1
|
Wang S, Miao S, Lu Y, Li C, Li B. A C-type lectin (CTL2) mediated both humoral and cellular immunity against bacterial infection in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105852. [PMID: 38685211 DOI: 10.1016/j.pestbp.2024.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 05/02/2024]
Abstract
C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.
Collapse
Affiliation(s)
- Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang XF, Cui W, Wang MJ, Zhou Y, Fu TT, Jiang K, Hou YM, Tang BZ. Role of prophenoloxidase 1 from the beetle Octodonta nipae in melanized encapsulation of a wasp egg. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105082. [PMID: 37858613 DOI: 10.1016/j.dci.2023.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Exploring the function of the host immune system can help to understand the host-parasitoid interaction. Prophenoloxidase (PPO) is crucial in defensive melanization during the encapsulation of wasp eggs. However, the existence of multiple PPO sequences increases the difficulty of exploring the specific functions of individual PPOs. We previously identified three PPOs in the nipa palm hispid beetle, Octodonta nipae. Our current work showed that OnPPO1 and OnPPO2 possessed the typical characteristics of the type III copper family, but OnPPO3 lacked the conserved histidine residues, and its active sites were substituted with Gln. OnPPOs showed the highest expression in hemocytes, but OnPPO3 presented extremely low abundance compared with that of OnPPO1 and OnPPO2, and only OnPPO1 showed a quick response after wasp infection. OnPPO1 knockdown decreased the encapsulation index and inhibited melanization, whereas silencing of OnPPO3 appeared to have no adverse effect on encapsulation and melanization, and silencing of OnPPO2 presented low RNAi efficiency. Moreover, the cleavage of recombinant OnPPO1 produced a 62 kDa fragment with high PO activity. OnPPO1 could be produced by oenocytoids, granulocytes and plasmatocytes, and was distributed around wasp eggs during capsule formation. Overall, our results indicate that proteolytic cleavage of OnPPO1 plays key roles in the melanized encapsulation of wasp eggs. This finding illuminates the mechanism of PPO activation in this invasive beetle and provides guidance for its biological control.
Collapse
Affiliation(s)
- Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Cui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mou-Jun Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting-Ting Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kun Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Zhang Y, Ai H, Wang Y, Zhang P, Du L, Wang J, Wang S, Gao H, Li B. A pattern recognition receptor C-type lectin TcCTL14 contributes to immune response and development in the red flour beetle, Tribolium castaneum. INSECT SCIENCE 2023; 30:1363-1377. [PMID: 36518010 DOI: 10.1111/1744-7917.13161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Evidence is accumulating that pattern recognition receptor (PRR) C-type lectins (CTL) play essential roles in recognition of pathogens. TcCTL14 (accession no. TC00871) contains the most domains among all CTL of Tribolium castaneum. Yet the biological function of TcCTL14 remains unclear. In this study, TcCTL14 exhibiting typical motif and domain of CTL was cloned from T. castaneum. The expression pattern analysis showed that TcCTL14 was highly expressed in late pupae and central nervous system, and was upregulated after treatment with Escherichia coli and Staphylococcus aureus, respectively. Analysis of binding affinity revealed that recombinant TcCTL14 not only could bind to lipopolysaccharide and peptidoglycan in a dose-dependent fashion, but possibly could bind to and agglutinate different bacteria in a Ca2+ -dependent fashion. Knockdown of TcCTL14 before injection with bacteria led to the downregulation of nuclear factor-κB transcription factors of Toll/IMD and 4 antimicrobial peptides. Knockdown of TcCTL14 also caused suppressed metamorphosis, reduced fecundity, and delayed embryogenesis of T. castaneum. Further observation discovered that knockdown of TcCTL14 inhibited the development of ovaries and embryos. The detection of signaling pathways revealed that TcCTL14 may be involved in metamorphosis and fecundity by impacting 20-hydroxyecdysone and vitellogenin, respectively. Overall, these results indicate that TcCTL14 may contribute to immune response by agglutination or regulating the expression of antimicrobial peptides by the Toll/IMD pathway, and is required for T. castaneum development including metamorphosis, fecundity, and embryogenesis. These findings will improve the functional cognition of PRR CTL in insects and provide the new strategy for pest control.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huayi Ai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yihan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ping Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Liheng Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiatao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Wang S, Ai H, Zhang Y, Bi J, Gao H, Chen P, Li B. Functional Analysis of a Multiple-Domain CTL15 in the Innate Immunity, Eclosion, and Reproduction of Tribolium castaneum. Cells 2023; 12:cells12040608. [PMID: 36831275 PMCID: PMC9954269 DOI: 10.3390/cells12040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
C-type lectin X (CTL-X) plays critical roles in immune defense, cell adhesion, and developmental regulation. Here, a transmembrane CTL-X of Tribolium castaneum, TcCTL15, with multiple domains was characterized. It was highly expressed in the early and late pupae and early adults and was distributed in all examined tissues. In addition, its expression levels were significantly induced after being challenged with pathogen-associated molecular patterns (PAMPs) and bacteria. In vitro, the recombinant TcCTL15 could recognize bacteria through binding PAMPs and exhibit agglutinating activity against a narrow range of bacteria in the presence of Ca2+. RNAi-mediated TcCTL15-knockdown-larvae infected with Escherichia coli and Staphylococcus aureus showed less survival, had activated immune signaling pathways, and induced the expression of antimicrobial peptide genes. Moreover, silencing TcCTL15 caused eclosion defects by impairing ecdysone and crustacean cardioactive peptide receptors (CCAPRs). Suppression of TcCTL15 in female adults led to defects in ovary development and fecundity, accompanied by concomitant reductions in the mRNA levels of vitellogenin (TcVg) and farnesol dehydrogenase (TcFDH). These findings imply that TcCTL15 has extensive functions in developmental regulation and antibacterial immunity. Uncovering the function of TcCTL15 will enrich the understanding of CTL-X in invertebrates. Its multiple biological functions endow the potential to be an attractive target for pest control.
Collapse
|
5
|
Wu PP, Shu RH, Gao XX, Li MM, Zhang JH, Zhang H, Qin QL, Zou Z, Meng Q. Immulectin-2 from the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae), modulates cellular and humoral responses against fungal infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104429. [PMID: 35489421 DOI: 10.1016/j.dci.2022.104429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
C type-lectins constitute a large family of pattern recognition receptors, playing important roles in insect immune defenses. Thitarodes xiaojinensis larvae showed distinct immune features after Ophiocordyceps sinensis, Cordyceps militaris, or Beauveria bassiana infection. Based on transcriptome and immunoblot analysis, we found that immulectin-2 (IML2) was induced after T. xiaojinensis larvae were infected by C. militaris or B. bassiana but maintained at a low level after larvae injected with O. sinensis or Ringer's buffer. Recombinant IML2 (rIML2) could promote melanization, encapsulation, phagocytosis, and hemocyte aggregation in vitro. RNA interference with IML2 induced a significant reduction in the transcript levels of various antimicrobial peptides. Importantly, we found that the abundance of O. sinensis blastospores coated with rIML2 dramatically decreased in the host hemolymph. Overall, this study demonstrated that T. xiaojinensis IML2 modulates cellular and humoral responses to entomopathogenic fungi, broadening our view of the immune interaction between O. sinensis and its host.
Collapse
Affiliation(s)
- Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin-Xin Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Bidoli C, Miccoli A, Buonocore F, Fausto AM, Gerdol M, Picchietti S, Scapigliati G. Transcriptome Analysis Reveals Early Hemocyte Responses upon In Vivo Stimulation with LPS in the Stick Insect Bacillus rossius (Rossi, 1788). INSECTS 2022; 13:insects13070645. [PMID: 35886821 PMCID: PMC9316843 DOI: 10.3390/insects13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Non-model insect species such as B. rossius suffer from a profound gap of knowledge regarding the temporal progression of physiological responses following the challenge with bacterial pathogens or cell wall components thereof. The reason for this mostly lies in the lack of genomic/transcriptomic resources, which would provide an unparalleled in-depth capacity in the analysis of molecular, biochemical, and metabolic mechanisms. We present a high-quality transcriptome obtained from high-coverage sequencing of hemocytes harvested from adult stick insect specimens both pre- and post-LPS stimulation. Such a resource served as the basis for a stringent differential gene expression and functional enrichment analyses, the results of which were characterized and discussed in depth. Selected transcripts encoding for C-type lectins and ML-domain containing proteins were further investigated from a phylogenetic perspective. Overall, these findings shed light on the physiological responses driven by a short-term LPS stimulation in the European stick insect. Abstract Despite a growing number of non-model insect species is being investigated in recent years, a greater understanding of their physiology is prevented by the lack of genomic resources. This is the case of the common European stick insect Bacillus rossius (Rossi, 1788): in this species, some knowledge is available on hemocyte-related defenses, but little is known about the physiological changes occurring in response to natural or experimental challenges. Here, the transcriptional signatures of adult B. rossius hemocytes were investigated after a short-term (2 h) LPS stimulation in vivo: a total of 2191 differentially expressed genes, mostly involved in proteolysis and carbohydrate and lipid metabolic processes, were identified in the de novo assembled transcriptome and in-depth discussed. Overall, the significant modulation of immune signals—such as C-type lectins, ML domain-containing proteins, serpins, as well as Toll signaling-related molecules—provide novel information on the early progression of LPS-induced responses in B. rossius.
Collapse
Affiliation(s)
- Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
- Correspondence:
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| |
Collapse
|
7
|
The Entomopathogenic Nematodes H. bacteriophora and S. carpocapsae Inhibit the Activation of proPO System of the Nipa Palm Hispid Octodonta nipae (Coleoptera: Chrysomelidae). LIFE (BASEL, SWITZERLAND) 2022; 12:life12071019. [PMID: 35888107 PMCID: PMC9323948 DOI: 10.3390/life12071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Entomopathogenic nematodes are biocontrol agents of invasive insect pests in soil and cryptic habitats. Nipa palm hispid, Octodonta nipae, is a pest of palm trees in Sothern China. To address its increasing damage, environmentally friendly control methods are required. This study aimed to test efficacy of Heterorhabditis bacteriophora and Steinernema carpocapsae on O. nipae and investigated the influence of secondary metabolites, nematodes, and their isolated cuticles on the activation of O. nipae’s prophenoloxidase system using qPCR analysis. Our data revealed that O. nipae were less susceptible to H. bacteriophora than S. carpocapsae and penetrations of infective juveniles were higher with S. carpocapsae treatment than H. bacteriophora. Moreover, expression levels of the serine protease P56, prophenoloxidase activation factor 1, PPO and serine protease inhibitor 28 upon S. carpocapsae and H. bacteriophora infections were generally downregulated at all times. However, upon heating, the cuticles lost their inhibitory effects and resulted in upregulation of the PPO gene. Similarly, the addition of arachidonic acid reversed the process and resulted in the upregulation of the PPO gene compared to the control. Further work is needed to identify toxic substances secreted by these EPNs to evade O. nipae’s immune system.
Collapse
|
8
|
Variation in Parasitoid Virulence of Tetrastichus brontispae during the Targeting of Two Host Beetles. Int J Mol Sci 2021; 22:ijms22073581. [PMID: 33808261 PMCID: PMC8036858 DOI: 10.3390/ijms22073581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
In host-parasitoid interactions, antagonistic relationship drives parasitoids to vary in virulence in facing different hosts, which makes these systems excellent models for stress-induced evolutionary studies. Venom compositions varied between two strains of Tetrastichus brontispae, Tb-Bl and Tb-On. Tb-Bl targets Brontispa longissima pupae as hosts, and Tb-On is a sub-population of Tb-Bl, which has been experimentally adapted to a new host, Octodonta nipae. Aiming to examine variation in parasitoid virulence of the two strains toward two hosts, we used reciprocal injection experiments to compare effect of venom/ovarian fluids from the two strains on cytotoxicity, inhibition of immunity and fat body lysis of the two hosts. We found that Tb-Onvenom was more virulent towards plasmatocyte spreading, granulocyte function and phenoloxidase activity than Tb-Blvenom. Tb-Blovary was able to suppress encapsulation and phagocytosis in both hosts; however, Tb-Onovary inhibition targeted only B. longissima. Our data suggest that the venom undergoes rapid evolution when facing different hosts, and that the wasp has good evolutionary plasticity.
Collapse
|
9
|
Lu Y, Su F, Zhu K, Zhu M, Li Q, Hu Q, Zhang J, Zhang R, Yu XQ. Comparative genomic analysis of C-type lectin-domain genes in seven holometabolous insect species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103451. [PMID: 32841718 DOI: 10.1016/j.ibmb.2020.103451] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins (CTLs) recognize various glycoconjugates through carbohydrate recognition domains (CRDs) and they play important roles in immune responses. In this study, comparative genomic analysis of CTLs were performed in 7 holometabolous species. CTL-S1 to S8 and CTL-X1 to X4 orthologous groups existed in the 7 species, while CTL-X5 group with dual-CRD, CTL-S11 group with triple-CRD, CTL-S9 group with a long C-terminus and Lepidopteran specific CTL-S10 group were not conserved. SliCTL-S12 to S14 cluster was only present in Spodoptera litura, and CTL-S genes were expanded on chromosomes 2 L and 2 R in Drosophila melanogaster. Most IMLs were clustered into three groups and the numbers of IMLs vary among species due to gene duplications. D. melanogaster specific CTLs and Lepidopteran IMLs within each of the three groups evolved more rapidly with higher dN/dS ratios. Two CRDs in IMLs clustered into two clades, with conserved Cys4-Cys5 and Cys1-Cys2 bonds in the first and second CRDs, respectively. The CTL-S and CTL-X family members in S. litura were mainly expressed in the fat body of 5th but not 6th instar larvae, and responded differently to S. litura nucleopolyhedrovirus (SpltNPV) and Nomuraea rileyi infection. The transcription levels of SliCTLs that expressed in fat body but not highly expressed in hemocytes were decreased at the middle and late stages of SpltNPV infection, and the mRNA levels of SliCTLs highly or specifically expressed in hemocytes were mainly decreased by SpltlNPV, N. rileyi and Bacillus thuringiensis infection. These results provide valuable information for further exploration of CTL functions in host-pathogen interaction.
Collapse
Affiliation(s)
- Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fanghua Su
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kesen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
10
|
Zhang XM, Zhang HJ, Liu M, Liu B, Zhang XF, Ma CJ, Fu TT, Hou YM, Tang BZ. Cloning and Immunosuppressive Properties of an Acyl-Activating Enzyme from the Venom Apparatus of Tetrastichus brontispae (Hymenoptera: Eulophidae). Toxins (Basel) 2019; 11:E672. [PMID: 31752154 PMCID: PMC6891662 DOI: 10.3390/toxins11110672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/16/2022] Open
Abstract
Venom injected into the host plays vital roles in facilitating successful parasitization and development for parasitoid wasps, especially those devoid of polydnavirus, and the abundant venom proteins appear to be most likely involved in parasitization success. Previously, we found the four most abundant venom proteins, including 4-coumarate:CoA ligase-like 4 (4CL4-like), in the Tetrastichus brontispae (Hymenoptera: Eulophidae) venom apparatus. In this study, we cloned, expressed T. brontispae 4CL4-like (Tb4CL4-like) in Escherichia coli, and investigated its immunosuppressive properties. The deduced amino acid sequence for Tb4CL4-like shares high identity at conserved amino acids associated with the acyl-activating enzyme (AAE) consensus motif but shows only <40% identity with the members in the AAE superfamily. mRNA abundance analysis indicated that Tb4CL4-like was transcribed mainly in the venom apparatus. Recombinant Tb4CL4-like inhibited Octodonta nipae (Coleoptera: Chrysomelidae) pupal cellular encapsulation and spreading by targeting the hemocyte cytoskeleton and reduced the hemocyte-mediated phagocytosis of E. coli in vivo. Moreover, Tb4CL4-like exhibited greater affinity to palmitic acid and linolenic acid based on the molecular docking assay and is hypothesized to be involved in fatty acid metabolism. In conclusion, our results suggest that Tb4CL4-like may be an immunity-related AAE protein that is involved in the regulation of host immunity through fatty acid metabolism-derived signaling pathways.
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hua-Jian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Min Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Cheng-Jun Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ting-Ting Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|