a 153 bp 5'-terminal untranslated region (5'-UTR), a 636 bp open reading frame encoding a protein with 211 amino acids, and an 898 bp 3'-UTR, was successfully identified and characterized in the black tiger shrimp, Penaeus monodon. Tissue-specific expression analysis revealed that the PmPrxn mRNA was ubiquitously expressed and was comparatively highly expressed in the hepatopancreas. To explore the immunity-related and anti-stress roles of PmPrxn, the gills and hepatopancreas were chosen as target tissues in P. monodon and challenged with Vibrio harveyi, Streptococcus agalactiae, and toxic environmental stressors. The results indicate that PmPrxn might play a vital role in response to biotic and abiotic stresses. Furthermore, the antimicrobial and heavy metal toxicity stress-resistance properties of PmPrxn were evaluated and investigated in vitro using a prokaryotic expression system. These results provide useful information that will help further understand the functional mechanisms of PmPrxn in the defense against bacterial pathogens and environmental acute stresses in shrimp.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Ruiqian Bu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS, Beijing, 100141, PR China.
| |
Collapse
|
6
|
Bai L, He W, Fan S, Liu B, Zhou T, Zhang D, Zhang D, Yu D. Multiple functions of thymosin β4 in the pearl oyster Pinctada fucata suggest its multiple potential roles in artificial pearl culture. FISH & SHELLFISH IMMUNOLOGY 2020; 103:23-31. [PMID: 32348884 DOI: 10.1016/j.fsi.2020.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Thymosin β4 is a multifunctional protein in vertebrates that participates in physiological processes, such as wound healing, immune response, cell proliferation and migration. We assessed the multifarious roles of this small peptide in Pinctada fucata, an oyster commonly used in pearl culture in China. Our results showed that when P. fucata was challenged by bacterial pathogens or LPS, the relative expression level of Pfthymosin β4 mRNA was significantly up-regulated, suggesting its involvement in immune response of the animal. Recombinant Pfthymosin β4 (rPfthymosin β4) was produced and showed in vitro different antibacterial activities against different pathogenic bacteria; the inhibitory effect of rPfthymosin β4 on bacterial growth was relatively stronger in the broth culture than agar culture. The overexpression of Pfthymosin β4 in Escherichia coli BL21(DE3) cells could improve their resistance to Cu2+, Zn2+, Cd2+, and H2O2, suggesting that Pfthymosin β4 is likely involved with antioxidant. rPfthymosin β4 also significantly promoted the proliferation and migration of mouse aortic vascular smooth muscle cells as indicated by MTT assay and cell scratch assay, respectively. In addition, chemically synthesized or recombinant Pfthymosin β4 could transiently increase the circulating total hemocytes counts but down-regulated by RNAi in P. fucata. Taking together above results and previous studies suggested that Pfthymosin β4 is potentially able to promote wound healing through enhancing antibacterial activity and antioxidant capacity, promotion of cell proliferation and migration, and increase of circulating hemocytes in P. fucata due to nucleus implantation injury. Thus, the future of recombinant Pfthymosin β4 should be promising in the culture of pearls in P. fucata.
Collapse
Affiliation(s)
- Lirong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, PR China
| | - Wenyao He
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Tong Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | | | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, PR China.
| |
Collapse
|
7
|
Zhu D, Huang R, Yang C, Fu P, Chen L, Jiang Y, He L, Li Y, Liao L, Zhu Z, Wang Y. Identification and molecular characterization of peroxiredoxin 2 in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 92:570-582. [PMID: 31202963 DOI: 10.1016/j.fsi.2019.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Peroxiredoxin (Prx), also named thioredoxin peroxidase (TPx), is a selenium independent antioxidant enzyme that can protect organisms from oxidative damage caused by reactive oxygen species (ROS) and is important for immune responses. In this study, the molecular cloning and characterization of a Prx2 homologue (CiPrx2) were described from grass carp (Ctenopharyngodon idella). The full-length cDNA of CiPrx2 was 1163 bp containing 5'-untranslated region (UTR) of 52 bp, a 3'-UTR of 517 bp with the putative polyadenylation consensus signal (AATAAA), an open reading frame (ORF) of 594 bp encoding polypeptides of 197 amino acids with a predicted molecular mass of 21.84 kDa and theoretical isoelectric point of 5.93. The analysis results of multiple sequence alignment and phylogenetic tree confirmed that CiPrx2 belong to the typical 2-Cys Prx subfamily. The CiPrx2 mRNA was ubiquitously expressed in all tested tissues. The temporal expression of CiPrx2 were differentially induced infected with grass carp reovirus (GCRV), polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS) in liver and spleen. Subcellular localization of CiPrx2-GFP fusion proteins were only distributed in the cytoplasm. The purified recombinant CiPrx2 possessed an apparent antioxidant activity and could protect DNA against oxidative damage. Finally, CiPrx2 proteins could obviously inhibit H2O2 and heavy metal toxicity. However, further researches are needed to better understand the regulation of CiPrx2 under oxidative stresses.
Collapse
Affiliation(s)
- Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peipei Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, And State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinjun Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Zhu D, Li Y, Huang R, Luo L, Chen L, Fu P, He L, Li Y, Liao L, Zhu Z, Wang Y. Molecular characterization and functional activity of Prx1 in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 90:395-403. [PMID: 31054357 DOI: 10.1016/j.fsi.2019.04.302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Peroxiredoxin (Prx) family are known as an important antioxidant enzyme as the first line of defense against oxidative damage, and also involved in immune responses following viral and bacterial infection. Here, a full-length Prx1 cDNA sequence (CiPrx1) was cloned from grass carp (Ctenopharyngodon idella), which was 1029 bp, including a 5'-terminal untranslated region (UTR) of 121 bp, a 3'-UTR of 272 bp, an open reading frame of 600 bp encoding 199 amino acids with molecular weight of 22.21 kDa and isoelectric point of 6.30. CiPrx1 shares 80.8-99% protein sequence similarity with Prx1 of other fishes. The conserved peroxidase catalytic center "FYPLDFTFVCPTEI" and "GEVCPA" were observed in the sequence of CiPrx1; this indicated that it was a member of 2-Cys Prx. Subcellular localization of CiPrx1 was only strongly distributed in the cytoplasm. Quantitative real-time PCR (RT-qPCR) assays revealed that CiPrx1 mRNA was ubiquitously detected in all tested tissues, and the expression was comparatively high in liver, gill and spleen. Further, the expression of CiPrx1 can be induced by grass carp reovirus (GCRV), lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C) infection in the different tissues. Moreover, the recombinant CiPrx1 (rCiPrx1) protein was found a potential antioxidant enzyme, that could inhibit DNA damage from oxidants. Altogether, our results imply that CiPrx1 is associated with defending against virus and bacteria pathogens and oxidants in grass carp.
Collapse
Affiliation(s)
- Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lifei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peipei Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Chen X, Wang P, Zhao C, Yan L, Lin H, Qiu L. Molecular characterization and functional analysis of IL-12p40 from Chinese sea bass (Lateolabrax maculatus) under biotic and abiotic stresses. FISH & SHELLFISH IMMUNOLOGY 2018; 83:373-385. [PMID: 30227255 DOI: 10.1016/j.fsi.2018.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Interleukins are critical cytokines that are ubiquitously present in both vertebrates and invertebrates and constitute the front line of host innate immunity. Here, we identified and analyzed IL-12p40 from the Chinese sea bass Lateolabrax maculatus (LmIL-12p40). The LmIL-12p40 gene is expressed as a 1386-base pair transcript that encodes a polypeptide of 321 amino acids. Transcriptional expression analysis indicated that LmIL-12p40 mRNA was ubiquitously expressed in all tested tissues and had a comparatively high expression level in immune-associated tissues (head-kidney and intestines). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) experiments showed that, after Vibro harveyi and Streptococus agalactiae infection, LmIL-12p40 mRNA expression was significantly up-regulated in the spleen, liver and head-kidney. To further clarify the immune function of LmIL-12p40 after bacterial challenge, the recombinant LmIL-12p40 protein was acquired using a prokaryotic expression method. Furthermore, the LmIL-12p40 dimer (LmIL-12p80) could be produced via protein-protein interactions by incubating p40 monomer expressed from the pET28a vector (pET28a-LmIL-12p40) with p40 monomer expressed from the pGEX4T-1 vector (pGEX4T-1-LmIL-12p40). The antimicrobial activity of the purified LmIL-12p40 and LmIL-12p80 proteins were further studied in vitro using a bacterial growth inhibition test (for both liquid and solid cultures) and in vivo (using a bacterial growth inhibition test with the head-kidney tissues). Furthermore, BL21 (DE3) E. coli cells transformed with the recombinant pET28a-LmIL-12p40 vector were dramatically protected in response to metal toxicity and H2O2-related oxidative stress. In summary, this study will provide foundational information regarding the role of LmIL-12p40 in defending against various biotic and abiotic stresses in fishes, which should help to further clarify the functional mechanism of interleukins.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, PR China.
| |
Collapse
|
10
|
Feng M, Yin H, Peng H, Lu G, Liu Z, Dang Z. iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1758-1767. [PMID: 30061077 DOI: 10.1016/j.envpol.2018.07.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
11
|
Identification and characterization of six peroxiredoxin transcripts from mud crab Scylla paramamosain: The first evidence of peroxiredoxin gene family in crustacean and their expression profiles under biotic and abiotic stresses. Mol Immunol 2017; 93:223-235. [PMID: 29220745 DOI: 10.1016/j.molimm.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The peroxiredoxins (Prxs) define a novel and evolutionarily conserved superfamily of peroxidases able to protect cells from oxidative damage by catalyzing the reduction of a wide range of cellular peroxides. Prxs have been identified in prokaryotes as well as in eukaryotes, however, the composition and number of Prxs family members vary in different species. In this study, six Prxs were firstly identified from the mud crab Scylla paramamosain by RT-PCR and RACE methods. Six SpPrxs can be subdivided into three classes: (a) three typical 2-Cys enzymes denominated as Prx1/2, 3, 4, (b) two atypical 2-Cys enzymes known as Prx5-1 and Prx5-2, and (c) a 1-Cys isoform named Prx6. The evolutionarily conserved signatures of peroxiredoxin catalytic center were identified in all six SpPrxs. Phylogenetic analysis revealed that SpPrx3, SpPrx4, SpPrx5s and SpPrx6 were clearly classified into Prx3-6 subclasses, respectively. Although SpPrx1/2 could not be grouped into any known Prx subclasses, SpPrx1/2 clustered together with other arthropods Prx1 or unclassified Prx and could be classified into the typical 2-Cys class. The comparative and evolutionary analysis of the Prx gene family in invertebrates and vertebrates were also conducted for the first time. Tissue-specific expression analysis revealed that these six SpPrxs were expressed in different transcription patterns while the highest expression levels were almost all in the hepatopancreas. Quantitative RT-PCR analysis exhibited that the gene expression profiles of six SpPrxs were distinct when crabs suffered biotic and abiotic stresses including the exposures of Vibrio alginolyticus, poly (I:C), cadmium and hypoosmotic salinity, suggesting that the SpPrxs might play different roles in response to various stresses. The recombinant proteins including the SpPrx1/2, SpPrx4, SpPrx5-1 and SpPrx6 were purified and the peroxidase activity assays indicated that all these proteins can reduce H2O2 in a typical DTT-dependent manner. To our knowledge, this is the first study about the comprehensive characterization of Prx gene family in Scylla paramamosain and even in crustaceans. These results would broaden the current knowledge of the whole Prx family as well as be helpful to understand and clarify the evolutionary pattern of Prx family in invertebrate and vertebrate taxa.
Collapse
|