1
|
Schiffer PH, Natsidis P, Leite DJ, Robertson HE, Lapraz F, Marlétaz F, Fromm B, Baudry L, Simpson F, Høye E, Zakrzewski AC, Kapli P, Hoff KJ, Müller S, Marbouty M, Marlow H, Copley RR, Koszul R, Sarkies P, Telford MJ. Insights into early animal evolution from the genome of the xenacoelomorph worm Xenoturbella bocki. eLife 2024; 13:e94948. [PMID: 39109482 PMCID: PMC11521371 DOI: 10.7554/elife.94948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/03/2024] [Indexed: 10/30/2024] Open
Abstract
The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help understand the evolution and biology of enigmatic species better. Here, we assemble and analyze the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome-like scaffolds, with repeat content and intron, exon, and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signaling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.
Collapse
Affiliation(s)
- Philipp H Schiffer
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- worm~lab, Institute of Zoology, University of CologneCologneGermany
| | - Paschalis Natsidis
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Daniel J Leite
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Department of Biosciences, Durham UniversityDurhamUnited Kingdom
| | - Helen E Robertson
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - François Lapraz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Université Côte D'Azur, CNRS, Inserm, iBVNiceFrance
| | - Ferdinand Marlétaz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT – The Arctic University of NorwayTromsøNorway
| | - Liam Baudry
- Collège Doctoral, Sorbonne UniversitéParisFrance
| | - Fraser Simpson
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Medical Faculty, University of OsloOsloNorway
| | - Anne C Zakrzewski
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Paschalia Kapli
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer ScienceGreifswaldGermany
- University of Greifswald, Center for Functional Genomics of MicrobesGreifswaldGermany
| | - Steven Müller
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUnited Kingdom
| | - Martial Marbouty
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des GénomesParisFrance
| | - Heather Marlow
- The University of Chicago, Division of Biological SciencesChicagoUnited States
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne UniversiteVillefranche-sur-merFrance
| | - Romain Koszul
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des GénomesParisFrance
| | - Peter Sarkies
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Maximilian J Telford
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Rolandelli A, Laukaitis-Yousey HJ, Bogale HN, Singh N, Samaddar S, O'Neal AJ, Ferraz CR, Butnaru M, Mameli E, Xia B, Mendes MT, Butler LR, Marnin L, Cabrera Paz FE, Valencia LM, Rana VS, Skerry C, Pal U, Mohr SE, Perrimon N, Serre D, Pedra JHF. Tick hemocytes have a pleiotropic role in microbial infection and arthropod fitness. Nat Commun 2024; 15:2117. [PMID: 38459063 PMCID: PMC10923820 DOI: 10.1038/s41467-024-46494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.
Collapse
Affiliation(s)
- Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Rancho BioSciences, San Diego, CA, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University; Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila R Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - M Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Rolandelli A, Laukaitis-Yousey HJ, Bogale HN, Singh N, Samaddar S, O’Neal AJ, Ferraz CR, Butnaru M, Mameli E, Xia B, Mendes MT, Butler LR, Marnin L, Cabrera Paz FE, Valencia LM, Rana VS, Skerry C, Pal U, Mohr SE, Perrimon N, Serre D, Pedra JH. Tick hemocytes have pleiotropic roles in microbial infection and arthropod fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555785. [PMID: 37693411 PMCID: PMC10491215 DOI: 10.1101/2023.08.31.555785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here, we describe immune cells or hemocytes from the clinically relevant tick Ixodes scapularis using bulk and single cell RNA sequencing combined with depletion via clodronate liposomes, RNA interference, Clustered Regularly Interspaced Short Palindromic Repeats activation (CRISPRa) and RNA-fluorescence in situ hybridization (FISH). We observe molecular alterations in hemocytes upon tick infestation of mammals and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We predict distinct hemocyte lineages and reveal clusters exhibiting defined signatures for immunity, metabolism, and proliferation during hematophagy. Furthermore, we perform a mechanistic characterization of two I. scapularis hemocyte markers: hemocytin and astakine. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, which impacts blood feeding and molting behavior of ticks. Hemocytin specifically affects the c-Jun N-terminal kinase (JNK) signaling pathway, whereas astakine alters hemocyte proliferation in I. scapularis. Altogether, we uncover the heterogeneity and pleiotropic roles of hemocytes in ticks and provide a valuable resource for comparative biology in arthropods.
Collapse
Affiliation(s)
- Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Camila R. Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Söderhäll I, Söderhäll K. Blood cell formation in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1335-1342. [PMID: 36216230 DOI: 10.1016/j.fsi.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
In crustacean animals the hemocytes are key players in immunity and of crucial importance for the health of the animals. Hemocytes are mainly produced in the hematopoietic tissue and from there released into the circulation where they finally mature. In this review we summarize the latest findings about crustacean hemocyte formation. The role of the extracellular matrix and crosslinking enzyme transglutaminase is discussed. Moreover, important growth factors, transcriptional regulation and recent findings about inducers of hematopoiesis are covered. Finally, we discuss the use of different markers for classification of crustacean hemocytes.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
5
|
Zhou X, Zhang Y, Zhu F. The hematopoietic cytokine Astakine play a vital role in hemocyte proliferation and innate immunity in Scylla paramamosain. Int J Biol Macromol 2022; 224:396-406. [DOI: 10.1016/j.ijbiomac.2022.10.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
6
|
Yang Y, Qiao X, Song X, Zhang D, Yu S, Dong M, Liu X, Wang L, Song L. CgATP synthase β subunit involved in the regulation of haemocytes proliferation as a CgAstakine receptor in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 123:85-93. [PMID: 35245670 DOI: 10.1016/j.fsi.2022.02.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Astakine is considered as an endogenous cytokine-like factor of prokineticin homologue in invertebrate. Recently, an astakine homologue (CgAstakine) has been identified and characterized in oyster Crassostrea gigas. In the present study, a CgATP synthase β subunit was identified as the receptor of CgAstakine in C. gigas. There was an ATP-synt_ab_N domain and an AAA domain in the CgATP synthase β subunit protein. The mRNA transcripts of CgATP synthase β subunit were detected in all tested tissues, with the highest expression level in hepatopancreas and gills, which was 109.11-fold (p < 0.01) and 97.21-fold (p < 0.01) of that in labial palps, respectively. After rCgAstakine stimulation, the mRNA transcripts of CgATP synthase β subunit in agranulocytes and semi-granulocytes were significantly increased at 24 h (2.44-fold, and 9.01-fold of that in control group, p < 0.01), and those in granulocytes were significantly increased at 6 h (1.83-fold, p < 0.01), 12 h (1.92-fold, p < 0.01) and 24 h (3.47-fold, p < 0.01). The expression level of CgATP synthase β subunit protein in agranulocytes and granulocytes was also significantly increased after rCgAstakine stimulation, which was 1.64-fold (p < 0.05) and 1.85-fold (p < 0.05) of that in control group, respectively, while there were no significant changes in semi-granulocytes. The immunofluorescence assay showed that CgATP synthase β subunit positive signals were mainly located on the membrane of haemocytes. The number of haemocytes with EdU positive signals was significantly increased after rCgAstakine stimulation (2.04-fold of seawater group, p < 0.01), while significantly decreased after the RNA interference (RNAi) of CgATP synthase β subunit, which was 0.28-fold of that in NC group (p < 0.01). Bio-layer interferometry (BLI) assay confirmed in vitro interaction between rCgAstakine and rCgATP synthase β subunit. There results suggested that CgATP synthase β subunit acts as the receptor of CgAstakine and plays important roles in CgAstakine induced renewal of haemocytes in C. gigas.
Collapse
Affiliation(s)
- Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
7
|
Bouallegui Y. A Comprehensive Review on Crustaceans' Immune System With a Focus on Freshwater Crayfish in Relation to Crayfish Plague Disease. Front Immunol 2021; 12:667787. [PMID: 34054837 PMCID: PMC8155518 DOI: 10.3389/fimmu.2021.667787] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Freshwater crayfish immunity has received great attention due to the need for urgent conservation. This concern has increased the understanding of the cellular and humoral defense systems, although the regulatory mechanisms involved in these processes need updating. There are, however, aspects of the immune response that require clarification and integration. The particular issues addressed in this review include an overall description of the oomycete Aphanomyces astaci, the causative agent of the pandemic plague disease, which affects freshwater crayfish, and an overview of crustaceans' immunity with a focus on freshwater crayfish. It includes a classification system of hemocyte sub-types, the molecular factors involved in hematopoiesis and the differential role of the hemocyte subpopulations in cell-mediated responses, including hemocyte infiltration, inflammation, encapsulation and the link with the extracellular trap cell death pathway (ETosis). In addition, other topics discussed include the identity and functions of hyaline cells, the generation of neoplasia, and the emerging topic of the role of sessile hemocytes in peripheral immunity. Finally, attention is paid to the molecular execution of the immune response, from recognition by the pattern recognition receptors (PRRs), the role of the signaling network in propagating and maintaining the immune signals, to the effector elements such as the putative function of the Down syndrome adhesion molecules (Dscam) in innate immune memory.
Collapse
Affiliation(s)
- Younes Bouallegui
- LR01ES14 Laboratory of Environmental Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
8
|
Sirikharin R, Noonin C, Junkunlo K, Söderhäll K, Söderhäll I. Astakine1 forms protein complex in plasma. FISH & SHELLFISH IMMUNOLOGY 2019; 94:66-71. [PMID: 31465872 DOI: 10.1016/j.fsi.2019.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/07/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Astakine 1 is a small cytokine-like peptide which is directly involved in hematopoiesis in crustaceans. Astakines are present in many different invertebrate groups primarily in arthropods. In this study we found that astakine1 was present as a high molecular weight (HMW) complex in plasma. It is known that calcium concentration are fluctuating in several crustaceans especially during the molting process. This HMW-complex was formed under low calcium concentrations in plasma and could be partially reversed provided calcium was added. The biological function of the naïve astakine1 and that in the HMW complex was about the same, but if the protein is to be isolated or studied for its function it is important to know about this property of astakine1 which may previously have hampered isolation and functional studies in other animals than freshwater crayfish.
Collapse
Affiliation(s)
- Ratchanok Sirikharin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36, Uppsala, Sweden
| | - Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36, Uppsala, Sweden
| | - Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|