1
|
Tang H, Zhang J, Zhu L, Jiang X, Pei C, Li L, Kong X. Characteristics of CD4-1 gene and its immune responses against Aeromonas veronii infection by activating NF-κB signaling in Qihe crucian carp Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109318. [PMID: 38142019 DOI: 10.1016/j.fsi.2023.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
CD4-1 found in bony fish contains four extracellular immunoglobulin (Ig)-like domains similar to that of mammalian CD4, which is crucial for the activation of CD4+ helper T-cell. However, there is limited knowledge regarding the molecular markers, immune functions and regulation mechanism of CD4-1 in teleosts due to their vast diversity. In this study, we cloned and characterized two isoforms of Qihe crucian carp CD4-1, designated as CaCD4-1.1 and CaCD4-1.2. We further explored their expression responses upon stimulation with Aeromonas veronii, and the regulation of their immune responses against A. veronii by NF-κB. The ORF of CaCD4-1.1 and CaCD4-1.2 cDNA encoded 477 and 466 amino acids, respectively. Both proteins contained seven conserved cysteine residues in the extracellular domain, and a CCC motif in their cytoplasm, respectively. However, CaCD4-1.1 exhibited a relatively limited similarity with CaCD4-1.2 in the ectodomain. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the mRNA expression of CaCD4-1.1 and CaCD4-1.2 exhibited differential constitutive expression across all examined tissues. Furthermore, the expression level of CD4-1.2 was higher than that of CD4-1.1 in the gills, head kidney, and spleen of Qihe crucian carp subjected to A. veronii challenge, while it was lower in the trunk kidney. Inhibition of NF-κB activity resulted in a decrease in the expression levels of CD4-1.1 and CD4-1.2 mRNA in the gill, while inducing an increase in expression levels in the spleen, in accordance with the observed ultrastructural changes in both organs. Interestingly, the impact of NF-κB on the mRNA expression level of CD4-1.1 appears to be stronger than that of CD4-1.2. Our results suggest that CaCD4-1.1 and CaCD4-1.2 could be expressed on T cells and antigen-sampling cells that exhibit similar characteristics to mammalian M cells, respectively, and differentially regulated by NF-κB in adaptive immune responses against bacterial infection. This research contributes to a better understanding of the crucial role of CD4-1 in the immune response of Qihe crucian carp and provide novel insights for the prevention and treatment of fish diseases in aquaculture.
Collapse
Affiliation(s)
- Hairong Tang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
2
|
Su N, Jin CY, Hu CB, Shao T, Ji JF, Qin LL, Fan DD, Lin AF, Xiang LX, Shao JZ. Extensive involvement of CD40 and CD154 costimulators in multiple T cell-mediated responses in a perciform fish Larimichthys crocea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 134:104460. [PMID: 35667467 DOI: 10.1016/j.dci.2022.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
CD40 and CD154 are well-characterized costimulatory molecules involved in adaptive humoral immunity in humans and other mammals. These two costimulatory molecules were found to be originated from teleost fish during vertebrate evolution. However, the functionality of fish CD40 and CD154 remains to be explored. In this study, we identified the CD40 and CD154 homologs (LcCD40 and LcCD154) from large yellow croaker (Larimichthys crocea), a marine species of the perciform fish family. The LcCD40 and LcCD154 share conserved structural features to their mammalian counterparts, and are widely expressed in immune-relevant tissues and leukocytes at different transcriptional levels. Immunofluorescence staining and FCM analysis showed that LcCD40 and LcCD154 proteins are distributed on MHC-II+ APCs and CD4-2+ T cells, and are significantly upregulated in response to antigen stimulation. Co-IP assay exhibited strong association between LcCD40 and LcCD154 proteins. Blockade of LcCD154 with anti-LcCD154 antibody (Ab) or recombinant soluble LcCD40-Ig fusion protein remarkably decreased the MHC-II+ APC-initiated CD4+ T cell response upon Aeromonas hydrophila stimulation, and alloreactive T cell activation as examined by mixed lymphocyte reaction (MLR). These findings highlight the costimulatory role of LcCD40 and LcCD154 in T cell activities in Larimichthys crocea. Thus, the CD40 and CD154 costimulators may extensively participate in the regulation of multiple T cell-mediated immune responses in teleost fish. It is anticipated that this study would provide a cross-species understanding of the evolutionary history of CD40 and CD154 costimulatory signals from fish to mammals.
Collapse
Affiliation(s)
- Ning Su
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.
| | - Chun-Yu Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Chong-Bin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Fei Ji
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Lu-Lu Qin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Tian HF, Xing J, Tang XQ, Chi H, Sheng XZ, Zhan WB. Cluster of differentiation antigens: essential roles in the identification of teleost fish T lymphocytes. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:303-316. [PMID: 37073166 PMCID: PMC10077257 DOI: 10.1007/s42995-022-00136-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2022] [Indexed: 05/03/2023]
Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte classification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes can be divided into CD4+ and CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the health management and development of vaccines for fish.
Collapse
Affiliation(s)
- Hong-fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xiao-qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Xiu-zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Wen-bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
4
|
Production and characterization of monoclonal antibodies against grass carp CD4-1 and CD4-2. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front Immunol 2022; 12:773193. [PMID: 34975860 PMCID: PMC8716388 DOI: 10.3389/fimmu.2021.773193] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, MS, United States
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Malaysia
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Ashfaq H, Soliman H, Fajmann S, Sexl V, El-Matbouli M, Saleh M. Kinetics of CD4-1+ lymphocytes in brown trout after exposure to viral haemorrhagic septicaemia virus. JOURNAL OF FISH DISEASES 2021; 44:1553-1562. [PMID: 34160839 DOI: 10.1111/jfd.13476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
T-helper cells express CD4 as a co-receptor that binds to major histocompatibility complex class II to synchronize the immune response against upcoming threats via mediating several cytokines. We have previously reported the presence of CD4 homologues in brown trout. The study of cellular immune responses in brown trout is limited by the availability of specific antibodies. We here describe the generation of a polyclonal antibody against CD4-1 that allows for the investigation of CD4+ cells. We used this novel tool to study CD4+ cells in different tissues during viral haemorrhagic septicaemia infection (VHSV) using flow cytometric technique. Flow cytometric analyses revealed an enhanced level of surface CD4-1 expression in the infected group in major lymphoid organs and in the intestine. These results suggest an important role for the T-helper cells within the immune response against viruses, comparable to the immune response in higher vertebrates.
Collapse
Affiliation(s)
- Hassan Ashfaq
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Sabine Fajmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|