1
|
Zhu Y, Yang G. Identification of an IRF8 gene in common carp (Cyprinus carpio. L) and its regulatory role in immune responses. BMC Vet Res 2025; 21:143. [PMID: 40038681 PMCID: PMC11881467 DOI: 10.1186/s12917-025-04607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Interferon (IFN) regulatory factors (IRF) are the crucial transcription factors for IFN expression and leading host cells response to viral infection. IRF8 in mammals plays vital roles in the innate and adaptive immune systems. In this study, we identified and characterized the common carp (Cyprinus carpio. L) IRF8 gene (ccIRF8) to further clarify the function of IRF8 in teleost fish. RESULTS The complete cDNA sequence of ccIRF8 was 1431 bp and encodes a polypeptide of 431 amino acids. Analysis of the putative amino acid sequence showed that ccIRF8 encodes structures typical of the IRF family, including a DNA-binding domain (DBD), an IRF-association domain (IAD) and two nuclear localization signals (NLS). Comparison with homologous proteins showed that the deduced protein has the highest sequence identity to grass carp IRF8 (92.7%). Phylogenetic analysis grouped ccIRF8 with other IRF8s of teleosts. Quantitative RT-PCR analysis showed that ccIRF8 transcripts were detectable in all investigated tissues of healthy fish with the highest level in spleen. Following poly I: C and Aeromonas hydrophila challenge, ccIRF8 transcripts were induced significantly in immune relevant tissues. In addition, ccIRF8 was induced by poly I: C and ipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in HKLs. Overexpression of ccIRF8 increased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that ccIRF8 decreased the activation of NF-κB though TRAF6. CONCLUSIONS Overall, our findings provide a new perspective on the role of IRF8 in innate immunity in fish, as well as insights that will help the prevention and control of disease in the common carp farming industry.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Key Laboratory of Tropical Marine Fishery Resources Protection and Utilization of Hainan Province, College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China.
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China.
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
2
|
Harasgama JC, Kasthuriarachchi TDW, Sirisena DMKP, Kwon H, Lee S, Wan Q, Lee J. Modulation of fish immune response by interferon regulatory factor 4 in redlip mullet (Liza haematocheilus): Delineation through expression profiling, antiviral assay, and macrophage polarization analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104356. [PMID: 35065138 DOI: 10.1016/j.dci.2022.104356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Interferon regulatory factor 4 (IRF4) is a crucial member of IRF family, which acts as an imperative transcription factor in the development and maturation of multiple lineages of blood cells and also plays a pivotal role in host defense against microbial infections. In the present study, we aimed to investigate the detailed structural and functional aspects of a redlip mullet IRF4 homolog (LhIRF4). The LhIRF4 open reading frame consists of 1347 base pairs encoding 449 amino acids, with the DNA-binding domain sharing significant homology with that of other vertebrate IRF4 homologs. The highest transcription levels of LhIRF4 were observed in the mullet intestine and spleen under normal physiological conditions. Furthermore, a time-dependent upregulation of LhIRF4 transcription was observed in the spleen and head kidney tissues upon pathogenic challenges. When overexpressed in mullet cells, LhIRF4 was localized to the nucleus and significantly stimulated the transcription of several host antiviral genes. Moreover, the overexpression of LhIRF4 strongly inhibited the replication of viral hemorrhagic septicemia virus (VHSV) in vitro. The function of LhIRF4 in regulation of macrophage M2 polarization has also been evidently demonstrated in RAW 264.7 cells. Taken together, our findings indicate the profound role of LhIRF4 in modulating immune responses against microbial infections in redlip mullet.
Collapse
Affiliation(s)
- J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- General Affairs Division, National Fishery Products Quality Management Service, Busan, 49111, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
3
|
Zhu Y, Yang G. Molecular identification and functional characterization of IRF4 from common carp (Cyprinus carpio. L) in immune response: a negative regulator in the IFN and NF-κB signalling pathways. BMC Vet Res 2022; 18:106. [PMID: 35300694 PMCID: PMC8928632 DOI: 10.1186/s12917-022-03205-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background The interferon (IFN) regulatory factors (IRFs) were originally identified as transcription factors playing critical roles in the regulation of IFN-related genes in the signal pathway. In mammals, IRF4 plays a vital role in both the innate and adaptive immune system. This study aims to reveal the molecular characterization, phylogenetic analysis, expression profiles and the regulatory role in the IFN and NF-κB signalling pathways of IRF4 in common carp (Cyprinus carpio. L) (abbreviation, ccIRF4). Results Here, ccIRF4 was identified and characterized, it contained a DNA binding domain (DBD) which possess five tryptophans and an IRF-associated domain (IAD). The predicted protein sequence of the ccIRF4 showed higher identities with grass carp (Ctenopharyngodon idella) and zebrafish (Danio rerio). Phylogenetic analysis suggested that ccIRF4 has the closest relationship with zebrafish IRF4. Quantitative real-time PCR analysis showed that ccIRF4 was constitutively expressed in all investigated tissues with the highest expression level in the gonad. Polyinosinic:polycytidylic acid (poly I:C) stimulation up-regulated the ccIRF4 expressions in the liver, spleen, head kidney, skin, foregut and hindgut. Upon Aeromonas hydrophila injection, the expression level of ccIRF4 was up-regulated in all tissues with the exception of spleen. In addition, ccIRF4 was induced by lipopolysaccharide (LPS), peptidoglycan (PGN) and Flagellin in head kidney leukocytes (HKLs). Overexpression of the ccIRF4 gene in epithelioma papulosum cyprini cells (EPC) down regulated the expressions of IFN-related genes and proinflammatory factors. Dual-luciferase reporter assay revealed that ccIRF4 decreased the activation of NF-κB through MyD88. Conclusions These results indicate that ccIRF4 participates in both antiviral and antibacterial immune response and negatively regulates the IFN and NF-κB response. Overall, our study on ccIRF4 provides more new insights into the innate immune system of common carp as well as a theoretical basis for investigating the pathogenesis and prevention of fish disease.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Key Laboratory of Tropical Marine Fishery Resources Protection and Utilization of Hainan Province, College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China. .,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
4
|
Guan Y, Chen X, Luo T, Ao J, Ai C, Chen X. Molecular characterization of the interferon regulatory factor (IRF) family and functional analysis of IRF11 in the large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 107:218-229. [PMID: 33011435 DOI: 10.1016/j.fsi.2020.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factors (IRFs) are a family of transcription factors involved in regulating interferon (IFN) responses and immune cell development. A total of 11 IRFs have been identified in teleost fish. Here, a complete repertoire of 11 IRFs (LcIRFs) in the large yellow croaker (Larimichthys crocea) was characterized with the addition of five newly identified members, LcIRF2, LcIRF5, LcIRF6, LcIRF10, and LcIRF11. These five LcIRFs possess a DNA-binding domain (DBD) at the N-terminal that contains five to six conserved tryptophan residues and an IRF-association domain (IAD) or IAD2 at the C-terminal that is responsible for interaction with other IRFs or co-modulators. Phylogenetic analysis showed that the 11 LcIRFs were divided into four clades including the IRF1 subfamily, IRF3 subfamily, IRF4 subfamily, and IRF5 subfamily. These are evolutionarily related to their respective counterparts in other fish species. The 11 LcIRFs were constitutively expressed in all examined tissues, although at different expression levels. Upon polyinosinic: polycytidylic acid (poly (I:C)) stimulation, the expression of all 11 LcIRFs was significantly induced in the head kidney and reached the highest levels at 6 h post-stimulation (except LcIRF4). LcIRF1, LcIRF3, LcIRF7, LcIRF8, and LcIRF10 were more strongly induced by poly (I:C) than the other LcIRFs. Significant induction of all LcIRFs was observed in the spleen, with LcIRF2, LcIRF5, LcIRF6, LcIRF7, LcIRF9, and LcIRF11 reaching their highest levels at 48 h LcIRF3 and LcIRF11 showed a stronger response to poly (I:C) in the spleen than the other LcIRFs. In addition, LcIRF1, LcIRF3, LcIRF7, LcIRF9, LcIRF10, and LcIRF11 were significantly induced by Vibro alginolyticus in both the spleen and the head kidney, with LcIRF1 strongly induced. Thus, LcIRFs exhibited differential inducible expression patterns in response to different stimuli in different tissues, suggesting that LcIRFs have different functions in the regulation of immune responses. Furthermore, overexpression of LcIRF11 activated the promoters of LcIFNc, LcIFNd, and LcIFNh, and differentially induced the expression levels of LcIFNs and IFN-stimulated genes (ISGs). Overexpression of LcIRF11 in epithelioma papulosum cyprinid (EPC) cells inhibited the replication of viral genes after infection of spring viremia of carp virus (SVCV). These data suggested that LcIRF11 may function as a positive regulator in regulating the cellular antiviral response through induction of type I IFN expression. Taken together, the present study reported molecular characterization and expression analysis of 11 IRFs in the large yellow croaker, and investigated the role of LcIRF11 in the antiviral response, which laid a good foundation for further study on the evolution and functional characterization of fish IRFs.
Collapse
Affiliation(s)
- Yanyun Guan
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiaojuan Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Tian Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China.
| | - Xinhua Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
5
|
Lai CF, Wang TY, Yeh MI, Chen TY. Characterization of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 4 regulated by heat shock factor 1 during heat stress in response to antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 106:755-767. [PMID: 32858187 DOI: 10.1016/j.fsi.2020.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factor 4 (IRF4), in conjunction with thermogenic regulation, is a negative regulator of immune responses. Therefore, we examined whether temperature changes regulated the antiviral response of IRF4 in nervous necrosis virus (NNV)-infected orange-spotted groupers. We found that osgIRF4 mRNA expression was responsive to poly I:C stimulation and NNV infection. In vitro overexpression of osgIRF4 caused a marked decrease in the promoter activity of the antiviral protein Mx1, and magnified NNV replication. Notably, we showed that the IAD domain of osgIRF4 exerted a dominant inhibitory effect on the Mx1 promoter. Furthermore, on exposure to high temperatures, the action of osgIRF4 was dependent on heat shock factor 1 (HSF1) expression. Additionally, small interfering RNA knockdown of HSF1 abrogated high temperature-mediated osgIRF4 activity. These findings suggest that osgIRF4 is an essential negative regulator of innate antiviral immunity and enhances viral replication during heat stress in the orange-spotted grouper.
Collapse
Affiliation(s)
- Chai Foong Lai
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Min-I Yeh
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Tharuka MDN, Yang H, Lee J. Expression, subcellular localization, and potential antiviral function of three interferon regulatory factors in the big-belly seahorse (Hippocampus abdominalis). FISH & SHELLFISH IMMUNOLOGY 2020; 96:297-310. [PMID: 31811886 DOI: 10.1016/j.fsi.2019.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factors (IRFs) are among the most important transcription mediators and have multiple biological functions, such as antiviral and antimicrobial defense, cell differentiation, immune modulation, and apoptosis. Three IRF family members (HaIRF4-like, HaIRF6, and HaIRF8) of the big belly seahorse (Hippocampus abdominalis) were molecularly and functionally characterized at the sequence and transcriptional level. The coding sequences of HaIRF4-like, HaIRF6, and HaIRF8 were 1214, 1485, and 1266 bp in length, encoding proteins of size 46.21, 55.32, and 47.56 kDa, respectively. Potential viral transcription and replication was detected against VHSV infection using qPCR in HaIRFs-transfected FHM cells. IRFs significantly reduced viral gene expression at 24 h and 48 h post infection and the expression of interferon-stimulated genes (ISGs) was modulated at transcriptional level upon HaIRF overexpression in FHM cells. Subcellular HaIRF localization was observed using GFP-tagged expression vectors in FHM cells. HaIRF4-like and HaIRF8 were localized to the nucleus, whereas HaIRF6 was observed in the cytoplasm. All three IRFs were ubiquitously expressed in all analyzed tissues of the big belly seahorse. The mRNA expression of IRF4-like, IRF6, and IRF8 increased significantly post injection in the blood and gills following LPS, poly (I:C), and Streptococcus iniae challenge. These findings demonstrate that seahorse IRFs are involved in host defense mechanisms against immune stimulants and HaIRFs induce interferon and ISGs which trigger antiviral activity against viral infections in the host.
Collapse
Affiliation(s)
- M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
7
|
Zhu KC, Guo HY, Zhang N, Liu BS, Guo L, Jiang SG, Zhang DC. Functional characterization of IRF8 regulation of type II IFN in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2019; 94:1-9. [PMID: 31465868 DOI: 10.1016/j.fsi.2019.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factor 8 (IRF8) increases type I IFN transcription levels by binding to IFN promoters, thereby playing a role in innate immunity. Nevertheless, the detailed mechanism through which IRF8 regulates type II IFN in fish remains ambiguous. In the present study, two genes from the golden pompano (Trachinotus ovatus), IRF8 (ToIRF8) and IFN gamma (ToIFNγ), were identified in the IFN/IRF-based signalling pathway. The full-length ToIRF8 cDNA was composed of 2,141 bp and encoded a 421 amino acid polypeptide; the genomic DNA was 2,917 bp in length and consisted of 8 exons and 7 introns. The putative protein showed the highest sequence identity (90-92%) with fish IRF8 and possessed a DNA-binding domain (DBD), an IRF-association domain (IAD) and a nuclear localization signal (NLS) motif consistent with those of IRF8 in other vertebrates. Furthermore, the ToIRF8 transcripts were expressed in all examined tissues of healthy fish, with higher levels observed in the central nervous and immune relevant tissues. They were upregulated by polyinosinic acid: polycytidylic acid [poly (I: C)], lipopolysaccharide (LPS) and flagellin treatments in the blood, liver, intestine and kidney. The results from assays of subcellular localization showed that ToIRF8 was localized to the cytoplasm. Moreover, to investigate whether ToIRF8 was a regulator of ToIFNγ, a promoter analysis was performed using progressive deletion mutations of ToIFNγ. The results indicated that the region from -601 bp to -468 bp includes the core promoter. Mutation analyses indicated that the activity of the ToIFNγ promoter significantly decreased after the targeted mutation of the M1-M3 binding sites. Additionally, overexpressed ToIRF8 in vitro notably increased the expression of several IFN/IRF-based signalling pathway genes. These results suggest that IRF8 is vital in the defence of T. ovatus against bacterial infection and contributes to a better understanding of the transcriptional mechanisms of ToIRF8 on type II IFN in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
8
|
Zhu Y, Shan S, Feng H, Jiang L, An L, Yang G, Li H. Molecular characterization and functional analysis of interferon regulatory factor 9 (irf9) in common carp Cyprinus carpio: a pivotal molecule in the Ifn response against pathogens. JOURNAL OF FISH BIOLOGY 2019; 95:510-519. [PMID: 31059592 DOI: 10.1111/jfb.14000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
In the present study, interferon (IFN) regulatory factor (IRF) 9 gene (irf9) was identified and characterized in common carp Cyprinus carpio. The predicted protein sequence of Irf9 contains a DNA binding domain (DBD) that possess five tryptophans, an IRF association domain (IAD) and two nuclear localisation signals (NLS). Alignment of Irf9 of C. carpio with the corresponding Irf9 proteins of other species showed that the DBD is more highly conserved than the IAD. The putative Irf9 protein sequence of C. carpio shares higher identities with teleosts (53.8-82.3%) and lower identities with mammals (30.2-31.0%). Phylogenetic studies of the putative amino-acid sequence of IRF9 based on the neighbour-joining method showed that Irf9 of C. carpio has the closest relationship with the grass carp Ctenopharyngodon idella. Tissue distribution analysis showed that irf9 transcripts were detectable in all examined tissues with the highest expression in the skin and the lowest expression in the head kidney. Poly I:C and Aeromonas hydrophila stimulation up-regulated irf9 expression in the spleen, head kidney, foregut and hindgut at different time intervals. In addition, irf9 was induced by Poly I:C and lipopolysaccharides (LPS) in vitro. These results indicate that Irf9 participates in antiviral and antibacterial immunity. Transfection of irf9 up-regulated the expression of cytokines, including type I IFN, protein kinase R (PKR), interferon-stimulated gene (ISG)15 and tumour necrosis factor (TNF)α in epithelioma papulosum cyprini cells (EPC) upon poly I:C and LPS stimulation. A dual-luciferase reporter assay revealed that Irf9 has no effect on NF-κB activation. The present study on Irf9 provides new insights into the IFN system of C. carpio and a valuable experimental platform for future studies on the immune system of fish.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Hanxiao Feng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Lei Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, People's Republic of China
| |
Collapse
|
9
|
Zhan FB, Jakovlić I, Wang WM. Identification, characterization and expression in response to Aeromonas hydrophila challenge of five interferon regulatory factors in Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 86:204-212. [PMID: 30336285 DOI: 10.1016/j.fsi.2018.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factor (Irf) family represents one of the most important transcription factor families, with multiple biological roles. In this study, we characterized five Irf family members (irf4a, irf4b, irf6, irf8 and irf10) in Megalobrama amblycephala at the cDNA and (predicted) amino acid levels, analyzed them phylogenetically, and developed gene-specific primers for qPCR analysis. All five irfs were constitutively expressed in all examined tissues, but their transcription was significantly higher in lymphoid organs and tissues, such as kidney, spleen and intestine. Exceptions were irf8, which was expressed at a high level in heart and brain tissues, and irf6, expressed at low levels in most tissues. After a bacterial immune challenge with Aeromonas hydrophila, the expression of irfs in liver was up-regulated: mairf4a 8.12-fold, mairf4b 29.9-fold, mairf6 1.38-fold and mairf10 1.65-fold (mairf8 was an exception: 0.07-fold). In spleen, kidney, intestine and gills, transcript levels of studied irfs increased only at specific time-points. The results suggested that irfs are involved in the immune response to bacterial infection in M. amblycephala, which will help elucidate the biological functions of irfs in the immune system of teleost fish.
Collapse
Affiliation(s)
- Fan-Bin Zhan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|