1
|
Yang W, Sun J, Leng J, Li Y, Guo Q, Wang L, Song L. A novel lectin with a distinct Gal_Lectin and CUB domain mediates haemocyte phagocytosis in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105222. [PMID: 38964676 DOI: 10.1016/j.dci.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.
Collapse
Affiliation(s)
- Wenwen Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
2
|
Zhang Y, Bai Y, Zheng J, Cui Z. Bacterial recognition and inhibition activities of an LRR-only protein in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109799. [PMID: 39098748 DOI: 10.1016/j.fsi.2024.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
LRR-only protein (LRRop) is an important class of immune molecules that function as pattern recognition receptor in invertebrates, however, the bacterial inhibitory activity of this proteins remain largely unknown. Herein, a novel LRRop was cloned from Eriocheir sinensis and named as EsLRRop2. The EsLRRop2 consists of six LRR motifs and formed a horseshoe shape three-dimension structure. EsLRRop2 was mainly expressed in intestine and hepatopancreas. The transcripts of EsLRRop2 in the intestine and hepatopancreas were induced by Vibrio parahaemolyticus and Staphylococcus aureus, and displayed similar transcriptional profiles. The expression levels of EsLRRop2 responded more rapidly and highly to V. parahaemolyticus than S. aureus in the intestine and hepatopancreas. Although the basal expression level of EsLRRop2 in hemocytes was relatively low, its transcripts in hemocytes were significantly induced by V. parahaemolyticus and S. aureus. The recombinant proteins of EsLRRop2 (rEsLRRop2) displayed a wide range of binding spectrum against vibrios, including V. parahaemolyticus, V. alginolyticus, and V. harveryi. The rEsLRRop2 showed dose- and time-dependent inhibitory activity against V. parahaemolyticus and S. aureus, and it could agglutinate the two bacteria. Furthermore, the inhibitory activities of rEsLRRop2 against V. parahaemolyticus, V. alginolyticus, V. harveryi and S. aureus was slightly affected by pH and salinity, and the rEsLRRop2 displayed the strongest inhibitory activity against all the three vibrios when the salinity was 20 ‰ and pH was 8.0. Collectively, these results elucidate the bacterial binding and inhibitory activities of EsLRRop2, and provide theoretical foundations for the application of rEsLRRop2 in prevention and control of vibrio diseases in aquaculture.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
3
|
Mo J, Li J, Qiu L, Wang Y, Mu L, Ye J. Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2024; 25:2508. [PMID: 38473757 DOI: 10.3390/ijms25052508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.
Collapse
Affiliation(s)
- Jinfeng Mo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiqing Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Mizgina TO, Chikalovets IV, Bulanova TA, Molchanova VI, Filshtein AP, Ziganshin RH, Rogozhin EA, Shilova NV, Chernikov OV. New l-Rhamnose-Binding Lectin from the Bivalve Glycymeris yessoensis: Purification, Partial Structural Characterization and Antibacterial Activity. Mar Drugs 2023; 22:27. [PMID: 38248652 PMCID: PMC10817417 DOI: 10.3390/md22010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/β-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.
Collapse
Affiliation(s)
- Tatyana O. Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Irina V. Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Tatyana A. Bulanova
- Department of Chemistry and Materials, Far Eastern Federal University, Vladivostok 690950, Russia;
| | - Valentina I. Molchanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Alina P. Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Eugene A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Nadezhda V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| |
Collapse
|
5
|
Qiu L, Li J, Bai H, Wang L, Zeng Q, Wu S, Li P, Mu L, Yin X, Ye J. Long-chain pentraxin 3 possesses agglutination activity and plays a role in host defense against bacterial infection in Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105053. [PMID: 37657531 DOI: 10.1016/j.dci.2023.105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition molecule in the innate immune system that has multiple functions. It is involved in resisting pathogen infection. However, the functions of PTX3 in teleost fish are not well understood. In this study, we identified and characterized PTX3 in Nile tilapia (Oreochromis niloticus) (OnPTX3). The open reading frame of OnPTX3 was found to be 1305 bp, encoding 434 aa. We conducted spatial mRNA expression analysis and found that the expression of OnPTX3 was significantly increased after infection with Streptococcus agalactiae and Aeromonas hydrophila, both in vivo and in vitro. We also observed that recombinant OnPTX3 protein could bind and agglutinate bacterial pathogen. Furthermore, OnPTX3 enhanced the phagocytosis of bacteria (S. agalactiae and A. hydrophila) by head kidney macrophages. Additionally, OnPTX3 was found to influence the expression of inflammatory cytokines, suggesting its involvement in the regulation of the inflammatory response. Moreover, OnPTX3 was shown to promote complement-mediated hemolysis and possess antibacterial activity. In conclusion, our research demonstrates that OnPTX3 has bacterial binding and agglutination activities, enhances phagocytosis, and regulates inflammation. It plays a crucial role in the defense of Nile tilapia against pathogenic bacteria, providing valuable insights for the prevention and control of aquatic diseases in the future.
Collapse
Affiliation(s)
- Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hao Bai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lili Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Qingliang Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Siqi Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Peiyu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Xiaoxue Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 5a0642, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
6
|
Wang J, Guo XL, Chen HY, Xiao LX, Yang GW, Yang HT. A novel l-rhamnose-binding lectin participates in defending against bacterial infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108553. [PMID: 36693487 DOI: 10.1016/j.fsi.2023.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
l-rhamnose-binding lectin (RBL), which is a class of animal lectins independent of Ca2+, can specifically bind l-rhamnose or d-galactose. Although several lectins in zebrafish have been reported, their functional mechanisms have not been fully uncovered. In this study, we discovered a novel l-rhamnose binding lectin (DrRBL) and studied its innate immune function. The DrRBL protein contains only one carbohydrate-recognition domain (CRD), which includes two strictly conserved motifs, "YGR" and "DPC". DrRBL was detected in all tested tissues and was present at high levels in the spleen, hepatopancreas and skin. After Aeromonas hydrophila challenge, the DrRBL mRNA level was significantly upregulated. Additionally, DrRBL was secreted into the extracellular matrix. Recombinant DrRBL (rDrRBL) could significantly inhibit the growth of gram-positive/negative bacteria, bind to several bacteria and cause obvious agglutination. The rDrRBL protein could combine with polysaccharides, such as PGN and LPS, rather than LTA. A more detailed study showed that rDrRBL could combine with monosaccharides, such as mannose, rhamnose and glucose, which are important components of PGN and LPS. However, rDrRBL could not bind to ribitol, which is an important component of LTA. The DrRBL deletion mutants, DrRBLΔ144-150 and DrRBLΔ198-200, were also constructed. DrRBLΔ144-150 ("ANYGRTD" deficient) showed weak bacterial inhibiting ability. However, DrRBLΔ198-200 ("DPC" deficient) showed weak agglutination ability. These results suggest that the "DPC" domain is important for agglutination. The conserved domain "ANYGRTD" is essential for inhibiting bacterial growth.
Collapse
Affiliation(s)
- Jing Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xin-Lu Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hong-Ye Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin-Xi Xiao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|