1
|
Chase J, Xia L, Tai LH, Lin WC, Collins AGE, Wilbrecht L. Adolescent and adult mice use both incremental reinforcement learning and short term memory when learning concurrent stimulus-action associations. PLoS Comput Biol 2024; 20:e1012667. [PMID: 39715285 PMCID: PMC11706416 DOI: 10.1371/journal.pcbi.1012667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/07/2025] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Computational modeling has revealed that human research participants use both rapid working memory (WM) and incremental reinforcement learning (RL) (RL+WM) to solve a simple instrumental learning task, relying on WM when the number of stimuli is small and supplementing with RL when the number of stimuli exceeds WM capacity. Inspired by this work, we examined which learning systems and strategies are used by adolescent and adult mice when they first acquire a conditional associative learning task. In a version of the human RL+WM task translated for rodents, mice were required to associate odor stimuli (from a set of 2 or 4 odors) with a left or right port to receive reward. Using logistic regression and computational models to analyze the first 200 trials per odor, we determined that mice used both incremental RL and stimulus-insensitive, one-back strategies to solve the task. While these one-back strategies may be a simple form of short-term or working memory, they did not approximate the boost to learning performance that has been observed in human participants using WM in a comparable task. Adolescent and adult mice also showed comparable performance, with no change in learning rate or softmax beta parameters with adolescent development and task experience. However, reliance on a one-back perseverative, win-stay strategy increased with development in males in both odor set sizes, but was not dependent on gonadal hormones. Our findings advance a simple conditional associative learning task and new models to enable the isolation and quantification of reinforcement learning alongside other strategies mice use while learning to associate stimuli with rewards within a single behavioral session. These data and methods can inform and aid comparative study of reinforcement learning across species.
Collapse
Affiliation(s)
- Juliana Chase
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| | - Liyu Xia
- Department of Mathematics, University of California, Berkeley, Berkeley, California, United States of America
| | - Lung-Hao Tai
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne G. E. Collins
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Neuroscience, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
2
|
Shin HS, Lee SH, Moon HJ, So YH, Jang HJ, Lee KH, Ahn C, Jung EM. Prolonged stress response induced by chronic stress and corticosterone exposure causes adult neurogenesis inhibition and astrocyte loss in mouse hippocampus. Brain Res Bull 2024; 208:110903. [PMID: 38367676 DOI: 10.1016/j.brainresbull.2024.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Chronic stress is a pervasive and complex issue that contributes significantly to various mental and physical health disorders. Using the previously established chronic unpredictable stress (CUS) model, which simulates human stress situations, it has been shown that chronic stress induces major depressive disorder (MDD) and memory deficiency. However, this established model is associated with several drawbacks, such as limited research reproducibility and the inability to sustain stress response. To resolve these issues, we developed a new CUS model (CUS+C) that included exogenous corticosterone exposure to induce continuous stress response. Thereafter, we evaluated the effect of this new model on brain health. Thus, we observed that the use of the CUS+C model decreased body and brain weight gain and induced an uncontrolled coat state as well as depressive-like behavior in adult mice. It also impaired learning memory function and cognitive abilities, reduced adult hippocampal neurogenesis as well as the number of hippocampal astrocytes, and downregulated glial fibrillary acidic protein expression in the brains of adult mice. These findings can promote the utilization and validity of the animal stress model and provide new information for the treatment of chronic stress-induced depressive and memory disorders.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hyeon Jung Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
3
|
Lang B, Kahnau P, Hohlbaum K, Mieske P, Andresen NP, Boon MN, Thöne-Reineke C, Lewejohann L, Diederich K. Challenges and advanced concepts for the assessment of learning and memory function in mice. Front Behav Neurosci 2023; 17:1230082. [PMID: 37809039 PMCID: PMC10551171 DOI: 10.3389/fnbeh.2023.1230082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanisms underlying the formation and retrieval of memories are still an active area of research and discussion. Manifold models have been proposed and refined over the years, with most assuming a dichotomy between memory processes involving non-conscious and conscious mechanisms. Despite our incomplete understanding of the underlying mechanisms, tests of memory and learning count among the most performed behavioral experiments. Here, we will discuss available protocols for testing learning and memory using the example of the most prevalent animal species in research, the laboratory mouse. A wide range of protocols has been developed in mice to test, e.g., object recognition, spatial learning, procedural memory, sequential problem solving, operant- and fear conditioning, and social recognition. Those assays are carried out with individual subjects in apparatuses such as arenas and mazes, which allow for a high degree of standardization across laboratories and straightforward data interpretation but are not without caveats and limitations. In animal research, there is growing concern about the translatability of study results and animal welfare, leading to novel approaches beyond established protocols. Here, we present some of the more recent developments and more advanced concepts in learning and memory testing, such as multi-step sequential lockboxes, assays involving groups of animals, as well as home cage-based assays supported by automated tracking solutions; and weight their potential and limitations against those of established paradigms. Shifting the focus of learning tests from the classical experimental chamber to settings which are more natural for rodents comes with a new set of challenges for behavioral researchers, but also offers the opportunity to understand memory formation and retrieval in a more conclusive way than has been attainable with conventional test protocols. We predict and embrace an increase in studies relying on methods involving a higher degree of automatization, more naturalistic- and home cage-based experimental setting as well as more integrated learning tasks in the future. We are confident these trends are suited to alleviate the burden on animal subjects and improve study designs in memory research.
Collapse
Affiliation(s)
- Benjamin Lang
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Pia Kahnau
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Paul Mieske
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niek P. Andresen
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany
| | - Marcus N. Boon
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Modeling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Lars Lewejohann
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kai Diederich
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
4
|
Seifried L, Soleimanpour E, Dieterich DC, Fendt M. Cognitive Flexibility in Mice: Effects of Puberty and Role of NMDA Receptor Subunits. Cells 2023; 12:cells12091212. [PMID: 37174612 PMCID: PMC10177518 DOI: 10.3390/cells12091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Cognitive flexibility refers to the ability to adapt flexibly to changing circumstances. In laboratory mice, we investigated whether cognitive flexibility is higher in pubertal mice than in adult mice, and whether this difference is related to the expression of distinct NMDA receptor subunits. Using the attentional set shifting task as a measure of cognitive flexibility, we found that cognitive flexibility was increased during puberty. This difference was more pronounced in female pubertal mice. Further, the GluN2A subunit of the NMDA receptor was more expressed during puberty than after puberty. Pharmacological blockade of GluN2A reduced the cognitive flexibility of pubertal mice to adult levels. In adult mice, the expression of GluN2A, GluN2B, and GluN2C in the orbitofrontal cortex correlated positively with performance in the attentional set shifting task, whereas in pubertal mice this was only the case for GluN2C. In conclusion, the present study confirms the observation in humans that cognitive flexibility is higher during puberty than in adulthood. Future studies should investigate whether NMDA receptor subunit-specific agonists are able to rescue deficient cognitive flexibility, and whether they have the potential to be used in human diseases with deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Lisa Seifried
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
- Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
- Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| |
Collapse
|
5
|
Kraeuter AK. The use of integrated behavioural z-scoring in behavioural neuroscience - A perspective article. J Neurosci Methods 2023; 384:109751. [PMID: 36435327 DOI: 10.1016/j.jneumeth.2022.109751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Complex pathophysiology in psychiatric disorders results in difficulties interpreting pre-clinical data. Guilloux et al. (2011b), proposed an integrated behavioural z-scoring procedure to improve the predictive validity of animal models by converging evidence similarly used to diagnose mental health conditions in humans. Here, I set out to give a brief review of the current methodology and literature using integrated behavioural z-scoring. Secondly, I will discuss the benefits and downfalls of integrated behavioural z-scoring and its potential future applications. Integrated behavioural z-scoring is a methodology used most frequently within animal models of depression and anxiety. Here, I am suggesting broadening the application of integrated behavioural z-scoring beyond the field of depression and anxiety to a three-step methodology to obtain disease-specific behavioural z-scores (i.e Schizophrenia index, Alzheimer's disease index) to aid translatability and interpretation of data. Lastly, I suggest integrating not only behaviour but also biological variables to create converging psychological and physiological evidence to sustain face and construct validity, while improving predict validity.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Eckstein MK, Master SL, Dahl RE, Wilbrecht L, Collins AGE. Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal. Dev Cogn Neurosci 2022; 55:101106. [PMID: 35537273 PMCID: PMC9108470 DOI: 10.1016/j.dcn.2022.101106] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
During adolescence, youth venture out, explore the wider world, and are challenged to learn how to navigate novel and uncertain environments. We investigated how performance changes across adolescent development in a stochastic, volatile reversal-learning task that uniquely taxes the balance of persistence and flexibility. In a sample of 291 participants aged 8-30, we found that in the mid-teen years, adolescents outperformed both younger and older participants. We developed two independent cognitive models, based on Reinforcement learning (RL) and Bayesian inference (BI). The RL parameter for learning from negative outcomes and the BI parameters specifying participants' mental models were closest to optimal in mid-teen adolescents, suggesting a central role in adolescent cognitive processing. By contrast, persistence and noise parameters improved monotonically with age. We distilled the insights of RL and BI using principal component analysis and found that three shared components interacted to form the adolescent performance peak: adult-like behavioral quality, child-like time scales, and developmentally-unique processing of positive feedback. This research highlights adolescence as a neurodevelopmental window that can create performance advantages in volatile and uncertain environments. It also shows how detailed insights can be gleaned by using cognitive models in new ways.
Collapse
Affiliation(s)
| | | | - Ronald E Dahl
- Institute of Human Development, 2121 Berkeley Way West, USA
| | - Linda Wilbrecht
- Department of Psychology, 2121 Berkeley Way West, USA; Helen Wills Neuroscience Institute, 175 Li Ka Shing Center, Berkeley, CA 94720, USA
| | | |
Collapse
|
7
|
Making sense of strengths and weaknesses observed in adolescent lab rodents. Curr Opin Psychol 2022; 45:101297. [DOI: 10.1016/j.copsyc.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
|
8
|
Ciampoli M, Scheggia D, Papaleo F. Automatic Intra-/Extra-Dimensional Attentional Set-Shifting Task in Adolescent Mice. Front Behav Neurosci 2021; 15:704684. [PMID: 34349628 PMCID: PMC8326460 DOI: 10.3389/fnbeh.2021.704684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a developmental period crucial for the maturation of higher-order cognitive functions. Indeed, adolescence deficits in executive functions are strong predictors of increased vulnerability to several mental disabilities later in life. Here, we tested adolescent mice in a fully-automated attentional set-shifting task equivalent to the humans' Wisconsin Card Sorting Test (WCST) and the Cambridge Neuropsychological Test Automated Battery Intra-/Extra-Dimensional set-shift task (ID/ED). Compared to an adult, adolescent mice required more time to complete the task (≈16 days), and a higher percentage failed to finish the entire task. Nevertheless, adolescent mice completing this demanding task showed an increased effort in solving the extradimensional shift stage (EDS) compared to previous stages. Moreover, we found that this paradigm can be used to detect early cognitive dysfunctions in adolescent genetically modified mice. Thus, this automatic paradigm provides a further tool to assess attentional control in adolescent mice, and the development of dysfunctional executive functions from adolescence to adulthood.
Collapse
Affiliation(s)
- Mariasole Ciampoli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Diego Scheggia
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genoa, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Cardenas A, Papadogiannis A, Dimitrov E. The role of medial prefrontal cortex projections to locus ceruleus in mediating the sex differences in behavior in mice with inflammatory pain. FASEB J 2021; 35:e21747. [PMID: 34151467 DOI: 10.1096/fj.202100319rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
We tested the hypothesis that the cognitive impairment associated with inflammatory pain may result from dysregulation of the top-down control of locus ceruleus's (LC) activity by the medial prefrontal cortex (mPFC). Injection of complete Freund's adjuvant (CFA) served as a model for inflammatory pain. The CFA injection decreased the thermal thresholds in both sexes but only the male mice showed increased anxiety-like behavior and diminished cognition, while the females were not affected. Increased calcium fluorescence, a marker for neuronal activity, was detected by photometry in the mPFC of males but not in females with CFA. Next, while chemogenetic inhibition of the projections from the mPFC to the LC improved the object recognition memory of males with pain, the inhibition of the mPFC to LC pathway in female mice produced anxiolysis and spatial memory deficits. The behavior results prompted us to compare the reciprocal innervation of mPFC and LC between the sexes. We used an anterograde transsynaptic tagging technique, which relies on postsynaptic cre transfer, to assess the innervation of LC by mPFC efferents. The males showed a higher rate of postsynaptic cre transfer into LC neurons from mPFC efferents than the females. And vice versa, a retrograde tracing experiment demonstrated that LC to mPFC projection neurons were more numerous in females when compared to males. In conclusion, we provide evidence that subtle differences in the reciprocal neuronal circuit between the LC and mPFC may contribute to sex differences associated with the adverse cognitive effects of inflammatory pain.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexander Papadogiannis
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
10
|
Lintas A, Sánchez-Campusano R, Villa AEP, Gruart A, Delgado-García JM. Operant conditioning deficits and modified local field potential activities in parvalbumin-deficient mice. Sci Rep 2021; 11:2970. [PMID: 33536607 PMCID: PMC7859233 DOI: 10.1038/s41598-021-82519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Altered functioning of GABAergic interneurons expressing parvalbumin (PV) in the basal ganglia-thalamo-cortical circuit are likely to be involved in several human psychiatric disorders characterized by deficits in attention and sensory gating with dysfunctional decision-making behavior. However, the contribution of these interneurons in the ability to acquire demanding learning tasks remains unclear. Here, we combine an operant conditioning task with local field potentials simultaneously recorded in several nuclei involved in reward circuits of wild-type (WT) and PV-deficient (PVKO) mice, which are characterized by changes in firing activity of PV-expressing interneurons. In comparison with WT mice, PVKO animals presented significant deficits in the acquisition of the selected learning task. Recordings from prefrontal cortex, nucleus accumbens (NAc) and hippocampus showed significant decreases of the spectral power in beta and gamma bands in PVKO compared with WT mice particularly during the performance of the operant conditioning task. From the first to the last session, at all frequency bands the spectral power in NAc tended to increase in WT and to decrease in PVKO. Results indicate that PV deficiency impairs signaling necessary for instrumental learning and the recognition of natural rewards.
Collapse
Affiliation(s)
- Alessandra Lintas
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland.
| | - Raudel Sánchez-Campusano
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - Alessandro E P Villa
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - José M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| |
Collapse
|
11
|
Huang K, Hu Y, Sun Y, Yu Z, Liu W, Zhu P, Tao F. Elective caesarean delivery and offspring’s cognitive impairment: Implications of methylation alteration in hippocampus glucocorticoid signaling genes. Brain Res Bull 2019; 144:108-121. [DOI: 10.1016/j.brainresbull.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
|
12
|
Sun MK. Executive functioning: perspectives on neurotrophic activity and pharmacology. Behav Pharmacol 2018; 29:592-604. [PMID: 30179884 DOI: 10.1097/fbp.0000000000000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Executive functioning is a high-level cognitive ability, regulating other abilities and behaviors to achieve desired goals. A typical executive task can be defined as the capacity to maintain one's attention on the current task, that is, responding only to the correct but not to distractive stimuli. Impairments of executive functions, or executive dysfunctions, have a growing impact on everyday life and academic achievement and are usually an early feature, and one of the core features, in brain injury and memory and behavioral disorders. Furthermore, emerging evidence indicates that memory therapeutics cannot achieve their clinical benefits in cognition if executive dysfunction is not effectively and simultaneously treated. Improvement of executive functions might be achieved through targeting some signaling pathways in the brain, including the brain-derived neurotrophic factor signaling pathways. These agents may be useful either as stand-alone interventions for patients with executive dysfunction and/or psychiatric and memory disorders or as essential adjuncts to drugs that target the underlying pathology in various brain injury and memory and behavioral disorders.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia, USA
| |
Collapse
|
13
|
Adolescent Stress Disrupts the Maturation of Anxiety-related Behaviors and Alters the Developmental Trajectory of the Prefrontal Cortex in a Sex- and Age-specific Manner. Neuroscience 2018; 390:265-277. [PMID: 30179643 DOI: 10.1016/j.neuroscience.2018.08.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022]
Abstract
Adolescence is a window of vulnerability to environmental factors such as chronic stress that can disrupt brain development and cause long-lasting behavioral dysfunction, as seen in disorders like depression, anxiety, and schizophrenia. There are also sex differences in the prevalence of these disorders across the lifespan. However, the mechanisms of how adolescent stress contributes to neuropsychiatric phenotypes are not well understood, nor are the mediating effects of sex. We hypothesize that adolescent stress disrupts the γ-aminobutyric acid (GABA) system in the prefrontal cortex (PFC) in a sex-specific manner, as this system matures during adolescence and plays an important role in cognitive and emotional functioning. We exposed male and female mice to unpredictable chronic mild stress (UCMS) during adolescence (post-natal day [PND] 28-42). One cohort underwent testing for PFC-related behavioral and molecular changes 24 h following the cessation of stress (late adolescence); a separate cohort was tested approximately 2.5 weeks after the end of UCMS (adulthood). We observed an age-related decline in anxiety-like behaviors in control mice, while mice stressed in adolescence showed elevated anxiety-like behaviors in both adolescence and adulthood. PFC-dependent cognitive functioning was also impaired in adult males stressed in adolescence. Adolescent stress disrupted expression patterns of parvalbumin (PV) and perineuronal nets (PNNs) in the PFC, as well as NMDA receptor subunit composition, in a sex- and age-specific manner. The findings presented here contribute to understanding how adolescent stress may lead to neuropsychiatric disorders such as anxiety by disrupting the development of the PFC and emotional behaviors.
Collapse
|