1
|
Ghasoub M, Scholten C, Geeraert B, Long X, Joshi S, Wedderburn CJ, Roos A, Subramoney S, Hoffman N, Narr K, Woods R, Zar HJ, Stein DJ, Donald K, Lebel C. The Effects of Prenatal Alcohol Exposure on Structural Brain Connectivity and Early Language Skills in a South African Birth Cohort. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00161. [PMID: 40201449 PMCID: PMC11977823 DOI: 10.1162/nol_a_00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025]
Abstract
Prenatal alcohol exposure (PAE) is associated with various neurological, behavioral and cognitive deficits, including reading and language. Previous studies have demonstrated altered white matter in children and adolescents with PAE and associations with reading and language performance in children aged 3 years and older. However, little research has focused on the toddler years, despite this being a critical period for behavioral and neural development. We aimed to determine associations between structural brain connectivity and early language skills in toddlers, in the context of PAE. Eighty-eight toddlers (2-3 yr, 56 males), 23 of whom had PAE, underwent a diffusion MRI scan in Cape Town, South Africa, with language skills assessed using the Expressive and Receptive Communication subtests from the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Diffusion scans were preprocessed to create a structural network of regions associated with language skills using graph theory analysis. Linear regression models were used to examine moderation effects of PAE on structural network properties and language skills. Toddlers with PAE had higher structural connectivity in language networks than unexposed children. PAE moderated the relationship between structural network properties and Expressive Communication scores. None of the effects survived correction for multiple comparisons. Our findings show weak moderation effects of PAE on structural language network properties and language skills. Our study sheds light on the structural connectivity correlates of early language skills in an understudied population during a critical neurodevelopmental period, laying the foundation for future research.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Chloe Scholten
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Bryce Geeraert
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Xiangyu Long
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catherine J. Wedderburn
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sivenesi Subramoney
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katherine Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Liu Z, Zhou Y, Hao C, Ma N. Alteration in neural oscillatory activity and phase-amplitude coupling after sleep deprivation: Evidence for impairment and compensation effects. J Sleep Res 2025; 34:e14264. [PMID: 38853286 DOI: 10.1111/jsr.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Insufficient sleep can significantly affect vigilance and increase slow-wave electroencephalographic power as homeostatic sleep pressure accumulates. Phase-amplitude coupling is involved in regulating the spatiotemporal integration of physiological processes. This study aimed to examine the functional associations of resting-state electroencephalographic power and delta/theta-gamma phase-amplitude coupling from the prefrontal cortex (PFC) to posterior regions with vigilance performance after sleep deprivation. Forty-six healthy adults underwent 24-hr sleep deprivation with resting-state electroencephalographic recordings, and vigilant attention was measured using the Psychomotor Vigilance Task. Power spectral and phase-amplitude coupling analyses were conducted, and correlation analysis was utilized to reveal the relationship between electroencephalographic patterns and changes in vigilance resulting from sleep deprivation. Sleep deprivation significantly declined vigilance performance, accompanied by increased resting-state electroencephalographic power in all bands and delta/theta-gamma phase-amplitude coupling. The increased theta activity in centro-parieto-occipital areas significantly correlated with decreased mean and slowest response speed. Conversely, the increased delta-low gamma and theta-high gamma phase-amplitude couplings negatively correlated with the deceleration of the fastest Psychomotor Vigilance Task reaction times. These findings suggest that sleep deprivation affects vigilance by altering electroencephalographic spectral power and information communication across frequency bands in different brain regions. The distinct effects of increased theta power and delta/theta-gamma phase-amplitude coupling might reflect the impairment and compensation of sleep deprivation on vigilance performance, respectively.
Collapse
Affiliation(s)
- Zehui Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Yuqi Zhou
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Lou C, Cross AM, Peters L, Ansari D, Joanisse MF. Patterns of the left thalamus embedding into the connectome associated with reading skills in children with reading disabilities. Netw Neurosci 2024; 8:1507-1528. [PMID: 39735512 PMCID: PMC11675173 DOI: 10.1162/netn_a_00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/12/2024] [Indexed: 12/31/2024] Open
Abstract
We examined how thalamocortical connectivity structure reflects children's reading performance. Diffusion-weighted MRI at 3 T and a series of reading measures were collected from 64 children (33 girls) ages 8-14 years with and without dyslexia. The topological properties of the left and right thalamus were computed based on the whole-brain white matter network and a hub-attached reading network, and were correlated with scores on several tests of children's reading and reading-related abilities. Significant correlations between topological metrics of the left thalamus and reading scores were observed only in the hub-attached reading network. Local efficiency was negatively correlated with rapid automatized naming. Transmission cost was positively correlated with phonemic decoding, and this correlation was independent of network efficiency scores; follow-up analyses further demonstrated that this effect was specific to the pulvinar and mediodorsal nuclei of the left thalamus. We validated these results using an independent dataset and demonstrated that that the relationship between thalamic connectivity and phonemic decoding was specifically robust. Overall, the results highlight the role of the left thalamus and thalamocortical network in understanding the neurocognitive bases of skilled reading and dyslexia in children.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Special Education, Peabody College of Education, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
| | - Alexandra M. Cross
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada
| | - Lien Peters
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Faculty of Psychology and Educational Science, Department of Experimental Clinical and Health Psychology, Research in Developmental Disorder Lab, Ghent University, Ghent, Belgium
| | - Daniel Ansari
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Faculty of Education, The University of Western Ontario, London, Canada
| | - Marc F. Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
4
|
Lou C, Joanisse MF. Control energy detects discrepancies in good vs. poor readers' structural-functional coupling during a rhyming task. Neuroimage 2024; 303:120941. [PMID: 39561914 DOI: 10.1016/j.neuroimage.2024.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024] Open
Abstract
Neuroimaging studies have identified functional and structural brain circuits that support reading. However, much less is known about how reading-related functional dynamics are constrained by white matter structure. Network control theory proposes that cortical brain dynamics are linearly determined by the white matter connectome, using control energy to evaluate the difficulty of the transition from one cognitive state to another. Here we apply this approach to linking brain dynamics with reading ability and disability in school-age children. A total of 51 children ages 8.25 -14.6 years performed an in-scanner rhyming task in visual and auditory modalities, with orthographic (spelling) and phonological (rhyming) similarity manipulated across trials. White matter structure and fMRI activation were used conjointly to compute the control energy of the reading network in each condition relative to a null fixation state. We then tested differences in control energy across trial types, finding higher control energy during non-word trials than word trials, and during incongruent trials than congruent trials. ROI analyses further showed a dissociation between control energy of the left fusiform and superior temporal gyrus depending on stimulus modality, with higher control energy for visual modalities in fusiform and higher control energy for auditory modalities in STG. Together, this study highlights that control theory can explain variations on cognitive demands in higher-level abilities such as reading, beyond what can be inferred from either functional or structural MRI measures alone.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Special Education, Peabody College of Education, Vanderbilt University, Nashville, TN, USA; Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada.
| | - Marc F Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
5
|
Ghasoub M, Perdue M, Long X, Donnici C, Kar P, Gibbard B, Tortorelli C, McMorris C, Dewey D, Lebel C. The brain's structural connectivity and pre-reading abilities in young children with prenatal alcohol exposure. Dev Cogn Neurosci 2024; 70:101467. [PMID: 39486389 PMCID: PMC11564048 DOI: 10.1016/j.dcn.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Children with prenatal alcohol exposure (PAE) may develop a range of neurological and behavioral deficits, including reading and language disorders. Studying the brain's structural connectivity and its relationship to pre-reading/reading skills in young children with PAE can help understand the roots of reading deficits associated with PAE. 363 diffusion MRI scans from 135 children (114 scans from 53 children with PAE) were collected between ages 3-7 years. Children completed NEPSY-II Phonological Processing and Speeded Naming to assess pre-reading skills at each scan. Structural brain network properties were assessed in 16 regions from both hemispheres using graph theory. Linear mixed models were used to account for repeated measures within participants. Children with PAE had significantly lower pre-reading scores than unexposed children, and significantly lower graph theory metrics across bilateral reading networks. Moreover, PAE significantly moderated the associations between Phonological Processing and global efficiency and nodal degree in the bilateral and left hemisphere reading networks, such that children with PAE had stronger associations than unexposed controls. No significant associations were found for Speeded Naming. Our results suggest that brain alterations may underlie early pre-reading difficulties in children with PAE.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Meaghan Perdue
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada
| | - Xiangyu Long
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada
| | - Claire Donnici
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Preeti Kar
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Ben Gibbard
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Pediatrics, University of Calgary, Canada
| | | | - Carly McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Werklund School of Education, University of Calgary, Canada
| | - Deborah Dewey
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Pediatrics, University of Calgary, Canada; Departments of Community Health Sciences, University of Calgary, Canada
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Departments of Radiology, University of Calgary, Canada.
| |
Collapse
|
6
|
Zhou Y, Long Y. Sex differences in human brain networks in normal and psychiatric populations from the perspective of small-world properties. Front Psychiatry 2024; 15:1456714. [PMID: 39238939 PMCID: PMC11376280 DOI: 10.3389/fpsyt.2024.1456714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Females and males are known to be different in the prevalences of multiple psychiatric disorders, while the underlying neural mechanisms are unclear. Based on non-invasive neuroimaging techniques and graph theory, many researchers have tried to use a small-world network model to elucidate sex differences in the brain. This manuscript aims to compile the related research findings from the past few years and summarize the sex differences in human brain networks in both normal and psychiatric populations from the perspective of small-world properties. We reviewed published reports examining altered small-world properties in both the functional and structural brain networks between males and females. Based on four patterns of altered small-world properties proposed: randomization, regularization, stronger small-worldization, and weaker small-worldization, we found that current results point to a significant trend toward more regularization in normal females and more randomization in normal males in functional brain networks. On the other hand, there seems to be no consensus to date on the sex differences in small-world properties of the structural brain networks in normal populations. Nevertheless, we noticed that the sample sizes in many published studies are small, and future studies with larger samples are warranted to obtain more reliable results. Moreover, the number of related studies conducted in psychiatric populations is still limited and more investigations might be needed. We anticipate that these conclusions will contribute to a deeper understanding of the sex differences in the brain, which may be also valuable for developing new methods in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Yingying Zhou
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Martins B, Baba MY, Dimateo EM, Costa LF, Camara AS, Lukasova K, Nucci MP. Investigating Dyslexia through Diffusion Tensor Imaging across Ages: A Systematic Review. Brain Sci 2024; 14:349. [PMID: 38672001 PMCID: PMC11047980 DOI: 10.3390/brainsci14040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Dyslexia is a neurodevelopmental disorder that presents a deficit in accuracy and/or fluency while reading or spelling that is not expected given the level of cognitive functioning. Research indicates brain structural changes mainly in the left hemisphere, comprising arcuate fasciculus (AF) and corona radiata (CR). The purpose of this systematic review is to better understand the possible methods for analyzing Diffusion Tensor Imaging (DTI) data while accounting for the characteristics of dyslexia in the last decade of the literature. Among 124 articles screened from PubMed and Scopus, 49 met inclusion criteria, focusing on dyslexia without neurological or psychiatric comorbidities. Article selection involved paired evaluation, with a third reviewer resolving discrepancies. The selected articles were analyzed using two topics: (1) a demographic and cognitive assessment of the sample and (2) DTI acquisition and analysis. Predominantly, studies centered on English-speaking children with reading difficulties, with preserved non-verbal intelligence, attention, and memory, and deficits in reading tests, rapid automatic naming, and phonological awareness. Structural differences were found mainly in the left AF in all ages and in the bilateral superior longitudinal fasciculus for readers-children and adults. A better understanding of structural brain changes of dyslexia and neuroadaptations can be a guide for future interventions.
Collapse
Affiliation(s)
- Bruce Martins
- Laboratório de Investigação Médica em Neurorradiologia—LIM44—Hospital das Clínicas da Faculdade Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (B.M.); (M.Y.B.); (E.M.D.)
| | - Mariana Yumi Baba
- Laboratório de Investigação Médica em Neurorradiologia—LIM44—Hospital das Clínicas da Faculdade Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (B.M.); (M.Y.B.); (E.M.D.)
| | - Elisa Monteiro Dimateo
- Laboratório de Investigação Médica em Neurorradiologia—LIM44—Hospital das Clínicas da Faculdade Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (B.M.); (M.Y.B.); (E.M.D.)
| | - Leticia Fruchi Costa
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC, Santo André 09210-580, Brazil; (L.F.C.); (A.S.C.); (K.L.)
| | - Aila Silveira Camara
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC, Santo André 09210-580, Brazil; (L.F.C.); (A.S.C.); (K.L.)
| | - Katerina Lukasova
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC, Santo André 09210-580, Brazil; (L.F.C.); (A.S.C.); (K.L.)
| | - Mariana Penteado Nucci
- Laboratório de Investigação Médica em Neurorradiologia—LIM44—Hospital das Clínicas da Faculdade Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (B.M.); (M.Y.B.); (E.M.D.)
| |
Collapse
|
8
|
Ghasoub M, Perdue M, Long X, Donnici C, Dewey D, Lebel C. Structural neural connectivity correlates with pre-reading abilities in preschool children. Dev Cogn Neurosci 2024; 65:101332. [PMID: 38171053 PMCID: PMC10793080 DOI: 10.1016/j.dcn.2023.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Pre-reading abilities are predictive of later reading ability and can be assessed before reading begins. However, the neural correlates of pre-reading abilities in young children are not fully understood. To address this, we examined 246 datasets collected in an accelerated longitudinal design from 81 children aged 2-6 years (age = 4.6 ± 0.98 years, 47 males). Children completed pre-reading assessments (NEPSY-II Phonological Processing and Speeded Naming) and underwent a diffusion magnetic resonance imaging (MRI) scan to assess white matter connectivity. We defined a core neural network of reading and language regions based on prior literature, and structural connections within this network were assessed using graph theory analysis. Linear mixed models accounting for repeated measures were used to test associations between children's pre-reading performance and graph theory measures for the whole bilateral reading network and each hemisphere separately. Phonological Processing scores were positively associated with global efficiency, local efficiency, and clustering coefficient in the bilateral and right hemisphere networks, as well as local efficiency and clustering coefficient in the left hemisphere network. Our findings provide further evidence that structural neural correlates of Phonological Processing emerge in early childhood, before and during early reading instruction.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada
| | - Meaghan Perdue
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Radiology, University of Calgary, Canada
| | - Xiangyu Long
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Radiology, University of Calgary, Canada
| | | | - Deborah Dewey
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Pediatrics, University of Calgary, Canada; Community Health Sciences, University of Calgary, Canada
| | - Catherine Lebel
- Cumming School of Medicine, Canada; Hotchkiss Brain Institute, Canada; Alberta Children's Hospital Research Institute, Canada; Department of Radiology, University of Calgary, Canada.
| |
Collapse
|
9
|
Pan L, Mai Z, Wang J, Ma N. Altered vigilant maintenance and reorganization of rich-clubs in functional brain networks after total sleep deprivation. Cereb Cortex 2023; 33:1140-1154. [PMID: 35332913 DOI: 10.1093/cercor/bhac126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sleep deprivation strongly deteriorates the stability of vigilant maintenance. In previous neuroimaging studies of large-scale networks, neural variations in the resting state after sleep deprivation have been well documented, highlighting that large-scale networks implement efficient cognitive functions and attention regulation in a spatially hierarchical organization. However, alterations of neural networks during cognitive tasks have rarely been investigated. METHODS AND PURPOSES The present study used a within-participant design of 35 healthy right-handed adults and used task-based functional magnetic resonance imaging to examine the neural mechanism of attentional decline after sleep deprivation from the perspective of rich-club architecture during a psychomotor vigilance task. RESULTS We found that a significant decline in the hub disruption index was related to impaired vigilance due to sleep loss. The hierarchical rich-club architectures were reconstructed after sleep deprivation, especially in the default mode network and sensorimotor network. Notably, the relatively fast alert response compensation was correlated with the feeder organizational hierarchy that connects core (rich-club) and peripheral nodes. SIGNIFICANCES Our findings provide novel insights into understanding the relationship of alterations in vigilance and the hierarchical architectures of the human brain after sleep deprivation, emphasizing the significance of optimal collaboration between different functional hierarchies for regular attention maintenance.
Collapse
Affiliation(s)
- Leyao Pan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Zifeng Mai
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
10
|
EEG emotion recognition based on PLV-rich-club dynamic brain function network. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|