1
|
Song Y, Duan Y, Luo H, Yun L, Zhang M, Tran NT, Zheng H, Zhou Q, Li S. Establishment of mud crab (Scylla paramamosain) spermatogonial stem cell line: A potential tool for immunological research. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110349. [PMID: 40254085 DOI: 10.1016/j.fsi.2025.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Spermatogonial stem cells (SSCs) can differentiate into sperm and are important for studying on genetic information transmission of animals. However, the establishment of the SSC line in crustaceans is still in its infancy. This study aimed to establish a method for the isolation, culture, and identification of SSCs derived from the gonad of a marine crustacean (mud crab, Scylla paramamosain), and evaluate their differentiation ability and potential application in immunological research, in vitro. SSCs showed robust growth, proliferation, and passaging ability (up to 35 passages) in germ cell culture medium. Proteomic analysis showed that the protein expression profile of SSC was closely related to the gonadal tissue. SSCs were found to be able to express male-specific and pluripotent markers, such as CD9, PIWI, DDX4, DAZL, NANOG, SOX2, and EPHA1. Furthermore, SSCs were differentiated into osteoblasts and adipocytes under in vitro induction. Green fluorescent protein (GFP), packaged by lentivirus, was able to be overexpressed in SSCs after infection. In addition, the infection of white spot syndrome virus (WSSV) simulated the expression of inflammation-associated factors, including TRAF6, TNF-α, MyD88, Dorsal, and Relish, and apoptosis-related genes (BAX and Bcl2) in SSCs. Thus, SSCs were initially isolated and characterized from mud crabs for the first time. Our results proved that SSCs can be used in reproduction technology, germplasm conservation, and immunological studies in crustaceans.
Collapse
Affiliation(s)
- Ying Song
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanchuang Duan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Haiqing Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Linying Yun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Mali KK, Gavhane YN, Chakole RD. Natural Polymer-Based Nanogel for pH-Responsive Delivery of Sorafenib Tosylate in Hemangiosarcoma. AAPS PharmSciTech 2024; 25:83. [PMID: 38605211 DOI: 10.1208/s12249-024-02797-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Smart nanomedicinal treatment for cancer manifests a solubility challenge with inherent nanoscale size and nonspecific release with stimuli-responsive potential. This is the limelight in novel chemotherapy to pursue physiochemical differences between the tumor microenvironment (TME) and normal cells, which introduces active groups of nanocarriers responding to various stimuli, endowing them with concise responses to various tumor-related signals. The nanogels were successfully prepared by a modified solvent evaporation technique. Nine batches were formulated by changing the chitosan concentration (12, 14, 16 mg/ml) and sonication time (5, 10, 15 min). The formulations were optimized for particle size and zeta potential with high percent entrapment efficiency (%EE) through Central Composite Design software. The optimized batch F7 had a 182-nm size and high zeta potential (64.5 mV) with 98% EE. The drug release of F7 was higher at pH 6 (97.556%) than at pH 7.4 (45.113%). The pharmacokinetic study shows that the release follows the Hixon plot model (R2 = 0.9334) that shifts to zero order (R2 = 0.9149). The nanogel F7 was observed for stability and showed an absence of color change, phase separation, and opacity for 6 months. In the present study, the pH difference between cancer cells and normal cells is the key point of the smart nanogel. This study is promising but challenging depending on the in vivo study. The nanogel was successfully prepared and evaluated for pH-responsive release. As hemangiosarcoma commonly occurs in dogs, this formulation helps to limit the difficulties with administration.
Collapse
Affiliation(s)
- Kiran K Mali
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Kolhapur, Maharashtra, 415124, India.
- Department of Pharmaceutics, Krishna Foundation's, Jaywant Institute of Pharmacy, Wathar, DBATU, Lonere, Karad, Maharashtra, 415139, India.
| | - Yogeshkumar N Gavhane
- Department of Pharmaceutics, Government College of Pharmacy, Karad, Shivaji University, Kolhapur, Maharashtra, 415124, India
| | - Rita D Chakole
- Department of Pharmacy, Government College of Pharmacy, Karad, Shivaji University, Kolhapur, Maharashtra, 415124, India
| |
Collapse
|
3
|
Zhang X, Shen G, Guo Y, Zhang X, Zhao Y, Li W, Wang Q, Zhao Y. Genome-wide identification and analysis of the MAPKK gene family in Chinese mitten crab (Eriocheir sinensis) and its response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109132. [PMID: 37797870 DOI: 10.1016/j.fsi.2023.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Protein kinases of the MAPK cascade family (MAPKKK-MAPKK-MAPK) play an important role in the growth and development of organisms and their response to environmental stress. The MAPKK gene families in the Chinese mitten crab Eriocheir sinensis have never been systematically analyzed. We identified four MAPKK family genes, EsMEK, EsMAPKK4, EsMAPKK6, and EsMAPKK7, in E. sinensis and analyzed their molecular features and expression patterns. All four MAPKK genes are composed of multiple exons and introns, all have a conserved domain, and all have 10 conserved motifs (except EsMEK and EsMAPKK7 which are missing motif 10). The four MAPKK genes are on four different chromosomes and have no gene duplications, and the results of phylogenetic tree analysis indicate that the ESMAPKK gene family is highly conserved evolutionarily. The EsMAPKK genes were widely expressed in all the examined tissues with higher expression in hemocytes, hepatopancreas, and gills. Notably, EsMAPKK6 was also highly expressed in the ovary. Vibrio parahaemolyticus infection significantly increased the mRNA levels of the EsMAPKK genes in hemocytes. Further disruption of the EsMAPKK gene family expression affects the expression levels of multiple antimicrobial peptides in hemocytes. Our experimental results provide a starting point for a more in-depth study of the innate immunity functional roles of members of the MAPKK gene families in E. sinensis.
Collapse
Affiliation(s)
- Xiaona Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoli Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuehong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qun Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China.
| | - Yunlong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Lin CY, Zhang YM, Xu WB, Shu MA, Dong WR. Identification and functional analysis of endoplasmic reticulum oxidoreductase 1 (ERO1) from the green mud crab Scylla paramamosain: The first evidence of ERO1 involved in invertebrate immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108931. [PMID: 37437824 DOI: 10.1016/j.fsi.2023.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Endoplasmic reticulum oxidoreductase 1 (ERO1) is an important mediator in regulating disulfide bond formation and maintaining endoplasmic reticulum homeostasis. Its activity is transcriptionally regulated by the unfolded protein response (UPR) in the endoplasmic reticulum, which is known to be essential in immunity. However, whether ERO1 is involved in innate immunity in invertebrates remains unclear. In the present study, two subtypes of ERO1 from Scylla paramamosain were first identified and characterized. Sequence analysis revealed the conserved ERO1 domain and the oxidative capacity assay verified the oxidative capacity of SpERO1 recombinant protein. Moreover, SpERO1s were found to be ubiquitously expressed in all the tested tissues, with the highest expression observed in hemocytes. Two SpERO1s exhibited distinct expression patterns in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). Importantly, the downregulation of the expression of immune factors upon bacterial challenge in SpERO1-silenced crabs was observed. These results provided an initial foundation for further investigations into the role of ERO1 in the innate immunity of invertebrates.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|