1
|
Hu J, Zhang Z, Cai J, Hao S, Li C, Feng X. The Functional Mechanism of BP9 in Promoting B Cell Differentiation and Inducing Antigen Presentation. Vaccines (Basel) 2024; 12:607. [PMID: 38932336 PMCID: PMC11209236 DOI: 10.3390/vaccines12060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The Bursa of Fabricius, an avian unique humoral immune organ, is instrumental to B cell development. Bursal-derived peptide BP9 fosters B-cell development and formation. Yet, the exact mechanism wherein BP9 impacts B cell differentiation and antigenic presentation remains undefined. In this paper, B cell activation and differentiation in the spleen cells from mice immunized with the AIV vaccine and BP9 were detected following flow cytometry (FCM) analysis. Furthermore, the molecular mechanism of BP9 in B cell differentiation in vivo was investigated with RNA sequencing technology. To verify the potential functional mechanism of BP9 in the antigenic presentation process, the transcriptome molecular basis of chicken macrophages stimulated by BP9 was measured via high-throughput sequencing technology. The results proved that when given in experimental dosages, BP9 notably accelerated total B cells, and enhanced B-cell differentiation and plasma cell production. The gene expression profiles of B cells from mice immunized with 0.01 mg/mL BP9 and AIV vaccine disclosed that 0.01 mg/mL BP9 initiated the enrichment of several biological functions and significantly stimulated key B-cell pathways in immunized mice. Crucially, a total of 4093 differentially expressed genes were identified in B cells with BP9 stimulation, including 943 upregulated genes and 3150 downregulated genes. Additionally, BP9 induced various cytokine productions in the chicken macrophage HD11 cells and activated 9 upregulated and 20 downregulated differential miRNAs, which were involved in various signal and biological processes. Furthermore, BP9 stimulated the activation of multiple transcription factors in HD11 cells, which was related to antigen presentation processes. In summary, these results suggested that BP9 might promote B cell differentiation and induce antigen presentation, which might provide the valuable insights into the mechanism of B cell differentiation upon bursal-derived immunomodulating peptide stimulation and provide a solid experimental groundwork for enhancing vaccine-induced immunity.
Collapse
Affiliation(s)
- Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Zhang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxi Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Hao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenfei Li
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Babaeijandaghi F, Kajabadi N, Long R, Tung LW, Cheung CW, Ritso M, Chang CK, Cheng R, Huang T, Groppa E, Jiang JX, Rossi FMV. DPPIV + fibro-adipogenic progenitors form the niche of adult skeletal muscle self-renewing resident macrophages. Nat Commun 2023; 14:8273. [PMID: 38092736 PMCID: PMC10719395 DOI: 10.1038/s41467-023-43579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Adult tissue-resident macrophages (RMs) are either maintained by blood monocytes or through self-renewal. While the presence of a nurturing niche is likely crucial to support the survival and function of self-renewing RMs, evidence regarding its nature is limited. Here, we identify fibro-adipogenic progenitors (FAPs) as the main source of colony-stimulating factor 1 (CSF1) in resting skeletal muscle. Using parabiosis in combination with FAP-deficient transgenic mice (PdgfrαCreERT2 × DTA) or mice lacking FAP-derived CSF1 (PdgfrαCreERT2 × Csf1flox/null), we show that local CSF1 from FAPs is required for the survival of both TIM4- monocyte-derived and TIM4+ self-renewing RMs in adult skeletal muscle. The spatial distribution and number of TIM4+ RMs coincide with those of dipeptidyl peptidase IV (DPPIV)+ FAPs, suggesting their role as CSF1-producing niche cells for self-renewing RMs. This finding identifies opportunities to precisely manipulate the function of self-renewing RMs in situ to further unravel their role in health and disease.
Collapse
Affiliation(s)
- Farshad Babaeijandaghi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
- Altos Labs Inc, San Diego, CA, USA.
| | - Nasim Kajabadi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Reece Long
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Lin Wei Tung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chun Wai Cheung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Morten Ritso
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chih-Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Ryan Cheng
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Tiffany Huang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, TX, USA
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
| |
Collapse
|
3
|
Waddell LA, Wu Z, Sauter KA, Hope JC, Hume DA. A novel monoclonal antibody against porcine macrophage colony-stimulating factor (CSF1) detects expression on the cell surface of macrophages. Vet Immunol Immunopathol 2023; 266:110681. [PMID: 37992576 DOI: 10.1016/j.vetimm.2023.110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Macrophage colony-stimulating factor (CSF1) controls the proliferation and differentiation of cells of the mononuclear phagocyte system through binding to the receptor CSF1R. The expression and function of CSF1 has been well-studied in rodents and humans, but knowledge is lacking in other veterinary species. The development of a novel mouse anti-porcine CSF1 monoclonal antibody (mAb) facilitates the characterisation of this growth factor in pigs. Cell surface expression of CSF1 was confirmed on differentiated macrophage populations derived from blood and bone marrow monocytes, and on lung resident macrophages, the first species for this to be confirmed. However, monocytes isolated from blood and bone marrow lacked CSF1 expression. This species-specific mAb delivers the opportunity to further understanding of porcine myeloid cell biology. This is not only vital for the role of pigs as a model for human health, but also as a veterinary species of significant economic and agricultural importance.
Collapse
Affiliation(s)
- Lindsey A Waddell
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Zhiguang Wu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Kristin A Sauter
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Jayne C Hope
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - David A Hume
- Mater Research Institute-University of Queensland, 37 Kent St, Woolloongabba, Qld 4104, Australia
| |
Collapse
|
4
|
Wu Z, Shih B, Macdonald J, Meunier D, Hogan K, Chintoan-Uta C, Gilhooley H, Hu T, Beltran M, Henderson NC, Sang HM, Stevens MP, McGrew MJ, Balic A. Development and function of chicken XCR1 + conventional dendritic cells. Front Immunol 2023; 14:1273661. [PMID: 37954617 PMCID: PMC10634274 DOI: 10.3389/fimmu.2023.1273661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Barbara Shih
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Dominique Meunier
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Kris Hogan
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | | | - Hazel Gilhooley
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Michael J. McGrew
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Senpuku H, Yoshimura K, Takai H, Maruoka Y, Yamashita E, Tominaga A, Ogata Y. Role of Macrophage Colony-Stimulating Factor for Staphylococcal Infection in the Oral Cavity. J Clin Med 2023; 12:5825. [PMID: 37762764 PMCID: PMC10532062 DOI: 10.3390/jcm12185825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE There are few valid indicators of oral infection owing to the complexity of pathogenic factors in oral diseases. Salivary markers are very useful for scrutinizing the symptoms of disease. To provide a reliable and useful predictive indicator of infection for opportunistic pathogens in individuals with compromised immune systems, such as those with periodontal diseases and Human Immunodeficiency Virus (HIV), this study examines opportunistic pathogens such as C. albicans and staphylococci and macrophage colony-stimulating factor (M-CSF) and CA125/MUC16 in saliva. The aim was to explore the correlations investigated among these factors. METHODS Samples were divided into two groups (based on patient sex, the absence and presence of dentures in elderly, or HIV-positive patients and healthy subjects), and the correlation was analyzed in two groups of elderly patients with periodontal disease (64.5 ± 11.2 years old) and HIV-infected patients (41.9 ± 8.4 years old). Healthy subjects (33.8 ± 9.1 years old) were also analyzed as a control. Levels of C. albicans, staphylococci, and M-CSF, which is an immunological factor for the differentiation of macrophage, and CA125/MUC16, which provides a protective lubricating barrier against infection, were investigated. RESULTS A significant and positive correlation between the levels of M-CSF and staphylococci was found in elderly individuals and HIV-positive patients treated with antiretroviral therapy. A significant and positive correlation between the levels of M-CSF and CD125/MUC16 was also found in both patients. These correlations were enhanced in both patients as compared with healthy subjects. CONCLUSION Salivary M-CSF might be useful as a new indicator of opportunistic infection caused by staphylococci and a defense against infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Department of Microbiology and Immunology, Nihon University of School of Dentistry at Matsudo, Matsudo 271-8587, Japan
| | | | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan; (H.T.)
| | - Yutaka Maruoka
- National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Erika Yamashita
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan;
| | - Akira Tominaga
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan; (H.T.)
| |
Collapse
|
6
|
Gouife M, Ban Z, Yue X, Jiang J, Xie J. Molecular characterization, gene expression and functional analysis of goldfish ( Carassius auratus L.) macrophage colony stimulating factor 2. Front Immunol 2023; 14:1235370. [PMID: 37593738 PMCID: PMC10431942 DOI: 10.3389/fimmu.2023.1235370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Background Macrophage colony-stimulating factor 2 (MCSF-2) is an important cytokine that controls how cells of the monocyte/macrophage lineage proliferate, differentiate, and survive in vertebrates. Two isoforms of MCSF have been identified in fish, each exhibiting distinct gene organization and expression patterns. In this study, we investigated a goldfish MCSF-2 gene in terms of its immunomodulatory and functional properties. Methods In this study, goldfish were acclimated for 3 weeks and sedated with TMS prior to handling. Two groups of fish were used for infection experiments, and tissues from healthy goldfish were collected for RNA isolation. cDNA synthesis was performed, and primers were designed based on transcriptome database sequences. Analysis of gfMCSF-2 sequences, including nucleotide and amino acid analysis, molecular mass prediction, and signal peptide prediction, was conducted. Real-time quantitative PCR (qPCR) was used to analyze gene expression levels, while goldfish head kidney leukocytes (HKLs) were isolated using standard protocols. The expression of gfMCSF-2 in activated HKLs was investigated, and recombinant goldfish MCSF-2 was expressed and purified. Western blot analysis, cell proliferation assays, and flow cytometric analysis of HKLs were performed. Gene expression analysis of transcription factors and pro-inflammatory cytokines in goldfish head kidney leukocytes exposed to rgMCSF-2 was conducted. Statistical analysis using one-way ANOVA and Dunnett's post hoc test was applied. Results We performed a comparative analysis of MCSF-1 and MCSF-2 at the protein and nucleotide levels using the Needleman-Wunsch algorithm. The results revealed significant differences between the two sequences, supporting the notion that they represent distinct genes rather than isoforms of the same gene. Sequence alignment demonstrated high sequence identity with MCSF-2 homologs from fish species, particularly C. carpio, which was supported by phylogenetic analysis. Expression analysis in various goldfish tissues demonstrated differential expression levels, with the spleen exhibiting the highest expression. In goldfish head kidney leukocytes, gfMCSF-2 expression was modulated by chemical stimuli and bacterial infection, with upregulation observed in response to lipopolysaccharide (LPS) and live Aeromonas hydrophila. Recombinant gfMCSF-2 (rgMCSF-2) was successfully expressed and purified, showing the ability to stimulate cell proliferation in HKLs. Flow cytometric analysis revealed that rgMCSF-2 induced differentiation of sorted leukocytes at a specific concentration. Moreover, rgMCSF-2 treatment upregulated TNFα and IL-1β mRNA levels and influenced the expression of transcription factors, such as MafB, GATA2, and cMyb, in a time-dependent manner. Conclusion Collectively, by elucidating the effects of rgMCSF-2 on cell proliferation, differentiation, and the modulation of pro-inflammatory cytokines and transcription factors, our findings provided a comprehensive understanding of the potential mechanisms underlying gfMCSF-2-mediated immune regulation. These results contribute to the fundamental knowledge of MCSF-2 in teleosts and establish a foundation for further investigations on the role of gfMCSF-2 in fish immune responses.
Collapse
Affiliation(s)
- Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ziqi Ban
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jianhu Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institule of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Fetisov TI, Borunova AA, Antipova AS, Antoshina EE, Trukhanova LS, Gorkova TG, Zuevskaya SN, Maslov A, Gurova K, Gudkov A, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Targeting Features of Curaxin CBL0137 on Hematological Malignancies In Vitro and In Vivo. Biomedicines 2023; 11:biomedicines11010230. [PMID: 36672738 PMCID: PMC9856019 DOI: 10.3390/biomedicines11010230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.
Collapse
Affiliation(s)
- Timur I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Anna A. Borunova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Alina S. Antipova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Tatyana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Andrei Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ekaterina A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Kirill I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
9
|
Li K, Ran B, Wang Y, Liu L, Li W. PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer’s disease. Front Cell Dev Biol 2022; 10:999061. [PMID: 36147734 PMCID: PMC9485805 DOI: 10.3389/fcell.2022.999061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease mainly characterized by memory loss and cognitive decline. The etiology of AD is complex and remains incompletely understood. In recent years, genome-wide association studies (GWAS) have increasingly highlighted the central role of microglia in AD pathology. As a trans-membrane receptor specifically present on the microglia in the central nervous system, phosphatidylinositol-specific phospholipase C gamma 2 (PLCγ2) plays an important role in neuroinflammation. GWAS data and corresponding pathological research have explored the effects of PLCG2 variants on amyloid burden and tau pathologies that underline AD. The link between PLCγ2 and other AD-related effectors in human and mouse microglia has also been established, placing PLCγ2 downstream of the triggering receptor expressed on myeloid cells 2 (TREM2), toll-like receptor 4 (TLR4), Bruton’s tyrosine kinase (BTK), and colony-stimulating factor 1 receptor (CSF1R). Because the research on PLCγ2’s role in AD is still in its early stages, few articles have been published, therefore in this paper, we integrate the relevant research published to date, review the structural features, expression patterns, and related pathways of PLCγ2, and summarize the recent studies on important PLCG2 variants related to AD. Furthermore, the possibility and challenge of using PLCγ2 to develop therapeutic drugs for AD are also discussed.
Collapse
|
10
|
Wang H, Zheng F, Ouyang A, Yuan G, Su J, Liu X. Blunt snout bream (Megalobrama amblycephala) MaCSF-1 contributes to proliferation, phagocytosis and immunoregulation of macrophages via MaCSF-1R. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1113-1126. [PMID: 35803511 DOI: 10.1016/j.fsi.2022.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
CSF-1 and CSF-1R have been well demonstrated in humans, regulating the differentiation, proliferation and survival of the mononuclear phagocyte system. However, the functional study on MaCSF-1 and MaCSF-1R from blunt snout bream (Megalobrama amblycephala) is still unknown. In the present study, we cloned and functionally characterized MaCSF-1 and MaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that both MaCSF-1 and MaCSF-1R were mostly close to the grass carp counterparts. Tissue distribution analysis showed that both MaCSF-1 and MaCSF-1R were widely distributed in all examined tissues, dominantly distributed in spleen, blood and head kidney tissues. Furthermore, confocal microscopy assay and flow cytometry assay showed that MaCSF-1R was the marker on the surface of macrophages. Recombinant MaCSF-1 promoted macrophage proliferation, phagocytosis and the production of IL-10. Through the pull-down experiments and indirect immunofluorescence experiments, the interaction between MaCSF-1 and MaCSF-1R was confirmed. To explore the relationship between MaCSF-1 and its receptor, MaCSF-1R and MaCSF-1R antibody was prepared. Then the MaCSF-1R blockage assay indicated that the role of MaCSF-1 on the macrophages proliferation and phagocytosis was weakened, leading the reduction of IL-10 expression level. In conclusion, MaCSF-1R is the marker on the surface of macrophage membrane; and MaCSF-1 promotes macrophage proliferation, phagocytosis, and significantly increased the expression levels of IL-10 depended on the interacting with MaCSF-1R. This study provides basal data for the biological function of MaCSF-1 and MaCSF-1R, and is valuable for the exploration of MaCSF-1 and MaCSF-1R molecular interactions.
Collapse
Affiliation(s)
- Huabing Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feifei Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Aotian Ouyang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
11
|
Panebra A, Lillehoj HS. Development of a sandwich ELISA for the detection of chicken colony-stimulating factor 1. Poult Sci 2022; 101:101924. [PMID: 35688031 PMCID: PMC9190009 DOI: 10.1016/j.psj.2022.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
|
12
|
Liu M, Yang X, Zeng C, Zhao H, Li J, Hou Z, Wen H. Transcriptional Signatures of Immune, Neural, and Endocrine Functions in the Brain and Kidney of Rainbow Trout (Oncorhynchus mykiss) in Response to Aeromonas salmonicida Infection. Int J Mol Sci 2022; 23:ijms23031340. [PMID: 35163263 PMCID: PMC8835788 DOI: 10.3390/ijms23031340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) serves as one of the most important commercial fish with an annual production of around 800,000 tonnes. However, infectious diseases, such as furunculosis caused by Aeromonas salmonicida infection, results in great economic loss in trout culture. The brain and kidney are two important organs associated with “sickness behaviors” and immunomodulation in response to disease. Therefore, we worked with 60 trout and investigated transcriptional responses and enrichment pathways between healthy and infected trout. We observed that furunculosis resulted in the activation of toll-like receptors with neuroinflammation and neural dysfunction in the brain, which might cause the “sickness behaviors” of infected trout including anorexia and lethargy. We also showed the salmonid-specific whole genome duplication contributed to duplicated colony stimulating factor 1 (csf-1) paralogs, which play an important role in modulating brain immunomodulation. Enrichment analyses of kidneys showed up-regulated immunomodulation and down-regulated neural functions, suggesting an immune-neural interaction between the brain and kidney. Moreover, the kidney endocrine network was activated in response to A. salmonicida infection, further convincing the communications between endocrine and immune systems in regulating internal homeostasis. Our study provided a foundation for pathophysiological responses of the brain and kidney in response to furunculosis and potentially offered a reference for generating disease-resistant trout strains.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhishuai Hou
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| | - Haishen Wen
- Correspondence: (Z.H.); (H.W.); Tel.: +86-133-4524-7715 (Z.H.); +86-532-8203-1825 (H.W.)
| |
Collapse
|
13
|
Zmrhal V, Svoradova A, Batik A, Slama P. Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis. Front Cell Dev Biol 2022; 9:730804. [PMID: 35127695 PMCID: PMC8811169 DOI: 10.3389/fcell.2021.730804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) cell culture is attracting increasing attention today because it can mimic tissue environments and provide more realistic results than do conventional cell cultures. On the other hand, very little attention has been given to using 3D cell cultures in the field of avian cell biology. Although mimicking the bone marrow niche is a classic challenge of mammalian stem cell research, experiments have never been conducted in poultry on preparing in vitro the bone marrow niche. It is well known, however, that all diseases cause immunosuppression and target immune cells and their development. Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry are facing new challenges, such as greater use of alternative breeding systems and expanding production of eggs and chicken meat in developing countries. Moreover, the COVID-19 pandemic will draw greater attention to the importance of disease management in poultry because poultry constitutes a rich source of zoonotic diseases. For these reasons, and because they will lead to a better understanding of disease pathogenesis, in vivo HSC niches for studying disease pathogenesis can be valuable tools for developing more effective disease prevention, diagnosis, and control. The main goal of this review is to summarize knowledge about avian hematopoietic cells, HSC niches, avian immunosuppressive diseases, and isolation of HSC, and the main part of the review is dedicated to using 3D cell cultures and their possible use for studying disease pathogenesis with practical examples. Therefore, this review can serve as a practical guide to support further preparation of 3D avian HSC niches to study the pathogenesis of avian diseases.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrea Svoradova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- NPPC, Research Institute for Animal Production in Nitra, Luzianky, Slovak Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
14
|
Wu Z, Hu T, Chintoan-Uta C, Macdonald J, Stevens MP, Sang H, Hume DA, Kaiser P, Balic A. Development of novel reagents to chicken FLT3, XCR1 and CSF2R for the identification and characterization of avian conventional dendritic cells. Immunology 2021; 165:171-194. [PMID: 34767637 DOI: 10.1111/imm.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Helen Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - David A Hume
- Translational Research Institute, Mater Research Institute-University of Queensland, Woolloongabba, Qld, Australia
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
15
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
16
|
Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P, Tkalcic S, Hawkins RD, Drechsler Y. Transcriptomes of an Array of Chicken Ovary, Intestinal, and Immune Cells and Tissues. Front Genet 2021; 12:664424. [PMID: 34276773 PMCID: PMC8278112 DOI: 10.3389/fgene.2021.664424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide, the chicken transcriptome remains understudied. We have characterized the transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa, macrophages, monocytes, spleen T cells, thymus), and reproductive tissue (ovary). We detected 17,872 genes and 24,812 transcripts across all cell and tissue types, representing 73% and 63% of the current gene annotation, respectively. Further quantification of RNA transcript biotypes revealed protein-coding and lncRNAs specific to an individual cell/tissue type. Each cell/tissue type also has an average of around 1.2 isoforms per gene, however, they all have at least one gene with at least 11 isoforms. Differential expression analysis revealed a large number of differentially expressed genes between tissues of the same category (immune and intestinal). Many of these differentially expressed genes in immune cells were involved in cellular processes relating to differentiation and cell metabolism as well as basic functions of immune cells such as cell adhesion and signal transduction. The differential expressed genes of the different segments of the chicken intestine (jejunum, ileum, proximal cecum) correlated to the metabolic processes in nutrient digestion and absorption. These data should provide a valuable resource in understanding the chicken genome.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, Interdepartmental Astrobiology Program, University of Washington, Seattle, WA, United States
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pietro Catini
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Paul Stewart
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Suzana Tkalcic
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
17
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Sutton KM, Morris KM, Borowska D, Sang H, Kaiser P, Balic A, Vervelde L. Characterization of Conventional Dendritic Cells and Macrophages in the Spleen Using the CSF1R-Reporter Transgenic Chickens. Front Immunol 2021. [DOI: 10.3389/fimmu.2021.636436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The spleen is a major site for the immunological responses to blood-borne antigens that is coordinated by cells of the mononuclear phagocyte system (MPS). The chicken spleen is populated with a number of different macrophages while the presence of conventional dendritic cells (cDC) has been described. However, a detailed characterization of the phenotype and function of different macrophage subsets and cDC in the chicken spleen is limited. Using the CSF1R-reporter transgenic chickens (CSF1R-tg), in which cells of the MPS express a transgene under the control elements of the chicken CSF1R, we carried out an in-depth characterization of these cells in the spleen. Immunohistological analysis demonstrated differential expression of MRC1L-B by periarteriolar lymphoid sheaths (PALS)-associated CSF1R-tg+ cells. In the chicken's equivalent of the mammalian marginal zone, the peri-ellipsoid white-pulp (PWP), we identified high expression of putative CD11c by ellipsoid-associated cells compared to ellipsoid-associated macrophages. In addition, we identified a novel ellipsoid macrophage subset that expressed MHCII, CD11c, MRC1L-B, and CSF1R but not the CSF1R-tg. In flow cytometric analysis, diverse expression of the CSF1R-tg and MHCII was observed leading to the categorization of CSF1R-tg cells into CSF1R-tgdim MHCIIinter−hi, CSF1R-tghi MHCIIhi, and CSF1R-tghi MHCIIinter subpopulations. Low levels of CD80, CD40, MHCI, CD44, and Ch74.2 were expressed by the CSF1R-tghi MHCIIinter cells. Functionally, in vivo fluorescent bead uptake was significantly higher in the CSF1R-tghi MHCIIhi MRC1L-B+ cells compared to the CSF1R-tgdim and CSF1R-tghi MHCIIinter MRC1L-B+ subpopulations while LPS enhanced phagocytosis by the CSF1R-tghi MHCIIinter subpopulation. The analysis of bead localization in the spleen suggests the presence of ellipsoid-associated macrophage subsets. In addition, we demonstrated the functionality of ex vivo derived CSF1R-tg+ MRC1L-Bneg cDC. Finally, RNA-seq analysis of the CSF1R-tg subpopulations demonstrated that separating the CSF1R-tghi subpopulation into CD11chi and CD11cdim cells enriched for cDC and macrophage lineages, respectively, while the CSF1R-tghi MHCIIinter subpopulation was enriched for red pulp macrophages. However, our analysis could not define the cell lineage of the heterogeneous CSF1R-tgdim subpopulation. This detailed overview of the MPS in the chicken spleen will contribute to future research on their role in antigen uptake and presentation.
Collapse
|
19
|
Gu H, Wang B, He J, Hu Y. Macrophage colony stimulating factor (MCSF) of Japanese flounder (Paralichthys olivaceus): Immunoregulatory property, anti-infectious function, and interaction with MCSF receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103920. [PMID: 33189746 DOI: 10.1016/j.dci.2020.103920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Macrophage colony-stimulating factor (MCSF) is an essential growth factor to control the proliferation, differentiation and survival of the macrophage lineage in vertebrates. Sequences of MCSF have been identified in multiple teleost species, however, the functional investigations of MCSF were documented in only a few species. In this study, we examined the biological activity and the immunomodulatory property of a MCSF homologue, PoMCSF, from Japanese flounder (Paralichthys olivaceus). Structural analysis showed that PoMCSF possesses conserved structural characteristics of MCSF proteins, including a signal peptide, a CSF-1 domain, and a transmembrane region closed to the C-terminal. Under normal physiological condition, PoMCSF expression distributes in all the examined tissues, the highest three tissues are blood, muscle, and head kidney. When infected by extracellular and intracellular bacterial pathogens and viral pathogen, the PoMCSF expression patterns vary with different types of microbial pathogens infection and different immune tissues. In vitro experiment showed recombinant PoMCSF promoted the activity of macrophage. In vivo experiment indicated that PoMCSF overexpression boosted the defensive ability of flounder against Edwardsiella piscicida, a severe fish pathogen that infects multiple species of economically important fish, and regulated the expression of multiple immune-related genes. To explore the relationship between PoMCSF and its receptor PoMCSFR, anti-PoMCSFR antibody was prepared and PoMCSFR knockdown was conducted. The neutralization assay showed that when PoMCSFR was neutralized by its antibody, the role of PoMCSF on host defense against E. piscicida was weakened. Knockdown of PoMCSFR impaired the phagocytic capacity of macrophages. Collectively, these findings suggest that PoMCSF plays a crucial role in the immune defense system of Japanese flounder and the effect of PoMCSF is dependent on PoMCSFR. This study provides new insights into the biological activity of MCSF and the relationship between MCSF and MCSFR in teleost.
Collapse
Affiliation(s)
- Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Bo Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Jiaojiao He
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
20
|
Depletion of Embryonic Macrophages Leads to a Reduction in Angiogenesis in the Ex Ovo Chick Chorioallantoic Membrane Assay. Cells 2020; 10:cells10010005. [PMID: 33375076 PMCID: PMC7822194 DOI: 10.3390/cells10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Macrophages play an important but poorly understood role in angiogenesis. To investigate their role in vessel formation, relevant in vivo models are crucial. Although the chick chorioallantoic membrane (CAM) model has been frequently used as an angiogenesis assay, limited data are available on the involvement of chicken macrophages in this process. Here, we describe a method to deplete macrophages in the ex ovo chick CAM assay by injection of clodronate liposomes and show that this depletion directly affects vascularisation of collagen onplants. Chicken embryos were injected intravenously with either clodronate or phosphate-buffered saline (PBS) liposomes, followed by placement of collagen type I plugs on the CAM to quantify angiogenic ingrowth. Clodronate liposome injection led to a significant 3.4-fold reduction of macrophages compared with control embryos as measured by immunohistochemistry and flow cytometry. Furthermore, analysis of vessel ingrowth into the collagen plugs revealed a significantly lower angiogenic response in macrophage-depleted embryos compared with control embryos, indicating that chicken embryonic macrophages play an essential function in the development of blood vessels. These results demonstrate that the chick CAM assay provides a promising model to investigate the role of macrophages in angiogenesis.
Collapse
|
21
|
Rh-CSF1 Attenuates Oxidative Stress and Neuronal Apoptosis via the CSF1R/PLCG2/PKA/UCP2 Signaling Pathway in a Rat Model of Neonatal HIE. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6801587. [PMID: 33101590 PMCID: PMC7568161 DOI: 10.1155/2020/6801587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress (OS) and neuronal apoptosis are major pathological processes after hypoxic-ischemic encephalopathy (HIE). Colony stimulating factor 1 (CSF1), binding to CSF1 receptor (CSF1R), has been shown to reduce neuronal loss after hypoxic-ischemia- (HI-) induced brain injury. In the present study, we hypothesized that CSF1 could alleviate OS-induced neuronal degeneration and apoptosis through the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of HI. A total of 127 ten-day old Sprague Dawley rat pups were used. HI was induced by right common carotid artery ligation with subsequent exposure to hypoxia for 2.5 h. Exogenous recombinant human CSF1 (rh-CSF1) was administered intranasally at 1 h and 24 h after HI. The CSF1R inhibitor, BLZ945, or phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, was injected intraperitoneally at 1 h before HI induction. Brain infarct volume measurement, cliff avoidance test, righting reflex test, double immunofluorescence staining, western blot assessment, 8-OHdG and MitoSOX staining, Fluoro-Jade C staining, and TUNEL staining were used. Our results indicated that the expressions of endogenous CSF1, CSF1R, p-CSF1R, p-PLCG2, p-PKA, and uncoupling protein2 (UCP2) were increased after HI. CSF1 and CSF1R were expressed in neurons and astrocytes. Rh-CSF1 treatment significantly attenuated neurological deficits, infarct volume, OS, neuronal apoptosis, and degeneration at 48 h after HI. Moreover, activation of CSF1R by rh-CSF1 significantly increased the brain tissue expressions of p-PLCG2, p-PKA, UCP2, and Bcl2/Bax ratio, but reduced the expression of cleaved caspase-3. The neuroprotective effects of rh-CSF1 were abolished by BLZ945 or U73122. These results suggested that rh-CSF1 treatment attenuated OS-induced neuronal degeneration and apoptosis after HI, at least in part, through the CSF1R/PLCG2/PKA/UCP2 signaling pathway. Rh-CSF1 may serve as therapeutic strategy against brain damage in patients with HIE.
Collapse
|
22
|
Hu X, Li S, Doycheva DM, Huang L, Lenahan C, Liu R, Huang J, Xie S, Tang J, Zuo G, Zhang JH. Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE. J Neuroinflammation 2020; 17:182. [PMID: 32522286 PMCID: PMC7285566 DOI: 10.1186/s12974-020-01862-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a life-threatening cerebrovascular disease. Neuroinflammation plays an important role in the pathogenesis of HIE, in which microglia are key cellular mediators in the regulation of neuroinflammatory processes. Colony-stimulating factor 1 (CSF1), a specific endogenous ligand of CSF1 receptor (CSF1R), is crucial in microglial growth, differentiation, and proliferation. Recent studies showed that the activation of CSF1R with CSF1 exerted anti-inflammatory effects in a variety of nervous system diseases. This study aimed to investigate the anti-inflammatory effects of recombinant human CSF1 (rh-CSF1) and the underlying mechanisms in a rat model of HIE. METHODS A total of 202 10-day old Sprague Dawley rat pups were used. HI was induced by the right common carotid artery ligation with subsequent exposure of 2.5-h hypoxia. At 1 h and 24 h after HI induction, exogenous rh-CSF1 was administered intranasally. To explore the underlying mechanism, CSF1R inhibitor, BLZ945, and phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, were injected intraperitoneally at 1 h before HI induction, respectively. Brain infarct area, brain water content, neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS The expressions of endogenous CSF1, CSF1R, PLCG2, protein kinase C epsilon type (PKCε), and cAMP response element-binding protein (CREB) were gradually increased after HIE. Rh-CSF1 significantly improved the neurological deficits at 48 h and 4 weeks after HI, which was accompanied by a reduction in the brain infarct area, brain edema, brain atrophy, and neuroinflammation. Moreover, activation of CSF1R by rh-CSF1 significantly increased the expressions of p-PLCG2, p-PKCε, and p-CREB, but inhibited the activation of neutrophil infiltration, and downregulated the expressions of IL-1β and TNF-α. Inhibition of CSF1R and PLCG2 abolished these neuroprotective effects of rh-CSF1 after HI. CONCLUSIONS Our findings demonstrated that the activation of CSF1R by rh-CSF1 attenuated neuroinflammation and improved neurological deficits after HI. The anti-inflammatory effects of rh-CSF1 partially acted through activating the CSF1R/PLCG2/PKCε/CREB signaling pathway after HI. These results suggest that rh-CSF1 may serve as a potential therapeutic approach to ameliorate injury in HIE patients.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Shirong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Bvrrell College of Osteopathic Medicine, Las Cruces, NM, 88003, USA
| | - Rui Liu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Juan Huang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shucai Xie
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Taicang Hospital Affiliated to Soochow University, Taicang, Suzhou, 215400, Jiangsu, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA. .,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|