1
|
Duymuş H, Verma M, Güçlütürk Y, Öztürk M, Varol AB, Kurt Ş, Gezici T, Akgür BF, Giray İ, Öksüz EE, Farooqui AA. The visual cortex in the blind but not the auditory cortex in the deaf becomes multiple-demand regions. Brain 2024; 147:3624-3637. [PMID: 38864500 PMCID: PMC11449128 DOI: 10.1093/brain/awae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024] Open
Abstract
The fate of deprived sensory cortices (visual regions in the blind and auditory regions in the deaf) exemplifies the extent to which experience can change brain regions. These regions are frequently seen to activate during tasks involving other sensory modalities, leading many authors to infer that these regions have started to process sensory information of other modalities. However, such observations can also imply that these regions are now activating in response to any task event, regardless of the sensory modality. Activating in response to task events, irrespective of the sensory modality involved, is a feature of the multiple-demands (MD) network. This is a set of regions within the frontal and parietal cortices that activate in response to any kind of control demand. Thus, demands as diverse as attention, perceptual difficulty, rule-switching, updating working memory, inhibiting responses, decision-making and difficult arithmetic all activate the same set of regions that are thought to instantiate domain-general cognitive control and underpin fluid intelligence. We investigated whether deprived sensory cortices, or foci within them, become part of the MD network. We tested whether the same foci within the visual regions of the blind and auditory regions of the deaf activated in response to different control demands. We found that control demands related to updating auditory working memory, difficult tactile decisions, time-duration judgments and sensorimotor speed all activated the entire bilateral occipital regions in the blind but not in the sighted. These occipital regions in the blind were the only regions outside the canonical frontoparietal MD regions to show such activation in response to multiple control demands. Furthermore, compared with the sighted, these occipital regions in the blind had higher functional connectivity with frontoparietal MD regions. Early deaf, in contrast, did not activate their auditory regions in response to different control demands, showing that auditory regions do not become MD regions in the deaf. We suggest that visual regions in the blind do not take a new sensory role but become part of the MD network, and this is not a response of all deprived sensory cortices but a feature unique to the visual regions.
Collapse
Affiliation(s)
- Hasan Duymuş
- Department of Psychology, Bilkent University, Ankara, 06800, Türkiye
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Mohini Verma
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Yasemin Güçlütürk
- Sign Language Program, TÖMER, Ankara University, Ankara, 06100, Türkiye
| | - Mesut Öztürk
- Sign Language Program, TÖMER, Ankara University, Ankara, 06100, Türkiye
| | - Ayşe B Varol
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Şehmus Kurt
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Tamer Gezici
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Berhan F Akgür
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - İrem Giray
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
| | - Elif E Öksüz
- Department of Psychology, Ankara Yildirim Beyazıt University, Ankara, 06760, Türkiye
| | - Ausaf A Farooqui
- Department of Psychology, Bilkent University, Ankara, 06800, Türkiye
- Department of Neuroscience, Bilkent University, Ankara, 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Türkiye
- National Magnetic Resonance Research Center, Bilkent University, Ankara, 06800, Türkiye
| |
Collapse
|
2
|
Tuckute G, Kanwisher N, Fedorenko E. Language in Brains, Minds, and Machines. Annu Rev Neurosci 2024; 47:277-301. [PMID: 38669478 DOI: 10.1146/annurev-neuro-120623-101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
It has long been argued that only humans could produce and understand language. But now, for the first time, artificial language models (LMs) achieve this feat. Here we survey the new purchase LMs are providing on the question of how language is implemented in the brain. We discuss why, a priori, LMs might be expected to share similarities with the human language system. We then summarize evidence that LMs represent linguistic information similarly enough to humans to enable relatively accurate brain encoding and decoding during language processing. Finally, we examine which LM properties-their architecture, task performance, or training-are critical for capturing human neural responses to language and review studies using LMs as in silico model organisms for testing hypotheses about language. These ongoing investigations bring us closer to understanding the representations and processes that underlie our ability to comprehend sentences and express thoughts in language.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
3
|
Kondapaneni N, Perona P. A number sense as an emergent property of the manipulating brain. Sci Rep 2024; 14:6858. [PMID: 38514690 PMCID: PMC10958013 DOI: 10.1038/s41598-024-56828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
The ability to understand and manipulate numbers and quantities emerges during childhood, but the mechanism through which humans acquire and develop this ability is still poorly understood. We explore this question through a model, assuming that the learner is able to pick up and place small objects from, and to, locations of its choosing, and will spontaneously engage in such undirected manipulation. We further assume that the learner's visual system will monitor the changing arrangements of objects in the scene and will learn to predict the effects of each action by comparing perception with a supervisory signal from the motor system. We model perception using standard deep networks for feature extraction and classification. Our main finding is that, from learning the task of action prediction, an unexpected image representation emerges exhibiting regularities that foreshadow the perception and representation of numbers and quantity. These include distinct categories for zero and the first few natural numbers, a strict ordering of the numbers, and a one-dimensional signal that correlates with numerical quantity. As a result, our model acquires the ability to estimate numerosity, i.e. the number of objects in the scene, as well as subitization, i.e. the ability to recognize at a glance the exact number of objects in small scenes. Remarkably, subitization and numerosity estimation extrapolate to scenes containing many objects, far beyond the three objects used during training. We conclude that important aspects of a facility with numbers and quantities may be learned with supervision from a simple pre-training task. Our observations suggest that cross-modal learning is a powerful learning mechanism that may be harnessed in artificial intelligence.
Collapse
|
4
|
Breitinger E, Dundon NM, Pokorny L, Wunram HL, Roessner V, Bender S. Contingent negative variation to tactile stimuli - differences in anticipatory and preparatory processes between participants with and without blindness. Cereb Cortex 2023; 33:7582-7594. [PMID: 36977633 DOI: 10.1093/cercor/bhad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023] Open
Abstract
People who are blind demonstrate remarkable abilities within the spared senses and compensatory enhancement of cognitive skills, underscored by substantial plastic reorganization in relevant neural areas. However, little is known about whether people with blindness form top-down models of the world on short timescales more efficiently to guide goal-oriented behavior. This electroencephalography study investigates this hypothesis at the neurophysiological level, focusing on contingent negative variation (CNV) as a marker of anticipatory and preparatory processes prior to expected events. In sum, 20 participants with blindness and 27 sighted participants completed a classic CNV task and a memory CNV task, both containing tactile stimuli to exploit the expertise of the former group. Although the reaction times in the classic CNV task did not differ between groups, participants who are blind reached higher performance rates in the memory task. This superior performance co-occurred with a distinct neurophysiological profile, relative to controls: greater late CNV amplitudes over central areas, suggesting enhanced stimulus expectancy and motor preparation prior to key events. Controls, in contrast, recruited more frontal sites, consistent with inefficient sensory-aligned control. We conclude that in more demanding cognitive contexts exploiting the spared senses, people with blindness efficiently generate task-relevant internal models to facilitate behavior.
Collapse
Affiliation(s)
- Eva Breitinger
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Neil M Dundon
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Germany
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA
| | - Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Heidrun L Wunram
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Faculty of Medicine, University Hospital C. G. Carus, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| |
Collapse
|
5
|
Evaluating the impact of short educational videos on the cortical networks for mathematics. Proc Natl Acad Sci U S A 2023; 120:e2213430120. [PMID: 36730198 PMCID: PMC9963232 DOI: 10.1073/pnas.2213430120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many teaching websites, such as the Khan Academy, propose vivid videos illustrating a mathematical concept. Using functional magnetic resonance imaging, we asked whether watching such a video suffices to rapidly change the brain networks for mathematical knowledge. We capitalized on the finding that, when judging the truth of short spoken statements, distinct semantic regions activate depending on whether the statements bear on mathematical knowledge or on other domains of semantic knowledge. Here, participants answered such questions before and after watching a lively 5-min video, which taught them the rudiments of a new domain. During the video, a distinct math-responsive network, comprising anterior intraparietal and inferior temporal nodes, showed intersubject synchrony when viewing mathematics course rather than control courses in biology or law. However, this experience led to minimal subsequent changes in the activity of those domain-specific areas when answering questions on the same topics a few minutes later. All taught facts, whether mathematical or not, led to domain-general repetition enhancement, particularly prominent in the cuneus, posterior cingulate, and posterior parietal cortices. We conclude that short videos do not suffice to induce a meaningful lasting change in the brain's math-responsive network, but merely engage domain-general regions possibly involved in episodic short-term memory.
Collapse
|
6
|
Bang JW, Hamilton-Fletcher G, Chan KC. Visual Plasticity in Adulthood: Perspectives from Hebbian and Homeostatic Plasticity. Neuroscientist 2023; 29:117-138. [PMID: 34382456 PMCID: PMC9356772 DOI: 10.1177/10738584211037619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The visual system retains profound plastic potential in adulthood. In the current review, we summarize the evidence of preserved plasticity in the adult visual system during visual perceptual learning as well as both monocular and binocular visual deprivation. In each condition, we discuss how such evidence reflects two major cellular mechanisms of plasticity: Hebbian and homeostatic processes. We focus on how these two mechanisms work together to shape plasticity in the visual system. In addition, we discuss how these two mechanisms could be further revealed in future studies investigating cross-modal plasticity in the visual system.
Collapse
Affiliation(s)
- Ji Won Bang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
7
|
Bang JW, Chan RW, Parra C, Murphy MC, Schuman JS, Nau AC, Chan KC. Diverging patterns of plasticity in the nucleus basalis of Meynert in early- and late-onset blindness. Brain Commun 2023; 5:fcad119. [PMID: 37101831 PMCID: PMC10123399 DOI: 10.1093/braincomms/fcad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Plasticity in the brain is impacted by an individual's age at the onset of the blindness. However, what drives the varying degrees of plasticity remains largely unclear. One possible explanation attributes the mechanisms for the differing levels of plasticity to the cholinergic signals originating in the nucleus basalis of Meynert. This explanation is based on the fact that the nucleus basalis of Meynert can modulate cortical processes such as plasticity and sensory encoding through its widespread cholinergic projections. Nevertheless, there is no direct evidence indicating that the nucleus basalis of Meynert undergoes plastic changes following blindness. Therefore, using multiparametric magnetic resonance imaging, we examined if the structural and functional properties of the nucleus basalis of Meynert differ between early blind, late blind and sighted individuals. We observed that early and late blind individuals had a preserved volumetric size and cerebrovascular reactivity in the nucleus basalis of Meynert. However, we observed a reduction in the directionality of water diffusion in both early and late blind individuals compared to sighted individuals. Notably, the nucleus basalis of Meynert presented diverging patterns of functional connectivity between early and late blind individuals. This functional connectivity was enhanced at both global and local (visual, language and default-mode networks) levels in the early blind individuals, but there were little-to-no changes in the late blind individuals when compared to sighted controls. Furthermore, the age at onset of blindness predicted both global and local functional connectivity. These results suggest that upon reduced directionality of water diffusion in the nucleus basalis of Meynert, cholinergic influence may be stronger for the early blind compared to the late blind individuals. Our findings are important to unravelling why early blind individuals present stronger and more widespread cross-modal plasticity compared to late blind individuals.
Collapse
Affiliation(s)
- Ji Won Bang
- Correspondence may also be addressed to: Ji Won Bang, PhD.
| | - Russell W Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Matthew C Murphy
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY 10003, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Amy C Nau
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Korb and Associates, Boston, MA 02215, USA
| | - Kevin C Chan
- Correspondence to: Kevin C. Chan, PhD, Departments of Ophthalmology and Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University. 222 E 41st Street, Room 362, New York, NY 10017, USA.
| |
Collapse
|
8
|
Musz E, Loiotile R, Chen J, Cusack R, Bedny M. Naturalistic stimuli reveal a sensitive period in cross modal responses of visual cortex: Evidence from adult-onset blindness. Neuropsychologia 2022; 172:108277. [PMID: 35636634 PMCID: PMC9648859 DOI: 10.1016/j.neuropsychologia.2022.108277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 01/31/2023]
Abstract
How do life experiences impact cortical function? In people who are born blind, the "visual" cortices are recruited during nonvisual tasks, such as Braille reading and sound localization. Do visual cortices have a latent capacity to respond to nonvisual information throughout the lifespan? Alternatively, is there a sensitive period of heightened plasticity that makes visual cortex repurposing especially possible during childhood? To gain insight into these questions, we leveraged meaningful naturalistic auditory stimuli to simultaneously engage a broad range of cognitive domains and quantify cross-modal responses across congenitally blind (n = 22), adult-onset blind (vision loss >18 years-of-age, n = 14) and sighted (n = 22) individuals. During fMRI scanning, participants listened to two types of meaningful naturalistic auditory stimuli: excerpts from movies and a spoken narrative. As controls, participants heard the same narrative with the sentences shuffled and the narrative played backwards (i.e., meaningless sounds). We correlated the voxel-wise timecourses of different participants within condition and group. For all groups, all stimulus conditions induced synchrony in auditory cortex while only the narrative stimuli synchronized responses in higher-cognitive fronto-parietal and temporal regions. As previously reported, inter-subject synchrony in visual cortices was higher in congenitally blind than sighted blindfolded participants and this between-group difference was particularly pronounced for meaningful stimuli (movies and narrative). Critically, visual cortex synchrony was no higher in adult-onset blind than sighted blindfolded participants and did not increase with blindness duration. Sensitive period plasticity enables cross-modal repurposing in visual cortices.
Collapse
Affiliation(s)
- Elizabeth Musz
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Rita Loiotile
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Mazzuca C, Fini C, Michalland AH, Falcinelli I, Da Rold F, Tummolini L, Borghi AM. From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding. Brain Sci 2021; 11:1304. [PMID: 34679369 PMCID: PMC8534254 DOI: 10.3390/brainsci11101304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
The sensorimotor system plays a critical role in several cognitive processes. Here, we review recent studies documenting this interplay at different levels. First, we concentrate on studies that have shown how the sensorimotor system is flexibly involved in interactions with objects. We report evidence demonstrating how social context and situations influence affordance activation, and then focus on tactile and kinesthetic components in body-object interactions. Then, we turn to word use, and review studies that have shown that not only concrete words, but also abstract words are grounded in the sensorimotor system. We report evidence that abstract concepts activate the mouth effector more than concrete concepts, and discuss this effect in light of studies on adults, children, and infants. Finally, we pinpoint possible sensorimotor mechanisms at play in the acquisition and use of abstract concepts. Overall, we show that the involvement of the sensorimotor system is flexibly modulated by context, and that its role can be integrated and flanked by that of other systems such as the linguistic system. We suggest that to unravel the role of the sensorimotor system in cognition, future research should fully explore the complexity of this intricate, and sometimes slippery, relation.
Collapse
Affiliation(s)
- Claudia Mazzuca
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
| | - Chiara Fini
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Arthur Henri Michalland
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- Department of Psychology, Université Paul Valéry Montpellier, EPSYLON EA 4556, 34199 Montpellier, France
| | - Ilenia Falcinelli
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
| | - Federico Da Rold
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
| | - Luca Tummolini
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), 00185 Rome, Italy
| | - Anna M. Borghi
- Body Action Language Lab (BALLAB), Sapienza University of Rome and ISTC-CNR, 00185 Rome, Italy; (C.M.); (C.F.); (A.H.M.); (I.F.); (F.D.R.); (L.T.)
- Institute of Cognitive Sciences and Technologies, National Research Council (CNR), 00185 Rome, Italy
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Kanjlia S, Loiotile RE, Harhen N, Bedny M. 'Visual' cortices of congenitally blind adults are sensitive to response selection demands in a go/no-go task. Neuroimage 2021; 236:118023. [PMID: 33862241 PMCID: PMC8249356 DOI: 10.1016/j.neuroimage.2021.118023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/16/2021] [Accepted: 03/27/2021] [Indexed: 01/24/2023] Open
Abstract
Studies of occipital cortex plasticity in blindness provide insight into how intrinsic constraints interact with experience to determine cortical specialization. We tested the cognitive nature and anatomical origins of occipital responses during non-verbal, non-spatial auditory tasks. In a go/no-go task, congenitally blind (N=23) and sighted (N=24) individuals heard rapidly occurring (<1/s) non-verbal sounds and made one of two button presses (frequent-go 50%, infrequent-go 25%) or withheld a response (no-go, 25%). Rapid and frequent button presses heighten response selection/inhibition demands on the no-go trials: In sighted and blind adults a right-lateralized prefrontal (PFC) network responded most to no-go trials, followed by infrequent-go and finally frequent-go trials. In the blind group only, a right-lateralized occipital network showed the same response profile and the laterality of occipital and PFC responses was correlated across blind individuals. A second experiment with spoken sentences and equations (N=16) found that no-go responses in occipital cortex are distinct from previously identified occipital responses to spoken language. Finally, in resting-state data (N=30 blind, N=31 blindfolded sighted), no-go responsive 'visual' cortex of blind relative to sighted participants was more synchronized with PFC and less synchronized with primary auditory and sensory-motor cortices. No-go responsive occipital cortex showed higher resting-state correlations with no-go responsive PFC than language responsive inferior frontal cortex. We conclude that in blindness, a right-lateralized occipital network responds to non-verbal executive processes, including response selection. These results suggest that connectivity with fronto-parietal executive networks is a key mechanism for plasticity in blindness.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States; Department of Psychology, Carnegie Mellon University, 346 Baker Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States.
| | - Rita E Loiotile
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States; Facebook, United States
| | - Nora Harhen
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States; Department of Cognitive Sciences, University of California Irvine, United States
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| |
Collapse
|
11
|
Kanjlia S, Feigenson L, Bedny M. Neural basis of approximate number in congenital blindness. Cortex 2021; 142:342-356. [PMID: 34352637 DOI: 10.1016/j.cortex.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 01/06/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023]
Abstract
Although humans are unique among animals in their ability to manipulate symbolic numbers, we share with other species an approximate number sense that allows us to estimate and compare the number of objects or events in a set, such as the number of apples in a tree. Our ability to discriminate the numerosity of two sets decreases as the ratio between them becomes smaller (e.g., 8 vs 16 items is harder to discriminate than 8 vs 32 items). The intraparietal sulcus (IPS) plays a key role in this numerical approximation. Neuronal populations within the IPS code for numerosity, with stimuli of different numerosities eliciting discriminable spatial patterns of activity. The developmental origins of these IPS number representations are not known. Here, we tested the hypothesis that representations of number in the IPS require visual experience with object sets, by working with individuals blind from birth. While undergoing fMRI, congenitally blind (n = 17) and blindfolded sighted (n = 25) participants judged which of two sequences of beeps was more numerous. In both sighted and blind individuals, patterns of activity in the IPS discriminated among different numerosities (4, 8, 16 vs 32), with better discrimination in the IPS of the blind group. In both groups, decoding performance decreased as the ratio between numerosities decreased (e.g., 8 vs 16 was less discriminable than 8 vs 32). These findings suggest that number representations in the IPS either have innate precursors, or that auditory or tactile experience with sets is sufficient for typical development.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychology, Carnegie Mellon University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
12
|
Crollen V, Warusfel H, Noël MP, Collignon O. Early visual deprivation does not prevent the emergence of basic numerical abilities in blind children. Cognition 2021; 210:104586. [DOI: 10.1016/j.cognition.2021.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/26/2022]
|
13
|
Heimler B, Behor T, Dehaene S, Izard V, Amedi A. Core knowledge of geometry can develop independently of visual experience. Cognition 2021; 212:104716. [PMID: 33895652 DOI: 10.1016/j.cognition.2021.104716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/29/2023]
Abstract
Geometrical intuitions spontaneously drive visuo-spatial reasoning in human adults, children and animals. Is their emergence intrinsically linked to visual experience, or does it reflect a core property of cognition shared across sensory modalities? To address this question, we tested the sensitivity of blind-from-birth adults to geometrical-invariants using a haptic deviant-figure detection task. Blind participants spontaneously used many geometric concepts such as parallelism, right angles and geometrical shapes to detect intruders in haptic displays, but experienced difficulties with symmetry and complex spatial transformations. Across items, their performance was highly correlated with that of sighted adults performing the same task in touch (blindfolded) and in vision, as well as with the performances of uneducated preschoolers and Amazonian adults. Our results support the existence of an amodal core-system of geometry that arises independently of visual experience. However, performance at selecting geometric intruders was generally higher in the visual compared to the haptic modality, suggesting that sensory-specific spatial experience may play a role in refining the properties of this core-system of geometry.
Collapse
Affiliation(s)
- Benedetta Heimler
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel; Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Tel Hashomer, Israel.
| | - Tomer Behor
- The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Véronique Izard
- Integrative Neuroscience and Cognition Center, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; CNRS UMR 8002, 45 rue des Saints-Pères, 75006 Paris, France
| | - Amir Amedi
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel; The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Crollen V, Collignon O. How visual is the « number sense »? Insights from the blind. Neurosci Biobehav Rev 2020; 118:290-297. [PMID: 32711006 DOI: 10.1016/j.neubiorev.2020.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Is vision a necessary building block for the foundations of mathematical cognition? A straightforward model to test the causal role visual experience plays in the development of numerical abilities is to study people born without sight. In this review we will demonstrate that congenitally blind people can develop numerical abilities that equal or even surpass those of sighted individuals, despite representing numbers using a qualitatively different representational format. We will also show that numerical thinking in blind people maps onto regions typically involved in visuo-spatial processing in the sighted, highlighting how intrinsic computational biases may constrain the reorganization of numerical networks in case of early visual deprivation. More generally, we will illustrate how the study of arithmetic abilities in congenitally blind people represents a compelling model to understand how sensory experience scaffolds the development of higher-level cognitive representations.
Collapse
Affiliation(s)
- Virginie Crollen
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium.
| | - Olivier Collignon
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium; Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
15
|
Kanjlia S, Pant R, Bedny M. Sensitive Period for Cognitive Repurposing of Human Visual Cortex. Cereb Cortex 2020; 29:3993-4005. [PMID: 30418533 DOI: 10.1093/cercor/bhy280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Studies of sensory loss are a model for understanding the functional flexibility of human cortex. In congenital blindness, subsets of visual cortex are recruited during higher-cognitive tasks, such as language and math tasks. Is such dramatic functional repurposing possible throughout the lifespan or restricted to sensitive periods in development? We compared visual cortex function in individuals who lost their vision as adults (after age 17) to congenitally blind and sighted blindfolded adults. Participants took part in resting-state and task-based fMRI scans during which they solved math equations of varying difficulty and judged the meanings of sentences. Blindness at any age caused "visual" cortices to synchronize with specific frontoparietal networks at rest. However, in task-based data, visual cortices showed regional specialization for math and language and load-dependent activity only in congenital blindness. Thus, despite the presence of long-range functional connectivity, cognitive repurposing of human cortex is limited by sensitive periods.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rashi Pant
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Babai R, Lahav O. Interference in geometry among people who are blind. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 96:103517. [PMID: 31783275 DOI: 10.1016/j.ridd.2019.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Geometry, a central branch of mathematics, is challenging for schoolchildren. Studies have shown that, when comparing perimeters of geometrical shapes, many sighted participants experience interference from the area variable, possibly stemming from the visual differences between the geometrical shapes. Accordingly, we hypothesized that such interference would not be observed in participants who are blind, who use the tactile modality to detect the properties of shapes. METHODS Thirty participants, 15 who are blind and 15 with sight, explored pairs of geometrical shapes tactilely or visually, respectively, and compared areas and perimeters. RESULTS AND CONCLUSIONS Surprisingly, accuracy and response time findings suggested that the two groups had a similar pattern of performance, and hence that area also interferes in comparison of perimeters among people who are blind.
Collapse
Affiliation(s)
- Reuven Babai
- Department of Mathematics, Science and Technology Education, The Constantiner School of Education, Tel Aviv University, Tel Aviv, 6997801, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Orly Lahav
- Department of Mathematics, Science and Technology Education, The Constantiner School of Education, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
17
|
Wahyuningsih S, Qohar A, Satyananda D, Atan NA. Visual thinking profile of mathematics students in graph theory problem solving process. 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES 2020. [DOI: 10.1063/5.0000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|