1
|
Duricy E, Durisko C, Fiez JA. The role of the intraparietal sulcus in numeracy: A review of parietal lesion cases. Behav Brain Res 2025; 482:115453. [PMID: 39892656 DOI: 10.1016/j.bbr.2025.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Prominent theories of numeracy link the intraparietal sulcus (IPS) to approximate representations of quantity that undergird basic math abilities. The goal of this review is to better understand the neural basis of mathematical cognition through the lens of acalculia, by identifying numeracy-focused single case studies of patients with parietal lesions and testing for causal relationships between numeracy impairments and the locus of parietal damage. A systematic literature review identified 27 single case studies with left parietal lesions and categorized administered tasks across four numeracy domains: Approximation, Calculation, Ordinality/Cardinality, and Transcoding. We compared published lesion images by drawing a sphere at the inferred center-of-mass and assigning each case to an anatomical group (IPS or Other Parietal damage) based on overlap with left IPS and original anatomical description. We performed Fisher's Exact Test to compare behavioral performance on each numeracy domain between the two groups. As an exploratory follow-up, we used Activation Likelihood Estimation (ALE) to identify sites of damage within parietal cortex preferentially associated with impairments in each domain. We found that Approximation impairments were significantly more frequent in the IPS group (p = .003). The exploratory ALE analysis revealed that only Approximation impairment cases significantly overlapped with the IPS, while impairments in other domains were localized to different regions of the parietal lobe. Based on the pattern of impairments shown across these cases, we conclude that damage to the left IPS is linked to impairments in approximation ability specifically. Our findings support theoretical claims linking IPS to magnitude representation, but do not provide evidence that IPS critically underpins performance across all numeracy tasks. Instead, our findings are more compatible with models of dissociable circuits of numerical processing within the parietal lobe.
Collapse
Affiliation(s)
- Erin Duricy
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Corrine Durisko
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julie A Fiez
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychology, and, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Hastings Iii WL, Willbrand EH, Kelly JP, Washington ST, Tameilau P, Sathishkumar RN, Maboudian SA, Parker BJ, Elliott MV, Johnson SL, Weiner KS. Emotion-related impulsivity is related to orbitofrontal cortical sulcation. Cortex 2024; 181:140-154. [PMID: 39541920 PMCID: PMC11681932 DOI: 10.1016/j.cortex.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 08/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Emotion-related impulsivity (ERI) describes the trait-like tendency toward poor self-control when experiencing strong emotions. ERI has been shown to be elevated across psychiatric disorders and predictive of the onset and worsening of psychiatric syndromes. Recent work has correlated ERI scores with the region-level neuroanatomical properties of the orbitofrontal cortex (OFC), but not posteromedial cortex (PMC). Informed by a growing body of research indicating that examining the morphology of specific cortical folds (sulci) can produce unique insights into behavioral outcomes, the present study modeled the association between ERI and the morphology of sulci within OFC and PMC, which is a finer scale than previously conducted. METHODS Analyses were conducted in a transdiagnostic sample of 118 adult individuals with a broad range of psychiatric syndromes. First, we manually defined over 4,000 sulci across 236 cerebral hemispheres. Second, we implemented a model-based LASSO regression to relate OFC sulcal morphology to ERI. Third, we tested whether effects were specific to OFC sulci, sulcal depth, and ERI (as compared to PMC sulci, sulcal gray matter thickness, and non-emotion-related impulsivity). RESULTS The LASSO regression revealed bilateral associations of ERI with the depths of eight OFC sulci. These effects were strongest for OFC sulci, sulcal depth, and ERI in comparison to PMC sulci, sulcal gray matter thickness, and non-emotion-related impulsivity. In addition, we identified a new transverse component of the olfactory sulcus in every hemisphere that is dissociable from the longitudinal component based on anatomical features and correlation with behavior, which could serve as a new transdiagnostic biomarker. CONCLUSIONS The results of this data-driven investigation provide greater neuroanatomical and neurodevelopmental specificity on how OFC is related to ERI. As such, findings link neuroanatomical characteristics to a trait that is highly predictive of psychopathology.
Collapse
Affiliation(s)
| | - Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Joseph P Kelly
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, IL USA.
| | - Sydney T Washington
- Department of Psychology, California State University, Fullerton, Fullerton, CA, USA.
| | - Phyllis Tameilau
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | | | - Samira A Maboudian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
| | - Matthew V Elliott
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Sheri L Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Bakhit M, Hiruta R, Iwatate K, Fujii M. The sulci of the lateral superior parietal lobule: anatomical overview and nomenclatural consideration. Cereb Cortex 2024; 34:bhae376. [PMID: 39385612 DOI: 10.1093/cercor/bhae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
Discrepancies in the terminology describing sulcal structures within the lateral superior parietal lobule prompted our comprehensive investigation to clarify their morphology and nomenclature. We reviewed literature from the 19th century to the present, focusing on the intraparietal sulcus, interparietal sulcus, superior parietal sulcus, transverse parietal sulcus, paroccipital sulcus, and transverse occipital sulcus. Additionally, we analyzed neuroimaging data from 40 healthy young adults and two cadavers. Our investigation revealed that the original term intraparietal sulcus, introduced by Sir Turner, described a complex structure comprising the inferior segment of the postcentral sulcus, a horizontally extending component into the occipital lobe, and the transverse occipital sulcus. We also found that the superior parietal sulcus is often synonymous with transverse parietal sulcus, the sulcus of Brissaud is an eponym that shall describe the paroccipital sulcus's dorsal parietal ramus, and the transverse occipital sulcus is the combination of the occipital rami of the paroccipital sulcus. Additionally, we identified an unnamed transverse segment of the intraparietal sulcus, the intraparietal sulcus-transverse. Based on these observations, we consider that the sulci of the lateral superior parietal lobule primarily include the intraparietal sulcus, with longitudinal and transverse segments, the transverse parietal sulcus of Brissaud, and the paroccipital sulcus of Wilder.
Collapse
Affiliation(s)
| | - Ryo Hiruta
- Department of Neurosurgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima-Shi, Fukushima 960-1295, Japan
| | - Kensho Iwatate
- Department of Neurosurgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima-Shi, Fukushima 960-1295, Japan
| | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima-Shi, Fukushima 960-1295, Japan
| |
Collapse
|
4
|
Bouhali F, Dubois J, Hoeft F, Weiner KS. Unique longitudinal contributions of sulcal interruptions to reading acquisition in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605574. [PMID: 39131390 PMCID: PMC11312548 DOI: 10.1101/2024.07.30.605574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A growing body of literature indicates strong associations between indentations of the cerebral cortex (i.e., sulci) and individual differences in cognitive performance. Interruptions, or gaps, of sulci (historically known as pli de passage) are particularly intriguing as previous work suggests that these interruptions have a causal effect on cognitive development. Here, we tested how the presence and morphology of sulcal interruptions in the left posterior occipitotemporal sulcus (pOTS) longitudinally impact the development of a culturally-acquired skill: reading. Forty-three children were successfully followed from age 5 in kindergarten, at the onset of literacy instruction, to ages 7 and 8 with assessments of cognitive, pre-literacy, and literacy skills, as well as MRI anatomical scans at ages 5 and 8. Crucially, we demonstrate that the presence of a left pOTS gap at 5 years is a specific and robust longitudinal predictor of better future reading skills in children, with large observed benefits on reading behavior ranging from letter knowledge to reading comprehension. The effect of left pOTS interruptions on reading acquisition accumulated through time, and was larger than the impact of benchmark cognitive and familial predictors of reading ability and disability. Finally, we show that increased local U-fiber white matter connectivity associated with such sulcal interruptions possibly underlie these behavioral benefits, by providing a computational advantage. To our knowledge, this is the first quantitative evidence supporting a potential integrative gray-white matter mechanism underlying the cognitive benefits of macro-anatomical differences in sulcal morphology related to longitudinal improvements in a culturally-acquired skill.
Collapse
Affiliation(s)
- Florence Bouhali
- Department of Psychiatry and Behavioral Sciences & Weil Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
- Aix-Marseille University, CNRS, CRPN, Marseille, France
| | - Jessica Dubois
- University Paris Cité, NeuroDiderot, INSERM, Paris, France
- University Paris-Saclay, NeuroSpin, UNIACT, CEA, France
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut Waterbury, Waterbury, CT, USA
| | - Kevin S. Weiner
- Department of Psychology, Department of Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Schwizer Ashkenazi S, Roell M, McCaskey U, Cachia A, Borst G, O'Gorman Tuura R, Kucian K. Are numerical abilities determined at early age? A brain morphology study in children and adolescents with and without developmental dyscalculia. Dev Cogn Neurosci 2024; 67:101369. [PMID: 38642426 PMCID: PMC11046253 DOI: 10.1016/j.dcn.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/17/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024] Open
Abstract
The intraparietal sulcus (IPS) has been associated with numerical processing. A recent study reported that the IPS sulcal pattern was associated with arithmetic and symbolic number abilities in children and adults. In the present study, we evaluated the link between numerical abilities and the IPS sulcal pattern in children with Developmental Dyscalculia (DD) and typically developing children (TD), extending previous analyses considering other sulcal features and the postcentral sulcus (PoCS). First, we confirm the longitudinal sulcal pattern stability of the IPS and the PoCS. Second, we found a lower proportion of left sectioned IPS and a higher proportion of a double-horizontal IPS shape bilaterally in DD compared to TD. Third, our analyses revealed that arithmetic is the only aspect of numerical processing that is significantly related to the IPS sulcal pattern (sectioned vs not sectioned), and that this relationship is specific to the left hemisphere. And last, correlation analyses of age and arithmetic in children without a sectioned left IPS indicate that although they may have an inherent disadvantage in numerical abilities, these may improve with age. Thus, our results indicate that only the left IPS sulcal pattern is related to numerical abilities and that other factors co-determine numerical abilities.
Collapse
Affiliation(s)
- Simone Schwizer Ashkenazi
- Neuropsychology, Dept. of Psychology, University of Zurich, Zurich, Switzerland; Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Margot Roell
- Université de Paris, LaPsyDÉ, CNRS, Paris F-75005, France
| | - Ursina McCaskey
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris F-75005, France; Université de Paris, Imaging biomarkers for brain development and disorders, UMR INSERM 1266, GHU Paris Psychiatrie & Neurosciences, Paris F-75005, France
| | - Gregoire Borst
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ruth O'Gorman Tuura
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Karin Kucian
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Willbrand EH, Tsai YH, Gagnant T, Weiner KS. Updating the sulcal landscape of the human lateral parieto-occipital junction provides anatomical, functional, and cognitive insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544284. [PMID: 38798426 PMCID: PMC11118496 DOI: 10.1101/2023.06.08.544284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent work has uncovered relationships between evolutionarily new small and shallow cerebral indentations, or sulci, and human behavior. Yet, this relationship remains unexplored in the lateral parietal cortex (LPC) and the lateral parieto-occipital junction (LPOJ). After defining thousands of sulci in a young adult cohort, we revised the previous LPC/LPOJ sulcal landscape to include four previously overlooked, small, shallow, and variable sulci. One of these sulci (ventral supralateral occipital sulcus, slocs-v) is present in nearly every hemisphere and is morphologically, architecturally, and functionally dissociable from neighboring sulci. A data-driven, model-based approach, relating sulcal depth to behavior further revealed that the morphology of only a subset of LPC/LPOJ sulci, including the slocs-v, is related to performance on a spatial orientation task. Our findings build on classic neuroanatomical theories and identify new neuroanatomical targets for future "precision imaging" studies exploring the relationship among brain structure, brain function, and cognitive abilities in individual participants.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Yi-Heng Tsai
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gagnant
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Santacroce F, Cachia A, Fragueiro A, Grande E, Roell M, Baldassarre A, Sestieri C, Committeri G. Human intraparietal sulcal morphology relates to individual differences in language and memory performance. Commun Biol 2024; 7:520. [PMID: 38698168 PMCID: PMC11065983 DOI: 10.1038/s42003-024-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.
Collapse
Affiliation(s)
- Federica Santacroce
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| | - Arnaud Cachia
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Agustina Fragueiro
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Margot Roell
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
8
|
Yao JK, Voorhies WI, Miller JA, Bunge SA, Weiner KS. Sulcal depth in prefrontal cortex: a novel predictor of working memory performance. Cereb Cortex 2023; 33:1799-1813. [PMID: 35589102 PMCID: PMC9977365 DOI: 10.1093/cercor/bhac173] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The neuroanatomical changes that underpin cognitive development are of major interest in neuroscience. Of the many aspects of neuroanatomy to consider, tertiary sulci are particularly attractive as they emerge last in gestation, show a protracted development after birth, and are either human- or hominoid-specific. Thus, they are ideal targets for exploring morphological-cognitive relationships with cognitive skills that also show protracted development such as working memory (WM). Yet, the relationship between sulcal morphology and WM is unknown-either in development or more generally. To fill this gap, we adopted a data-driven approach with cross-validation to examine the relationship between sulcal depth in lateral prefrontal cortex (LPFC) and verbal WM in 60 children and adolescents between ages 6 and 18. These analyses identified 9 left, and no right, LPFC sulci (of which 7 were tertiary) whose depth predicted verbal WM performance above and beyond the effect of age. Most of these sulci are located within and around contours of previously proposed functional parcellations of LPFC. This sulcal depth model outperformed models with age or cortical thickness. Together, these findings build empirical support for a classic theory that tertiary sulci serve as landmarks in association cortices that contribute to late-maturing human cognitive abilities.
Collapse
Affiliation(s)
- Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ 08540, United States
| | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Silvia A Bunge
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| |
Collapse
|
9
|
Boeken OJ, Markett S. Systems-level decoding reveals the cognitive and behavioral profile of the human intraparietal sulcus. FRONTIERS IN NEUROIMAGING 2023; 1:1074674. [PMID: 37555176 PMCID: PMC10406318 DOI: 10.3389/fnimg.2022.1074674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 08/10/2023]
Abstract
INTRODUCTION The human intraparietal sulcus (IPS) covers large portions of the posterior cortical surface and has been implicated in a variety of cognitive functions. It is, however, unclear how cognitive functions dissociate between the IPS's heterogeneous subdivisions, particularly in perspective to their connectivity profile. METHODS We applied a neuroinformatics driven system-level decoding on three cytoarchitectural distinct subdivisions (hIP1, hIP2, hIP3) per hemisphere, with the aim to disentangle the cognitive profile of the IPS in conjunction with functionally connected cortical regions. RESULTS The system-level decoding revealed nine functional systems based on meta-analytical associations of IPS subdivisions and their cortical coactivations: Two systems-working memory and numeric cognition-which are centered on all IPS subdivisions, and seven systems-attention, language, grasping, recognition memory, rotation, detection of motions/shapes and navigation-with varying degrees of dissociation across subdivisions and hemispheres. By probing the spatial overlap between systems-level co-activations of the IPS and seven canonical intrinsic resting state networks, we observed a trend toward more co-activation between hIP1 and the front parietal network, between hIP2 and hIP3 and the dorsal attention network, and between hIP3 and the visual and somatomotor network. DISCUSSION Our results confirm previous findings on the IPS's role in cognition but also point to previously unknown differentiation along the IPS, which present viable starting points for future work. We also present the systems-level decoding as promising approach toward functional decoding of the human connectome.
Collapse
Affiliation(s)
- Ole Jonas Boeken
- Department of Molecular Psychology, Institute for Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Investigating the association between variability in sulcal pattern and academic achievement. Sci Rep 2022; 12:12323. [PMID: 35854034 PMCID: PMC9296655 DOI: 10.1038/s41598-022-15335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Investigating how the brain may constrain academic achievement is not only relevant to understanding brain structure but also to providing insight into the origins of individual differences in these academic abilities. In this pre-registered study, we investigated whether the variability of sulcal patterns, a qualitative feature of the brain determined in-utero and not affected by brain maturation and learning, accounted for individual differences in reading and mathematics. Participants were 97 typically developing 10-year-olds. We examined (a) the association between the sulcal pattern of the IntraParietal Sulcus (IPS) and mathematical ability; (b) the association between the sulcal pattern of the Occipito Temporal Sulcus (OTS) and reading ability; and (c) the overlap and specificity of sulcal morphology of IPS and OTS and their associations with mathematics and reading. Despite its large sample, the present study was unable to replicate a previously observed relationship between the IPS sulcal pattern and mathematical ability and a previously observed association between the left posterior OTS sulcal pattern and reading. We found a weak association between right IPS sulcal morphology and symbolic number abilities and a weak association between left posterior OTS and reading. However, both these associations were the opposite of previous reports. We found no evidence for a possible overlap or specificity in the effect of sulcal morphology on mathematics and reading. Possible explanations for this weak association between sulcal morphology and academic achievement and suggestions for future research are discussed.
Collapse
|
11
|
Cachia A, Borst G, Jardri R, Raznahan A, Murray GK, Mangin JF, Plaze M. Towards Deciphering the Fetal Foundation of Normal Cognition and Cognitive Symptoms From Sulcation of the Cortex. Front Neuroanat 2021; 15:712862. [PMID: 34650408 PMCID: PMC8505772 DOI: 10.3389/fnana.2021.712862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Growing evidence supports that prenatal processes play an important role for cognitive ability in normal and clinical conditions. In this context, several neuroimaging studies searched for features in postnatal life that could serve as a proxy for earlier developmental events. A very interesting candidate is the sulcal, or sulco-gyral, patterns, macroscopic features of the cortex anatomy related to the fold topology-e.g., continuous vs. interrupted/broken fold, present vs. absent fold-or their spatial organization. Indeed, as opposed to quantitative features of the cortical sheet (e.g., thickness, surface area or curvature) taking decades to reach the levels measured in adult, the qualitative sulcal patterns are mainly determined before birth and stable across the lifespan. The sulcal patterns therefore offer a window on the fetal constraints on specific brain areas on cognitive abilities and clinical symptoms that manifest later in life. After a global review of the cerebral cortex sulcation, its mechanisms, its ontogenesis along with methodological issues on how to measure the sulcal patterns, we present a selection of studies illustrating that analysis of the sulcal patterns can provide information on prenatal dispositions to cognition (with a focus on cognitive control and academic abilities) and cognitive symptoms (with a focus on schizophrenia and bipolar disorders). Finally, perspectives of sulcal studies are discussed.
Collapse
Affiliation(s)
- Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Université de Paris, IPNP, INSERM, Paris, France
| | - Grégoire Borst
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| | - Renaud Jardri
- Univ Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Centre, Plasticity & SubjectivitY (PSY) team, Lille, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Marion Plaze
- Université de Paris, IPNP, INSERM, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris, Paris, France
| |
Collapse
|