1
|
Lin CY, Zhang YM, Li BZ, Shu MA, Xu WB. Identification and characterization of mitogen-activated protein kinase kinase 4 (MKK4) from the mud crab Scylla paramamosain in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104755. [PMID: 37295629 DOI: 10.1016/j.dci.2023.104755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Mitogen-activated protein kinase kinase 4 (MKK4), serves as a critical component of the mitogen-activated protein kinase signaling pathway, facilitating the direct phosphorylation and activation of the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to environmental stresses. In the current research, we identified two MKK4 subtypes, namely SpMKK4-1 and SpMKK4-2, from Scylla paramamosain, followed by the analysis of their molecular characteristics and tissue distributions. The expression of SpMKK4s was induced upon WSSV and Vibrio alginolyticus challenges, and the bacteria clearance capacity and antimicrobial peptide (AMP) genes' expression upon bacterial infection were significantly decreased after knocking down SpMKK4s. Additionally, the overexpression of both SpMKK4s remarkably activated NF-κB reporter plasmid in HEK293T cells, suggesting the activation of the NF-κB signaling pathway. These results indicated the participation of SpMKK4s in the innate immunity of crabs, which shed light on a better understanding of the mechanisms through which MKK4s regulate innate immunity.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Cai YJ, He JY, Yang XY, Huang W, Fu XM, Guo SQ, Yang JJ, Dong JD, Zeng HT, Wu YJ, Qin Z, Qin QW, Sun HY. Molecular characterization, expression and function analysis of Epinephelus coioides PKC-ɑ response to Singapore grouper iridovirus (SGIV) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104646. [PMID: 36702214 DOI: 10.1016/j.dci.2023.104646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Protein kinase C (PKC) constitutes the main signal transduction pathway, and participates in the signal pathway of cell proliferation and movement in mammals. In this study, PKC-ɑ was obtained from Epinephelus coioides, an important marine fish cultivated in the coastal areas of southern China and Southeast Asia. The full length cDNA of PKC-ɑ was 3362 bp in length containing a 23 bp 5'UTR, a 1719 bp 3'UTR, and a 1620 bp open reading frame encoding 539 amino acids. It contains three conservative domains including protein kinase C conserved region 2 (C2), Serine/Threonine protein kinases, catalytic domain (S_TKc) and ser/thr-type protein kinases (S_TK_X). Its mRNA can be detected in all 11 tissues examined of E. coioides, and the expression was significantly upregulated response to Singapore grouper iridovirus (SGIV) infection, one of the important pathogens of marine fish. Upregulated E. coioides PKC-ɑ significantly inhibited the activation of nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), and SGIV-induced cell apoptosis. The results indicated that the PKC-ɑ may play an important role in pathogenic stimulation.
Collapse
Affiliation(s)
- Yi-Jie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Yang He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xin-Yue Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xue-Mei Fu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Shi-Qing Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jie-Jia Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jun-De Dong
- Guangdong Provincial Key Laboratory of Applied Marine Biology, 510301, PR China
| | - Hai-Tian Zeng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yan-Jun Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zhou Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| | - Hong-Yan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
3
|
Yang XD, Hou ZS, Liu MQ, Zeng C, Zhao HK, Xin YR, Xiang KW, Yang Q, Wen HS, Li JF. Identification and characterization of mkk genes and their expression profiles in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2022; 121:1-11. [PMID: 34974153 DOI: 10.1016/j.fsi.2021.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase kinases (MKKs) are intermediate kinases of mitogen-activated protein kinases (MAPKs) signaling pathways. MKKs are activated by mitogen-activated protein kinase kinase kinase (MKKK) and then the activated MKKs trigger the activation of downstream MAPKs. MAPK signaling pathways play an important role in regulating immune functions including apoptosis and inflammation. However, studies on identification and characterization of mkk repertoire in rainbow trout (Oncorhynchus mykiss) are still limited. Trout experienced 4 rounds (4R) of whole genome duplication (WGD), thus exhibiting increased paralogs of mkks with potentially functional diversity. In this study, we identified 17 mkk genes in trout and the following bacterial challenge (Vibrio anguillarum) studies showed functional diversity of different mkk subtypes. Vibrio anguillarum infection resulted in significantly up-regulated mkk2 subtypes in spleen and liver, and mkk4b3 in spleen, suggesting immunomodulation was regulated by activation of ERK, p38 and JNK pathways. Compared to other mkk subtypes, mkk6s were down-regulated in symptomatic group, rather than asymptomatic group. The organisms present negative feedback on MAPK activation, thus reducing extra damage to cells. We observed down-regulated mkk6s with up-regulated genes (dusp1 & dusp2) involved in negative feedback of MAPK activation. Based on these results, we might propose the distinct expression patterns of genes associated with MAPK pathways resulted in different phenotypes and symptoms of trout in response to bacterial challenge.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Kai-Wen Xiang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Qian Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| |
Collapse
|
4
|
Chen HJ, Li PH, Yang Y, Xin XH, Ou Y, Wei JG, Huang YH, Huang XH, Qin QW, Sun HY. Characterization and function analysis of Epinephelus coioides Hsp40 response to Vibrio alginolyticus and SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 118:396-404. [PMID: 34571156 DOI: 10.1016/j.fsi.2021.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Heat shock protein 40 (Hsp40), a member of Heat shock proteins (Hsps) family, plays a crucial role in regulation of cell proliferation, survival and apoptosis in mammals. In this study, Hsp40, EcHsp40, was identified from Epinephelus coioides, an economically important marine-cultured fish in China and Southeast Asian counties. The full length of EcHsp40 was 2236 bp in length containing a 1026 bp open reading frame (ORF) encoding 341 amino acids, with a molecular mass of 37.88 kDa and a theoretical pI of 9.09. EcHsp40 has two conserved domains DnaJ and DnaJ_C. EcHsp40 mRNA was detected in all tissues examined, and the expression was significantly up-regulated response to challenged with Vibrio alginolyticus or Singapore grouper iridovirus (SGIV), one of the important pathogens of marine fish. EcHsp40 was distributed in both the cytoplasm and nucleus, over-expression of EcHsp40 can inhibit the activity of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), significantly promote SGIV-induced apoptosis, intracellular caspase-3 activity and viral replication, suggesting that the EcHsp40 may play an important role in pathogenic stimulation.
Collapse
Affiliation(s)
- He-Jia Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Department of Biology, College of Science, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Pin-Hong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yun Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiao-Hong Xin
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yan Ou
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jing-Guang Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - You-Hua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiao-Hong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| | - Hong-Yan Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|