1
|
Li X, Liu B, Li G, Wang H, Yang J, Wen H, He F. tgfβ1a/vegfa gene expression and methylation in response to acute hypoxia in Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105319. [PMID: 39826665 DOI: 10.1016/j.dci.2025.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
The physiological response and molecular mechanism of the immune response of Japanese flounder under hypoxia stress remain unclear. In this study, we examined the immune-related physiological indexes and the molecular mechanisms of Japanese flounders under acute hypoxia stress. The results showed that the levels of serum ALT, ALP, AST and LDH in hypoxia stress group were significantly increased (P < 0.01). Through quantitative real-time PCR and double in situ hybridization, we found acute hypoxia stress induced immune response of skeletal muscle and gill filaments. The transcriptional regulation mechanism of this immune signaling pathway was investigated by dual luciferase assay. In addition, DNA methylation levels of genes were detected to explore epigenetic modifications of this pathway. As a transcription factor, Foxo1a can interact tgfβ1a(AGATGTTTTTT) and vegfa(TTCTTTTTATA, TACTGTTGCTA) sequences of the promoter regions. The DNA methylation levels of tgfβ1a and vegfa genes were significantly affected by hypoxia and negatively correlated with their expression. These experiments showed that the expression of immune related genes tgfβ1a and vegfa were regulated by transcription factor Foxo1a and DNA methylation. Our study provides theoretical foundations for acute hypoxia stress induced immune response of Japanese flounder.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Binghua Liu
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Guangling Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Hao Wang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Jun Yang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China
| | - Feng He
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, PR China.
| |
Collapse
|
2
|
Dai Y, Shen Y, Ke C, Luo X, Huang M, Huang H, You W. Carryover effects of embryonic hypoxia exposure on adult fitness of the Pacific abalone. ENVIRONMENTAL RESEARCH 2024; 260:119628. [PMID: 39048070 DOI: 10.1016/j.envres.2024.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The widespread and severe drop in dissolved oxygen concentration in the open ocean and coastal waters has attracted much attention, but assessments of the impacts of environmental hypoxia on aquatic organisms have focused primarily on responses to current exposure. Past stress exposure might also affect the performance of aquatic organisms through carryover effects, and whether these effects scale from positive to negative based on exposure degree is unknown. We investigated the carryover effects of varying embryonic hypoxia levels (mediate hypoxia: 3.0-3.1 mg O2/L; severe hypoxia: 2.0-2.1 mg O2/L) on the fitness traits of adult Pacific abalone (Haliotis discus hannai), including growth, hypoxia tolerance, oxygen consumption, ammonia excretion rate, and biochemical responses to acute hypoxia. Moderate embryonic hypoxia exposure significantly improved the hypoxia tolerance of adult Pacific abalone without sacrificing growth and survival. Adult abalone exposed to embryonic hypoxia exhibited physiological plasticity, including decreased oxygen consumption rates under environmental stress, increased basal methylation levels, and a more active response to acute hypoxia, which might support their higher hypoxia tolerance. Thus, moderate oxygen declines in early life have persistent effects on the fitness of abalone even two years later, further affecting population dynamics. The results suggested that incorporating the carryover effects of embryonic hypoxia exposure into genetic breeding programs would be an important step toward rapidly improving the hypoxia tolerance of aquatic animals. The study also inspires the protection of endangered wild animals and other vulnerable species under global climate change.
Collapse
Affiliation(s)
- Yue Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huoqing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| |
Collapse
|
3
|
Xue Y, Wang R, Yao T, Fang Q, Chen J, Liu X, Han Q, Wang X. Genome-wide identification and characterization of large yellow croaker (Larimichthys crocea) suppressors of cytokine signaling (SOCS) in immune response to Pseudomonas plecoglossicida infection and acute hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109669. [PMID: 38849106 DOI: 10.1016/j.fsi.2024.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The suppressor of cytokine signaling (SOCS) gene family is a group of genes involved in the negative regulation of cytokine signal transduction. The members of this family play a crucial role in regulating immune and inflammatory processes. However, comprehensive investigations of these genes have not yet been conducted in the economically significant fish large yellow croaker (Larimichthys crocea). In this study, a total of 13 SOCS genes (LcSOCS1a, LcSOCS1b, LcSOCS2, LcSOCS3a, LcSOCS3b, LcSOCS4, LcSOCS5a, LcSOCS5b, LcSOCS6, LcSOCS7a, LcSOCS7b, LcCISHa and LcCISHb) were identified and analyzed in L. crocea. The phylogenetic tree revealed a high conservation of SOCS genes in evolution, and the gene structure and motif analysis indicated a high similarity in the structure of LcSOCSs in the same subfamily. In addition, the expression patterns of LcSOCSs showed that LcSOCS1b was significantly down-regulated in all time under acute hypoxia stress, but it was markedly up-regulated throughout the entire process after P. plecoglossicida infection, revealing its different immune effects to two stresses. Besides, LcSOCS2a, LcSOCS6 and LcSOCS7a only participated in acute hypoxic stress, while LcSOCS5a was more sensitive to P. plecoglossicida infection. In summary, these results indicated that SOCS genes were involved in stress responses to both biological and non-biological stimuli, setting the foundation for deeper study on the functions of SOCS genes.
Collapse
Affiliation(s)
- Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Qian Fang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
4
|
Wu S, Huang J, Li Y. A novel hypoxic lncRNA, LOC110520012 sponges miR-206-y to regulate angiogenesis and liver cell proliferation in rainbow trout (Oncorhynchus mykiss) by targeting vegfaa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116554. [PMID: 38878335 DOI: 10.1016/j.ecoenv.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
Long non-coding RNA (lncRNA) is a novel emerging type of competitive endogenous RNA (ceRNA) that performs key functions in multiple biological processes. However, little is known about the roles of lncRNA under hypoxia stress in fish. Here, vascular endothelial growth factor-Aa (vegfaa) was cloned in rainbow trout (Oncorhynchus mykiss), with the complete cDNA sequence of 2914 bp, encoding 218 amino acids. The molecular weight of the protein was approximately 25.33 kDa, and contained PDGF and VEGF_C domains. Time-course and spatial expression patterns revealed that LOC110520012 was a key regulator of rainbow trout in response to hypoxia stress, and LOC110520012, miR-206-y and vegfaa exhibited a ceRNA regulatory relationship in liver, gill, muscle and rainbow trout liver cells treated with acute hypoxia. Subsequently, the targeting relationship of LOC110520012 and vegfaa with miR-206-y was confirmed by dual-luciferase reporter analysis, and overexpression of LOC110520012 mediated the inhibition of miR-206-y expression in rainbow trout liver cells, while the opposite results were obtained after LOC110520012 silencing with siRNA. We also proved that vegfaa was a target of miR-206-y in vitro and in vivo, and the vegfaa expression and anti-proliferative effect on rainbow trout liver cells regulated by miR-206-y mimics could be reversed by LOC110520012. These results suggested that LOC110520012 can positively regulate vegfaa expression by sponging miR-206-y under hypoxia stress in rainbow trout, which facilitate in-depth understanding of the molecular mechanisms of fish adaptation and tolerance to hypoxia.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Li M, Hu J, Zhou J, Wu C, Li D, Mao H, Kong L, Hu C, Xu X. Grass carp (Ctenopharyngodon idella) deacetylase SIRT1 targets p53 to suppress apoptosis in a KAT8 dependent or independent manner. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109264. [PMID: 38043873 DOI: 10.1016/j.fsi.2023.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Sirtuin1 (SIRT1) is known as a deacetylase to control various physiological processes. In mammals, SIRT1 inhibits apoptotic process, but the detailed mechanism is not very clear. Here, our study revealed that grass carp (Ctenopharyngodon idella) SIRT1 (CiSIRT1, MN125614.1) inhibits apoptosis through targeting p53 in a KAT8-dependent or a KAT8-independent manner. In CIK cells, CiSIRT1 over-expression results in significant decrease of some apoptotic gene expressions, including Bax/Bcl2, caspase3 and caspase9, whereas CiKAT8 or Cip53 facilitates the induction of apoptosis. Because CiSIRT1 separately interacted with CiKAT8 and Cip53, we speculated that CiSIRT1 blocked apoptosis may be by virtue of KAT8-p53 axis or directly by p53. In a KAT8-dependent manner, CiSIRT1 interacted with CiKAT8, then reduced the acetylation of CiKAT8 and subsequently promoted its degradation. Then, CiKAT8 acetylated p53 and induced p53-mediated apoptosis. MYST domain of CiKAT8 was critical in this pathway. In a KAT8-independent manner, CiSIRT1 also inhibited p53-induced apoptosis by directly deacetylating p53 and promoting the degradation of p53. Generally, these findings uncovered two pathways in which CiSIRT1 decreases the acetylation of p53 via a KAT8-dependent or a KAT8-independent manner.
Collapse
Affiliation(s)
- Meifeng Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiazhan Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chuxin Wu
- Department of Natural Sciences, Yuzhang Normal University, Nanchang, 330103, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Li G, Liu B, Yang J, Li X, Wang H, Wen H, He F. Acute Hypoxia Stress-Induced Apoptosis in Gill of Japanese Flounder ( Paralichthys olivaceus) by Modulating the Epas1/Bad Pathway. BIOLOGY 2022; 11:biology11111656. [PMID: 36421370 PMCID: PMC9687431 DOI: 10.3390/biology11111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The physiological responses and molecular mechanisms of apoptosis in Japanese flounder under hypoxic stress remain unclear. In the present study, we performed acute hypoxia stress on Japanese flounder (2.39 ± 0.84 mg/L) and detected gills responses in histomorphology and molecular mechanisms. The results showed that the volume of the interlamellar cell mass decreased and the gill lamellae prolonged, indicating the expansion of the respiratory surface area. Additionally, the fluorescence signal of apoptosis increased under hypoxic stress. In addition, the expression of two genes (EPAS1 and Bad) related to apoptosis increased about four-fold and two-fold, respectively, at 6 h of hypoxia. Meanwhile, the result of the dual-luciferase reporter assay showed that EPAS1 is a transcription factor, which could regulate (p < 0.05) the expression of the Bad gene, and we identified the binding site of EPAS1 was the AATGGAAAC sequence located near −766. DNA methylation assay showed that hypoxia affected the methylation status of CpG islands of EPAS1 and Bad genes. All results indicated that hypoxia could activate the EPAS1/Bad signal pathway to induce gill apoptosis of Japanese flounder. Our study provides new light on understanding the molecular mechanism of hypoxia-induced apoptosis in Japanese flounder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng He
- Correspondence: ; Tel.: +86-532-82031953
| |
Collapse
|
7
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
8
|
Zhang Y, Zhu F, Teng J, Zheng B, Lou Z, Feng H, Xue L, Qian Y. Effects of salinity stress on methylation of the liver genome and complement gene in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 129:207-220. [PMID: 36058436 DOI: 10.1016/j.fsi.2022.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Salinity is an important environmental factor that affects the yield and quality of large yellow croaker (Larimichthys crocea) during aquaculture. Here, whole-genome bisulfite sequencing (WGBS), RNA-seq, bisulfite sequencing PCR (BSP), quantitative real-time PCR (qPCR), and dual luciferase reporter gene detection technologies were used to analyze the DNA methylation characteristics and patterns of the liver genome, the expression and methylation levels of important immune genes in large yellow croaker in response to salinity stress. The results of WGBS showed that the cytosine methylation of CG type was dominant, CpGIsland and repeat regions were important regions where DNA methylation occurred, and the DNA methylation in upstream 2k (2000bp upstream of the promoter) and repeat regions had different changes in the liver tissue of large yellow croaker in the response to the 12‰, 24‰, 36‰ salinity stress of 4 w (weeks). In the combined analysis of WGBS and transcriptome, the complement and coagulation cascade pathways were significantly enriched, in which the complement-related genes C7, C3, C5, C4, C1R, MASP1, and CD59 were mainly changed in response to salinity stress. In the studied area of MASP1 gene promoter, the methylation levels of many CpG sites as well as total cytosine were strongly negatively correlated with mRNA expression level. Methylation function analysis of MASP1 promoter further proved that DNA methylation could inhibit the activity of MASP1 promoter, indicating that salinity may affect the expressions of complement-related genes by DNA methylation of gene promoter region.
Collapse
Affiliation(s)
- Yu Zhang
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Fisheries College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fei Zhu
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, 226007, China
| | - Jian Teng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| | - Yunxia Qian
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| |
Collapse
|
9
|
Methyl-CpG-binding domain protein 2 contributes to renal fibrosis through promoting polarized M1 macrophages. Cell Death Dis 2022; 13:125. [PMID: 35136032 PMCID: PMC8826408 DOI: 10.1038/s41419-022-04577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
Abstract
Recent studies reported that Methyl-CpG–binding domain protein 2 (MBD2) promoted M2 macrophages accumulation to increase bleomycin-induced pulmonary fibrosis. However, the role and mechanism of action of MBD2 in macrophages differentiation and renal fibrosis remain largely unknown. In the current study, MBD2 not only promoted the differentiation of resting M0 macrophages to polarized M2 macrophages, but also induced them to polarized M1 macrophages and the transition of M2 to M1 macrophages. ChIP analysis demonstrated that MBD2 physically interacted with the promoter region of the CpG islands of G0S2 genes, and then activated their expression by inducing hypomethylation of the promoter region. Interestingly, the data demonstrated that the role of G0S2 in macrophages differentiation is consistent with MBD2. Furthermore, Co-culture of activated M1 macrophages and murine embryonic NIH 3T3 fibroblasts indicated that MBD2 mediated the M1-induction of ECM production by embryonic NIH 3T3 fibroblasts via promotion of G0S2. In addition, we also found that inhibition of MBD2 suppressed LPS induced the expression of p53 as well as activation and expression of stat3 in RAW264.7 macrophages. In vivo, MBD2 LysMcre attenuated unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R)-induced renal fibrosis via downregulation of G0S2, which was demonstrated by the downregulation of fibronectin (FN), collagen I and IV, α-SMA, G0S2. These data collectively demonstrated that MBD2 in macrophages contributed to UUO and I/R-induced renal fibrosis through the upregulation of G0S2, which could be a target for treatment for chronic kidney disease.
Collapse
|