1
|
Norton SA, Gorelik AJ, Paul SE, Johnson EC, Baranger DA, Siudzinski JL, Li ZA, Bondy E, Modi H, Karcher NR, Hershey T, Hatoum AS, Agrawal A, Bogdan R. A Phenome-Wide association study (PheWAS) of genetic risk for C-reactive protein in children of European Ancestry: Results from the ABCD study. Brain Behav Immun 2025:S0889-1591(25)00145-X. [PMID: 40228565 DOI: 10.1016/j.bbi.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND C-reactive protein (CRP) is a moderately heritable marker of systemic inflammation that is associated with adverse physical and mental health outcomes. Identifying factors associated with genetic liability to elevated CRP in childhood may inform our understanding of variability in CRP that could be targeted to prevent and/or delay the onset of related health outcomes. METHODS We conducted a phenome-wide association study (PheWAS) of genetic risk for elevated CRP (i.e. CRP polygenic risk score [PRS]) among children genetically similar to European ancestry reference populations (median analytic n = 5,509, range = 120-5,556) from the Adolescent Brain and Cognitive DevelopmentSM (ABCD) Study baseline assessment. Associations between CRP PRS and 2,377 psychosocial and neuroimaging phenotypes were estimated using independent mixed effects models nested by recruitment site (or scanner) and family, with ancestral genomic principal components (n = 10), age, and sex, as well as global brain metrics (when relevant) included as fixed effect covariates. Post hoc analyses examined whether: (1) covarying for measured body mass index (BMI) or removing the shared genetic architecture between CRP and BMI altered phenotypic associations, (2) sex moderated CRP PRS associations, and (3) associations were unconfounded by assortative mating or passive gene-environment correlations (using within-family analyses). Multiple testing was adjusted for using Bonferroni and false discovery rate (FDR) correction. RESULTS Nine phenotypes were positively associated with CRP PRS after multiple testing correction: five weight- and eating-related phenotypes (e.g. BMI, overeating), three phenotypes related to caregiver somatic problems (e.g. caregiver somatic complaints), as well as weekday video watching (all ps = 1.2 x 10-7 - 2.5 x 10-4, all pFDRs = 0.0002-0.05). No neuroimaging phenotypes were associated with CRP PRS (all ps = 0.0003-0.998; all pFDRs = 0.08-0.998) after correction for multiple testing. Eating and weight-related phenotypes remained associated with CRP PRS in within-family analyses. Covarying for BMI resulted in largely consistent results, and sex did not moderate any CRP PRS associations. Removing the shared genetic variance between CRP and BMI attenuated all relationships; associations with weekday video watching, caregiver somatic problems and caregiver report that the child is overweight remained significant while associations with waist circumference, weight, and caregiver report that child overeats did not. DISCUSSION Genetic liability to elevated CRP is associated with higher weight, eating, and weekday video watching during childhood as well as caregiver somatic problems. These associations were consistent with direct genetic effects (i.e., not solely due to confounding factors like passive gene-environment correlations) and were independent of measured BMI. The majority of associations with weight and eating phenotypes were attributable to shared genetic architecture between BMI and inflammation. The relationship between genetics and heightened inflammation in later life may be partially attributable to modifiable behaviors (e.g. weight and activity levels) that are expressed as early as childhood.
Collapse
Affiliation(s)
- Sara A Norton
- Washington University in St. Louis, Department of Psychological & Brain Sciences, United States.
| | - Aaron J Gorelik
- Washington University in St. Louis, Department of Psychological & Brain Sciences, United States.
| | - Sarah E Paul
- Washington University in St. Louis, Department of Psychological & Brain Sciences, United States.
| | - Emma C Johnson
- Washington University School of Medicine in St. Louis, Department of Psychiatry, United States.
| | - David Aa Baranger
- Washington University in St. Louis, Department of Psychological & Brain Sciences, United States.
| | - Jayne L Siudzinski
- Washington University in St. Louis, Department of Psychological & Brain Sciences, United States.
| | - Zhaolong Adrian Li
- Washington University School of Medicine in St. Louis, Department of Psychiatry, United States.
| | - Erin Bondy
- University of North Carolina School of Medicine, Department of Psychiatry, United States.
| | - Hailey Modi
- Washington University School of Medicine in St. Louis, Division of Biological and Biomedical Sciences, United States.
| | - Nicole R Karcher
- Washington University School of Medicine in St. Louis, Department of Psychiatry, United States.
| | - Tamara Hershey
- Washington University School of Medicine in St. Louis, Department of Psychiatry, United States; Washington University School of Medicine, Mallinckrodt Institute of Radiology, United States.
| | - Alexander S Hatoum
- Washington University School of Medicine in St. Louis, Department of Psychiatry, United States.
| | - Arpana Agrawal
- Washington University School of Medicine in St. Louis, Department of Psychiatry, United States.
| | - Ryan Bogdan
- Washington University in St. Louis, Department of Psychological & Brain Sciences, United States.
| |
Collapse
|
2
|
Hawes SW, Littlefield AK, Lopez DA, Sher KJ, Thompson EL, Gonzalez R, Aguinaldo L, Adams AR, Bayat M, Byrd AL, Castro-de-Araujo LF, Dick A, Heeringa SF, Kaiver CM, Lehman SM, Li L, Linkersdörfer J, Maullin-Sapey TJ, Neale MC, Nichols TE, Perlstein S, Tapert SF, Vize CE, Wagner M, Waller R, Thompson WK. Longitudinal analysis of the ABCD® study. Dev Cogn Neurosci 2025; 72:101518. [PMID: 39999579 PMCID: PMC11903845 DOI: 10.1016/j.dcn.2025.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
The Adolescent Brain Cognitive Development® (ABCD) Study provides a unique opportunity to investigate developmental processes in a large, diverse cohort of youths, aged approximately 9-10 at baseline and assessed annually for 10 years. Given the size and complexity of the ABCD Study, researchers analyzing its data will encounter a myriad of methodological and analytical considerations. This review provides an examination of key concepts and techniques related to longitudinal analyses of the ABCD Study data, including: (1) characterization of the factors associated with variation in developmental trajectories; (2) assessment of how level and timing of exposures may impact subsequent development; (3) quantification of how variation in developmental domains may be associated with outcomes, including mediation models and reciprocal relationships. We emphasize the importance of selecting appropriate statistical models to address these research questions. By presenting the advantages and potential challenges of longitudinal analyses in the ABCD Study, this review seeks to equip researchers with foundational knowledge and tools to make informed decisions as they navigate and effectively analyze and interpret the multi-dimensional longitudinal data currently available.
Collapse
Affiliation(s)
- Samuel W Hawes
- Center for Children & Families, Florida International University, Miami, FL, USA.
| | | | - Daniel A Lopez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
| | - Kenneth J Sher
- Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Erin L Thompson
- Center for Children & Families, Florida International University, Miami, FL, USA.
| | - Raul Gonzalez
- Center for Children & Families, Florida International University, Miami, FL, USA.
| | - Laika Aguinaldo
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| | - Ashley R Adams
- Center for Children & Families, Florida International University, Miami, FL, USA.
| | - Mohammadreza Bayat
- Center for Children & Families, Florida International University, Miami, FL, USA.
| | - Amy L Byrd
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Luis Fs Castro-de-Araujo
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Anthony Dick
- Cognitive Neuorscience, Florida International University, Miami, FL, USA.
| | - Steven F Heeringa
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| | - Christine M Kaiver
- Center for Children & Families, Florida International University, Miami, FL, USA.
| | - Sarah M Lehman
- Center for Children & Families, Florida International University, Miami, FL, USA.
| | - Lin Li
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | - Janosch Linkersdörfer
- Center for Human Development, University of California San Diego, San Diego, CA, USA.
| | | | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Thomas E Nichols
- Oxford Big Data Institute, University of Oxford, Oxford, United Kingdom.
| | - Samantha Perlstein
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Susan F Tapert
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| | - Colin E Vize
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Margot Wagner
- The Institute for Neural Computation, University of California San Diego, San Diego, CA, USA.
| | - Rebecca Waller
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
3
|
Overholtzer LN, Torgerson C, Morrel J, Ahmadi H, Tyszka JM, Herting MM. Amygdala subregion volumes and apportionment in preadolescents - Associations with age, sex, and body mass index. Dev Cogn Neurosci 2025; 73:101554. [PMID: 40139048 PMCID: PMC11986629 DOI: 10.1016/j.dcn.2025.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
The amygdala, a key limbic structure, is critical to emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. In 3953 9- and 10-year-olds from the Adolescent Brain Cognitive Development℠ Study, the CIT168 Atlas was used to segment nine amygdala subregions. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Distinct associations were observed between age, sex, and BMIz with whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in the dorsal subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large basolateral subregions, with increased relative apportionment in smaller subregions. These findings provide a foundational context for understanding how developmental variables influence amygdala structure, with implications for understanding future risk for brain disorders.
Collapse
Affiliation(s)
- L Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA; Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA; USC-Caltech MD-PhD Program, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carinna Torgerson
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA; Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA; Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - J Michael Tyszka
- Caltech Brain Imaging Center, California Institute of Technology, Pasadena, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Overholtzer LN, Torgerson C, Morrel J, Ahmadi H, Tyszka JM, Herting MM. Amygdala Subregion Volumes and Apportionment in Preadolescents - Associations with Age, Sex, and Body Mass Index. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.07.617048. [PMID: 39416063 PMCID: PMC11482789 DOI: 10.1101/2024.10.07.617048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The amygdala, a key limbic structure, is critical to emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. In 3,953 9- and 10-year-olds from the Adolescent Brain Cognitive Development Study, the CIT168 Amygdala Atlas was used to segment nine amygdala subregions. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Distinct associations were observed between age, sex, and BMIz and whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in the dorsal subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large basolateral subregions, with increased relative apportionment in smaller subregions. These findings provide a foundational context for understanding how developmental variables influence amygdala structure, with implications for understanding future risk for brain disorders.
Collapse
Affiliation(s)
- L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carinna Torgerson
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Caltech Brain Imaging Center, California Institute of Technology, Pasadena, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
5
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A systematic review of air pollution exposure and brain structure and function during development. ENVIRONMENTAL RESEARCH 2025; 275:121368. [PMID: 40073924 DOI: 10.1016/j.envres.2025.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). METHODS Using PubMed, Web of Science, and Scopus we conducted an updated literature search and systematic review of articles published through January 2025, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews used to inform the World Health Organization Global Air Quality Guidelines. RESULTS We identified 29 relevant papers, and 20 new studies met our inclusion criteria. Including six studies from our 2019 review, the 26 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. CONCLUSION Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review comprised of only cross-sectional studies, the current literature now includes longitudinal studies and more advanced neuroimaging methods. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Rauschecker AM, Nedelec P, Pan S, Olaru M, Nillo RM, Palmer CE, Pecheva D, Dale AM, Jernigan TL, Sugrue LP. Neurocognitive and brain structure correlates of reading and television habits in early adolescence. Sci Rep 2025; 15:6235. [PMID: 39979383 PMCID: PMC11842790 DOI: 10.1038/s41598-025-88398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Results of the impact of reading books and viewing television on neurodevelopment have been mixed, without definitive evaluation to date. Using data from 11,875 US adolescents in the Adolescent Brain and Cognitive Development (ABCD) study, we investigated the associations between reading and television viewing on brain morphology and neurocognitive performance. After quality control, 8,125 participants' MRI scans and cognitive tests were analyzed in relation to their reading and TV habits. Greater reading time was associated with higher cognitive performance and regionally-selective increases in cortical area, while greater TV viewing had a much smaller association with lower cognitive performance and decreased cortical area. Regionally, areas of spatial overlap in associations included the lateral temporal, inferior parietal, and inferior frontal lobes, while significant associations in the ventral and inferior temporal cortex and cingulate cortex were unique to reading habits. These relationships persisted after adjusting for demographics, socioeconomic factors, genetic ancestry, and imaging factors. The magnitude of reading associations exceeded those of TV viewing and was similar to established contributions of parental income and education on neurodevelopment. This study provides a comprehensive evaluation of how these behaviors correlate with early adolescent brain development across a large diverse population.
Collapse
Affiliation(s)
- Andreas M Rauschecker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Pierre Nedelec
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Pan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Olaru
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Nillo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Clare E Palmer
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
| | - Diliana Pecheva
- Center for Multimodal Imaging and Genetics, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Department of Radiology, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Department of Radiology, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Terry L Jernigan
- Center for Human Development, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Leo P Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
7
|
Cotter DL, Kiss O, Ahmadi H, de Jesus A, Schwartz J, Baker FC, Hackman DA, Herting MM. Sleep duration and efficiency moderate the effects of prenatal and childhood ambient pollutant exposure on global white matter microstructural integrity in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638133. [PMID: 39990345 PMCID: PMC11844460 DOI: 10.1101/2025.02.13.638133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Air pollution is a ubiquitous neurotoxicant associated with alterations in structural connectivity. Good habitual sleep may be an important protective lifestyle factor due to its involvement in the brain waste clearance and its bidirectional relationship with immune function. Wearable multisensory devices may provide more objective measures of sleep quantity and quality. We investigated whether sleep duration and efficiency moderated the relationship between prenatal and childhood pollutant exposure and whole-brain white matter microstructural integrity at ages 10-13 years. Methods We used multi-shell diffusion-weighted imaging data collected on 3T MRI scanners and objective sleep data collected with Fitbit Charge 2 from the 2-year follow-up visit for 2178 subjects in the Adolescent Brain Cognitive Development Study®. White matter tracts were identified using a probabilistic atlas. Restriction spectrum imaging was performed to extract restricted normalized isotropic (RNI) and directional (RND) signal fraction parameters for all white matter tracts, then averaged to calculate global measures. Sleep duration was calculated by summing the time spent in each sleep stage; sleep efficiency was calculated by dividing sleep duration by time spent in bed. Using an ensemble-based modeling approach, air pollution concentrations of PM2.5, NO2, and O3 were assigned to each child's residential addresses during the prenatal period (9-month average before birthdate) as well as at ages 9-10 years. Multi-pollutant linear mixed effects models assessed the associations between global RNI and RND and sleep-by-pollutant interactions, adjusting for appropriate covariates. Results Sleep duration interacted with childhood NO2 exposure and sleep efficiency interacted with prenatal O3 exposure to affect RND at ages 10-13 years. Longer sleep duration and higher sleep efficiency in the context of higher pollutant exposure was associated with lower RND compared to those with similar pollutant exposure but shorter sleep duration and lower sleep efficiency. Conclusions Low-level air pollution poses a risk to brain health in youth, and healthy sleep duration and efficiency may increase resilience to its harmful effects on white matter microstructural integrity. Future studies should evaluate the generalizability of these results in more diverse cohorts as well as utilize longitudinal data to understand how sleep may impact brain health trajectories in the context of pollution over time.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Orsolya Kiss
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alethea de Jesus
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Curtis M, Bayat M, Garic D, Alfano AR, Hernandez M, Curzon M, Bejarano A, Tremblay P, Graziano P, Dick AS. Structural Development of Speech Networks in Young Children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.23.609470. [PMID: 39229017 PMCID: PMC11370569 DOI: 10.1101/2024.08.23.609470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Characterizing the structural development of the neural speech network in early childhood is important to understand speech acquisition. To investigate speech in the developing brain, 94 children aged 4-7-years-old were scanned using diffusion weighted imaging (DWI) magnetic resonance imaging (MRI). In order to increase sample size and performance variability, we included children who were diagnosed with attention-deficit hyperactivity disorder (ADHD) from a larger ongoing study. Additionally, each child completed the Syllable Repetition Task (SRT), a validated measure of phoneme articulation. The DWI data were modeled using restriction spectrum imaging (RSI) to measure restricted and hindered diffusion properties in both grey and white matter. Consequently, we analyzed the diffusion data using both whole brain analysis, and automated fiber quantification (AFQ) analysis to establish tract profiles for each of six fiber pathways thought to be important for supporting speech development. In the whole brain analysis, we found that SRT performance was associated with restricted diffusion in bilateral inferior frontal gyrus, pars opercularis , right pre-supplementary and supplementary motor area, and bilateral cerebellar grey matter ( p < .005). Age moderated these associations in left pars opercularis and frontal aslant tract (FAT). However, in both cases only the cerebellar findings survived a cluster correction. We also found associations between SRT performance and restricted diffusion in cortical association fiber pathways, especially left FAT, and in the cerebellar peduncles. Analyses using automated fiber quantification (AFQ) highlighted differences in high and low performing children along specific tract profiles, most notably in left but not right FAT, in bilateral SLFIII, and in the cerebellar peduncles. These findings suggest that individual differences in speech performance are reflected in structural grey and white matter differences as measured by restricted and hindered diffusion metrics, and offer important insights into developing brain networks supporting speech in very young children.
Collapse
|
9
|
Ekerdt C, Menks WM, Fernández G, McQueen JM, Takashima A, Janzen G. White matter connectivity linked to novel word learning in children. Brain Struct Funct 2024; 229:2461-2477. [PMID: 39325144 PMCID: PMC11612013 DOI: 10.1007/s00429-024-02857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Children and adults are excellent word learners. Increasing evidence suggests that the neural mechanisms that allow us to learn words change with age. In a recent fMRI study from our group, several brain regions exhibited age-related differences when accessing newly learned words in a second language (L2; Takashima et al. Dev Cogn Neurosci 37, 2019). Namely, while the Teen group (aged 14-16 years) activated more left frontal and parietal regions, the Young group (aged 8-10 years) activated right frontal and parietal regions. In the current study we analyzed the structural connectivity data from the aforementioned study, examining the white matter connectivity of the regions that showed age-related functional activation differences. Age group differences in streamline density as well as correlations with L2 word learning success and their interaction were examined. The Teen group showed stronger connectivity than the Young group in the right arcuate fasciculus (AF). Furthermore, white matter connectivity and memory for L2 words across the two age groups correlated in the left AF and the right anterior thalamic radiation (ATR) such that higher connectivity in the left AF and lower connectivity in the right ATR was related to better memory for L2 words. Additionally, connectivity in the area of the right AF that exhibited age-related differences predicted word learning success. The finding that across the two age groups, stronger connectivity is related to better memory for words lends further support to the hypothesis that the prolonged maturation of the prefrontal cortex, here in the form of structural connectivity, plays an important role in the development of memory.
Collapse
Affiliation(s)
- Clara Ekerdt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Willeke M Menks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - James M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Atsuko Takashima
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gabriele Janzen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Makowski C, Shafiei G, Martinho M, Hagler DJ, Pecheva D, Dale AM, Fennema-Notestine C, Bischoff-Grethe A, Wierenga CE. Multivariate patterns linking brain microstructure to temperament and behavior in adolescent eating disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.24.24317857. [PMID: 39649610 PMCID: PMC11623734 DOI: 10.1101/2024.11.24.24317857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Eating disorders (EDs) are multifaceted psychiatric disorders characterized by varying behaviors, traits, and cognitive profiles thought to drive symptom heterogeneity and severity. Non-invasive neuroimaging methods have been critical to elucidate the neurobiological circuitry involved in ED-related behaviors, but often focused on a limited set of regions of interest and/or symptoms. The current study harnesses multivariate methods to map microstructural and morphometric patterns across the entire brain to multiple domains of behavior and symptomatology in patients. Diffusion-weighted images, modeled with restriction spectrum imaging, were analyzed for 91 adolescent patients with an ED and 48 healthy controls. Partial least squares analysis was applied to map 38 behavioral measures (encompassing cognition, temperament, and ED symptoms) to restricted diffusion in white matter tracts and subcortical structures across 65 regions of interest. The first significant latent variable explained 46.9% of the covariance between microstructure and behavior. This latent variable retained a significant brain-behavior correlation in held-out data, where an 'undercontrolled' behavioral profile (e.g., higher emotional dysregulation, novelty seeking; lower effortful control and interoceptive awareness) was linked to increased restricted diffusion across white matter tracts, particularly those joining frontal, limbic, and thalamic regions. Individually-derived brain and behavior scores for this latent variable were higher in patients with binge-purge symptoms, compared to those with only restrictive eating symptoms. Findings demonstrate the value of applying multivariate modeling to the array of brain-behavior relationships inherent to the clinical presentation of EDs, and their relevance for providing a neurobiologically-informed model for future clinical subtyping and prediction efforts.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan Martinho
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Diliana Pecheva
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Christine Fennema-Notestine
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | | | - Christina E Wierenga
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Christensen ZP, Freedman EG, Foxe JJ. Autism is associated with in vivo changes in gray matter neurite architecture. Autism Res 2024; 17:2261-2277. [PMID: 39324563 DOI: 10.1002/aur.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Postmortem investigations in autism have identified anomalies in neural cytoarchitecture across limbic, cerebellar, and neocortical networks. These anomalies include narrow cell mini-columns and variable neuron density. However, difficulty obtaining sufficient post-mortem samples has often prevented investigations from converging on reproducible measures. Recent advances in processing magnetic resonance diffusion weighted images (DWI) make in vivo characterization of neuronal cytoarchitecture a potential alternative to post-mortem studies. Using extensive DWI data from the Adolescent Brain Cognitive Developmentsm (ABCD®) study 142 individuals with an autism diagnosis were compared with 8971 controls using a restriction spectrum imaging (RSI) framework that characterized total neurite density (TND), its component restricted normalized directional diffusion (RND), and restricted normalized isotropic diffusion (RNI). A significant decrease in TND was observed in autism in the right cerebellar cortex (β = -0.005, SE =0.0015, p = 0.0267), with significant decreases in RNI and significant increases in RND found diffusely throughout posterior and anterior aspects of the brain, respectively. Furthermore, these regions remained significant in post-hoc analysis when the autism sample was compared against a subset of 1404 individuals with other psychiatric conditions (pulled from the original 8971). These findings highlight the importance of characterizing neuron cytoarchitecture in autism and the significance of their incorporation as physiological covariates in future studies.
Collapse
Affiliation(s)
- Zachary P Christensen
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
12
|
Genc S, Schiavi S, Chamberland M, Tax CMW, Raven EP, Daducci A, Jones DK. Developmental differences in canonical cortical networks: Insights from microstructure-informed tractography. Netw Neurosci 2024; 8:946-964. [PMID: 39355444 PMCID: PMC11424039 DOI: 10.1162/netn_a_00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/09/2024] [Indexed: 10/03/2024] Open
Abstract
In response to a growing interest in refining brain connectivity assessments, this study focuses on integrating white matter fiber-specific microstructural properties into structural connectomes. Spanning ages 8-19 years in a developmental sample, it explores age-related patterns of microstructure-informed network properties at both local and global scales. First, the diffusion-weighted signal fraction associated with each tractography-reconstructed streamline was constructed. Subsequently, the convex optimization modeling for microstructure-informed tractography (COMMIT) approach was employed to generate microstructure-informed connectomes from diffusion MRI data. To complete the investigation, network characteristics within eight functionally defined networks (visual, somatomotor, dorsal attention, ventral attention, limbic, fronto-parietal, default mode, and subcortical networks) were evaluated. The findings underscore a consistent increase in global efficiency across child and adolescent development within the visual, somatomotor, and default mode networks (p < 0.005). Additionally, mean strength exhibits an upward trend in the somatomotor and visual networks (p < 0.001). Notably, nodes within the dorsal and ventral visual pathways manifest substantial age-dependent changes in local efficiency, aligning with existing evidence of extended maturation in these pathways. The outcomes strongly support the notion of a prolonged developmental trajectory for visual association cortices. This study contributes valuable insights into the nuanced dynamics of microstructure-informed brain connectivity throughout different developmental stages.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children’s Hospital, Parkville, Victoria, Australia
- Developmental Imaging, Clinical Sciences, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Simona Schiavi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Department of Computer Science, University of Verona, Italy
- ASG Superconductors, Genova, Italy
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, Netherlands
| | - Chantal M. W. Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, United Kingdom
| | - Erika P. Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A Systematic Review of Air Pollution Exposure and Brain Structure and Function during Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313629. [PMID: 39314970 PMCID: PMC11419233 DOI: 10.1101/2024.09.13.24313629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). Methods Using PubMed and Web of Science, we conducted an updated literature search and systematic review of articles published through March 2024, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews informing the World Health Organization Global Air Quality Guidelines. Results We identified 222 relevant papers, and 14 new studies met our inclusion criteria. Including six studies from our 2019 review, the 20 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. Conclusion Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review, publications doubled-an increase that testifies to the importance of this public health issue. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Norton SA, Gorelik AJ, Paul SE, Johnson EC, Baranger DA, Siudzinski JL, Li ZA, Bondy E, Modi H, Karcher NR, Hershey T, Hatoum AS, Agrawal A, Bogdan R. A Phenome-Wide Association Study (PheWAS) of Genetic Risk for C-Reactive Protein in Children of European Ancestry: Results From the ABCD Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312857. [PMID: 39252928 PMCID: PMC11383484 DOI: 10.1101/2024.08.30.24312857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND C-reactive protein (CRP) is a moderately heritable marker of systemic inflammation that is associated with adverse physical and mental health outcomes. Identifying factors associated with genetic liability to elevated CRP in childhood may inform our understanding of variability in CRP that could be targeted to prevent and/or delay the onset of related health outcomes. METHODS We conducted a phenome-wide association study (PheWAS) of genetic risk for elevated CRP (i.e. CRP polygenic risk score [PRS]) among children genetically similar to European ancestry reference populations (median analytic n = 5,509) from the Adolescent Brain and Cognitive Development℠ (ABCD) Study. Associations between CRP PRS and 2,377 psychosocial and neuroimaging phenotypes were estimated using independent mixed effects models. Post hoc analyses examined whether: (1) covarying for measured body mass index (BMI) or removing the shared genetic architecture between CRP and BMI altered phenotypic associations, (2) sex moderated CRP PRS associations, and (3) associations are unconfounded by assortative mating or passive gene-environment correlations (using a within-family analyses). Multiple testing was adjusted for using Bonferroni and false discovery rate (FDR) correction. RESULTS Nine phenotypes were positively associated with CRP PRS after multiple testing correction: five weight- and eating-related phenotypes (e.g. BMI, overeating), three phenotypes related to caregiver somatic problems (e.g. caregiver somatic complaints), as well as weekday video watching (all ps = 1.2 × 10-7 - 2.5 × 10-4, all p FDR s = 0.0002 - 0.05). No neuroimaging phenotypes were associated with CRP PRS (all ps = 0.0003 - 0.998; all p FDR s = 0.08 - 0.998) after correction for multiple testing. Eating and weight-related phenotypes remained associated with CRP PRS in within-family analyses. Covarying for BMI resulted in largely consistent results, and sex did not moderate any CRP PRS associations. Removing the shared genetic variance between CRP and BMI attenuated all relationships; associations with weekday video watching, caregiver somatic problems and caregiver report that the child is overweight remained significant while associations with waist circumference, weight, and caregiver report that child overeats did not. DISCUSSION Genetic liability to elevated CRP is associated with higher weight, eating, and weekday video watching during childhood as well as caregiver somatic problems. These associations were consistent with direct genetic effects (i.e., not solely due to confounding factors like passive gene-environment correlations) and were independent of measured BMI. The majority of associations with weight and eating phenotypes were attributable to shared genetic architecture between BMI and inflammation. The relationship between genetics and heightened inflammation in later life may be partially attributable to modifiable behaviors (e.g. weight and activity levels) that are expressed as early as childhood.
Collapse
Affiliation(s)
- Sara A Norton
- Washington University in St. Louis, Department of Psychological & Brain Sciences
| | - Aaron J Gorelik
- Washington University in St. Louis, Department of Psychological & Brain Sciences
| | - Sarah E Paul
- Washington University in St. Louis, Department of Psychological & Brain Sciences
| | - Emma C Johnson
- Washington University School of Medicine in St. Louis, Department of Psychiatry
| | - David Aa Baranger
- Washington University in St. Louis, Department of Psychological & Brain Sciences
| | - Jayne L Siudzinski
- Washington University in St. Louis, Department of Psychological & Brain Sciences
| | - Zhaolong Adrian Li
- Washington University School of Medicine in St. Louis, Department of Psychiatry
| | - Erin Bondy
- University of North Carolina School of Medicine, Department of Psychiatry
| | - Hailey Modi
- Washington University School of Medicine in St. Louis, Division of Biological and Biomedical Sciences
| | - Nicole R Karcher
- Washington University School of Medicine in St. Louis, Department of Psychiatry
| | - Tamara Hershey
- Washington University School of Medicine in St. Louis, Department of Psychiatry
- Washington University School of Medicine, Department of Radiology
| | - Alexander S Hatoum
- Washington University School of Medicine in St. Louis, Department of Psychiatry
| | - Arpana Agrawal
- Washington University School of Medicine in St. Louis, Department of Psychiatry
| | - Ryan Bogdan
- Washington University in St. Louis, Department of Psychological & Brain Sciences
| |
Collapse
|
15
|
Nishat E, Scratch SE, Ameis SH, Wheeler AL. Disrupted Maturation of White Matter Microstructure After Concussion Is Associated With Internalizing Behavior Scores in Female Children. Biol Psychiatry 2024; 96:300-308. [PMID: 38237797 DOI: 10.1016/j.biopsych.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Some children who experience concussions, particularly females, develop long-lasting emotional and behavioral problems. Establishing the potential contribution of preexisting behavioral problems and disrupted white matter maturation has been challenging due to a lack of preinjury data. METHODS From the Adolescent Brain Cognitive Development cohort, 239 (90 female) children age 12.1 ± 0.6 years who experienced a concussion after study entry at 10.0 ± 0.6 years were compared to 6438 (3245 female) children without head injuries who were age 9.9 ± 0.6 years at baseline and 12.0 ± 0.6 years at follow-up. The Child Behavior Checklist was used to assess internalizing and externalizing behavior at study entry and follow-up. In the children with magnetic resonance imaging data available (concussion n = 134, comparison n = 3520), deep and superficial white matter was characterized by neurite density from restriction spectrum image modeling of diffusion magnetic resonance imaging. Longitudinal ComBat harmonization removed scanner effects. Linear regressions modeled 1) behavior problems at follow-up controlling for baseline behavior, 2) impact of concussion on white matter maturation, and 3) contribution of deviations in white matter maturation to postconcussion behavior problems. RESULTS Only female children with concussion had higher internalizing behavior problem scores. The youngest children with concussion showed less change in superficial white matter neurite density over 2 years than children with no concussion. In females with concussion, less change in superficial white matter neurite density was correlated with increased internalizing behavior problem scores. CONCLUSIONS Concussions in female children are associated with emotional problems beyond preinjury levels. Injury to superficial white matter may contribute to persistent internalizing behavior problems in females.
Collapse
Affiliation(s)
- Eman Nishat
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shannon E Scratch
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Cotter DL, Ahmadi H, Cardenas-Iniguez C, Bottenhorn KL, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman DA, Chen JC, Herting MM. Exposure to multiple ambient air pollutants changes white matter microstructure during early adolescence with sex-specific differences. COMMUNICATIONS MEDICINE 2024; 4:155. [PMID: 39090375 PMCID: PMC11294340 DOI: 10.1038/s43856-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Air pollution is ubiquitous, yet questions remain regarding its impact on the developing brain. Large changes occur in white matter microstructure across adolescence, with notable differences by sex. METHODS We investigate sex-stratified effects of annual exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) at ages 9-10 years on longitudinal patterns of white matter microstructure over a 2-year period. Diffusion-weighted imaging was collected on 3T MRI scanners for 8182 participants (1-2 scans per subject; 45% with two scans) from the Adolescent Brain Cognitive Development (ABCD) Study®. Restriction spectrum imaging was performed to quantify intracellular isotropic (RNI) and directional (RND) diffusion. Ensemble-based air pollution concentrations were assigned to each child's primary residential address. Multi-pollutant, sex-stratified linear mixed-effect models assessed associations between pollutants and RNI/RND with age over time, adjusting for sociodemographic factors. RESULTS Here we show higher PM2.5 exposure is associated with higher RND at age 9 in both sexes, with no significant effects of PM2.5 on RNI/RND change over time. Higher NO2 exposure is associated with higher RNI at age 9 in both sexes, as well as attenuating RNI over time in females. Higher O3 exposure is associated with differences in RND and RNI at age 9, as well as changes in RND and RNI over time in both sexes. CONCLUSIONS Criteria air pollutants influence patterns of white matter maturation between 9-13 years old, with some sex-specific differences in the magnitude and anatomical locations of affected tracts. This occurs at concentrations that are below current U.S. standards, suggesting exposure to low-level pollution during adolescence may have long-term consequences.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Pecheva D, Smith DM, Casey BJ, Woodward LJ, Dale AM, Filippi CG, Watts R. Sex and mental health are related to subcortical brain microstructure. Proc Natl Acad Sci U S A 2024; 121:e2403212121. [PMID: 39042688 PMCID: PMC11295051 DOI: 10.1073/pnas.2403212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.
Collapse
Affiliation(s)
- Diliana Pecheva
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA92093
| | - Diana M. Smith
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA92093
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA92093
| | - B. J. Casey
- Department of Neuroscience and Behavior, Barnard College, New York, NY10027
| | - Lianne J. Woodward
- Faculty of Health, University of Canterbury, Christchurch8140, New Zealand
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA92093
- Department of Radiology, University of California, San Diego, La Jolla, CA92093
- Department of Neurosciences, University of California, San Diego, La Jolla, CA92093
- Department of Psychiatry, University of California, San Diego, La Jolla, CA92093
| | - Christopher G. Filippi
- Department of Radiology, The Hospital for Sick Children and the SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Richard Watts
- Faculty of Health, University of Canterbury, Christchurch8140, New Zealand
| |
Collapse
|
18
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Bottenhorn KL, Sukumaran K, Cardenas-Iniguez C, Habre R, Schwartz J, Chen JC, Herting MM. Air pollution from biomass burning disrupts early adolescent cortical microarchitecture development. ENVIRONMENT INTERNATIONAL 2024; 189:108769. [PMID: 38823157 PMCID: PMC11878718 DOI: 10.1016/j.envint.2024.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Exposure to outdoor particulate matter (PM2.5) represents a ubiquitous threat to human health, and particularly the neurotoxic effects of PM2.5 from multiple sources may disrupt neurodevelopment. Studies addressing neurodevelopmental implications of PM exposure have been limited by small, geographically limited samples and largely focus either on macroscale cortical morphology or postmortem histological staining and total PM mass. Here, we leverage residentially assigned exposure to six, data-driven sources of PM2.5 and neuroimaging data from the longitudinal Adolescent Brain Cognitive Development Study (ABCD Study®), collected from 21 different recruitment sites across the United States. To contribute an interpretable and actionable assessment of the role of air pollution in the developing brain, we identified alterations in cortical microstructure development associated with exposure to specific sources of PM2.5 using multivariate, partial least squares analyses. Specifically, average annual exposure (i.e., at ages 8-10 years) to PM2.5 from biomass burning was related to differences in neurite development across the cortex between 9 and 13 years of age.
Collapse
Affiliation(s)
- Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA.
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Makowski C, Brown TT, Zhao W, Hagler Jr DJ, Parekh P, Garavan H, Nichols TE, Jernigan TL, Dale AM. Leveraging the adolescent brain cognitive development study to improve behavioral prediction from neuroimaging in smaller replication samples. Cereb Cortex 2024; 34:bhae223. [PMID: 38880786 PMCID: PMC11180541 DOI: 10.1093/cercor/bhae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional magnetic resonance imaging (MRI). We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM Study to inform the replication sample size required with univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~ 100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100 subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many research programs and grants.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Timothy T Brown
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| | - Weiqi Zhao
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Donald J Hagler Jr
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California San Diego, La Jolla, CA,, United States
| |
Collapse
|
21
|
Bottenhorn KL, Sukumaran K, Cardenas-Iniguez C, Habre R, Schwartz J, Chen JC, Herting MM. Air pollution from biomass burning disrupts early adolescent cortical microarchitecture development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.21.563430. [PMID: 38798573 PMCID: PMC11118378 DOI: 10.1101/2023.10.21.563430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Exposure to outdoor particulate matter (PM 2.5 ) represents a ubiquitous threat to human health, and particularly the neurotoxic effects of PM 2.5 from multiple sources may disrupt neurodevelopment. Studies addressing neurodevelopmental implications of PM exposure have been limited by small, geographically limited samples and largely focus either on macroscale cortical morphology or postmortem histological staining and total PM mass. Here, we leverage residentially assigned exposure to six, data-driven sources of PM 2.5 and neuroimaging data from the longitudinal Adolescent Brain Cognitive Development Study (ABCD Study®), collected from 21 different recruitment sites across the United States. To contribute an interpretable and actionable assessment of the role of air pollution in the developing brain, we identified alterations in cortical microstructure development associated with exposure to specific sources of PM 2.5 using multivariate, partial least squares analyses. Specifically, average annual exposure (i.e., at ages 8-10 years) to PM 2.5 from biomass burning was related to differences in neurite development across the cortex between 9 and 13 years of age.
Collapse
|
22
|
Tissink EP, Shadrin AA, van der Meer D, Parker N, Hindley G, Roelfs D, Frei O, Fan CC, Nagel M, Nærland T, Budisteanu M, Djurovic S, Westlye LT, van den Heuvel MP, Posthuma D, Kaufmann T, Dale AM, Andreassen OA. Abundant pleiotropy across neuroimaging modalities identified through a multivariate genome-wide association study. Nat Commun 2024; 15:2655. [PMID: 38531894 DOI: 10.1038/s41467-024-46817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Genetic pleiotropy is abundant across spatially distributed brain characteristics derived from one neuroimaging modality (e.g. structural, functional or diffusion magnetic resonance imaging [MRI]). A better understanding of pleiotropy across modalities could inform us on the integration of brain function, micro- and macrostructure. Here we show extensive genetic overlap across neuroimaging modalities at a locus and gene level in the UK Biobank (N = 34,029) and ABCD Study (N = 8607). When jointly analysing phenotypes derived from structural, functional and diffusion MRI in a genome-wide association study (GWAS) with the Multivariate Omnibus Statistical Test (MOSTest), we boost the discovery of loci and genes beyond previously identified effects for each modality individually. Cross-modality genes are involved in fundamental biological processes and predominantly expressed during prenatal brain development. We additionally boost prediction of psychiatric disorders by conditioning independent GWAS on our multimodal multivariate GWAS. These findings shed light on the shared genetic mechanisms underlying variation in brain morphology, functional connectivity, and tissue composition.
Collapse
Affiliation(s)
- E P Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands.
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - A A Shadrin
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - D van der Meer
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - N Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - G Hindley
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, 16 De Crespigny Park, London, SE5 8AB, United Kingdom
| | - D Roelfs
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - O Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
| | - C C Fan
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92037, USA
| | - M Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - T Nærland
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
| | - M Budisteanu
- Prof. Dr. Alex Obregia Clinical Hospital of Psychiatry, Bucharest, Romania
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - S Djurovic
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - L T Westlye
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - M P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - D Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - T Kaufmann
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - A M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - O A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Building 48, Oslo, Norway.
- K.G. Jebsen Centre for Neurodevelopmental disorders, Division of Paediatric Medicine, Institute of Clinical Medicine, University of Oslo, Building 31, Oslo, Norway.
| |
Collapse
|
23
|
Hernandez Mejia M, Courtney KE, Wade NE, Wallace A, Baca RE, Shen Q, Happer JP, Jacobus J. The Combined Effects of Nicotine and Cannabis on Cortical Thickness Estimates in Adolescents and Emerging Adults. Brain Sci 2024; 14:195. [PMID: 38539584 PMCID: PMC10967898 DOI: 10.3390/brainsci14030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 08/03/2024] Open
Abstract
Early life substance use, including cannabis and nicotine, may result in deleterious effects on the maturation of brain tissue and gray matter cortical development. The current study employed linear regression models to investigate the main and interactive effects of past-year nicotine and cannabis use on gray matter cortical thickness estimates in 11 bilateral independent frontal cortical regions in 223 16-22-year-olds. As the frontal cortex develops throughout late adolescence and young adulthood, this period becomes crucial for studying the impact of substance use on brain structure. The distinct effects of nicotine and cannabis use status on cortical thickness were found bilaterally, as cannabis and nicotine users both had thinner cortices than non-users. Interactions between nicotine and cannabis were also observed, in which cannabis use was associated with thicker cortices for those with a history of nicotine and tobacco product (NTP) use in three left frontal regions. This study sheds light on the intricate relationship between substance use and brain structure, suggesting a potential modulation of cannabis' impact on cortical thickness by nicotine exposure, and emphasizing the need for further longitudinal research to characterize these interactions and their implications for brain health and development.
Collapse
Affiliation(s)
- Margie Hernandez Mejia
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92182, USA
| | - Kelly E. Courtney
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Natasha E. Wade
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Alexander Wallace
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Rachel E. Baca
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Qian Shen
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | | | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
24
|
Pollmann A, Sasso R, Bates K, Fuhrmann D. Making Connections: Neurodevelopmental Changes in Brain Connectivity After Adverse Experiences in Early Adolescence. J Neurosci 2024; 44:e0991232023. [PMID: 38124022 PMCID: PMC10883609 DOI: 10.1523/jneurosci.0991-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023] Open
Abstract
Adverse childhood experiences have been linked to detrimental mental health outcomes in adulthood. This study investigates a potential neurodevelopmental pathway between adversity and mental health outcomes: brain connectivity. We used data from the prospective, longitudinal Adolescent Brain Cognitive Development (ABCD) study (N ≍ 12.000, participants aged 9-13 years, male and female) and assessed structural brain connectivity using fractional anisotropy (FA) of white matter tracts. The adverse experiences modeled included family conflict and traumatic experiences. K-means clustering and latent basis growth models were used to determine subgroups based on total levels and trajectories of brain connectivity. Multinomial regression was used to determine associations between cluster membership and adverse experiences. The results showed that higher family conflict was associated with higher FA levels across brain tracts (e.g., t (3) = -3.81, β = -0.09, p bonf = 0.003) and within the corpus callosum (CC), fornix, and anterior thalamic radiations (ATR). A decreasing FA trajectory across two brain imaging timepoints was linked to lower socioeconomic status and neighborhood safety. Socioeconomic status was related to FA across brain tracts (e.g., t (3) = 3.44, β = 0.10, p bonf = 0.01), the CC and the ATR. Neighborhood safety was associated with FA in the Fornix and ATR (e.g., t (1) = 3.48, β = 0.09, p bonf = 0.01). There is a complex and multifaceted relationship between adverse experiences and brain development, where adverse experiences during early adolescence are related to brain connectivity. These findings underscore the importance of studying adverse experiences beyond early childhood to understand lifespan developmental outcomes.
Collapse
Affiliation(s)
- Ayla Pollmann
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Remo Sasso
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Kathryn Bates
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Delia Fuhrmann
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
25
|
Vieites V, Ralph Y, Reeb-Sutherland B, Dick AS, Mattfeld AT, Pruden SM. Neurite density of the hippocampus is associated with trace eyeblink conditioning latency in 4- to 6-year-olds. Eur J Neurosci 2024; 59:358-369. [PMID: 38092417 PMCID: PMC10872972 DOI: 10.1111/ejn.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 02/06/2024]
Abstract
Limited options exist to evaluate the development of hippocampal function in young children. Research has established that trace eyeblink conditioning (EBC) relies on a functional hippocampus. Hence, we set out to investigate whether trace EBC is linked to hippocampal structure, potentially serving as a valuable indicator of hippocampal development. Our study explored potential associations between individual differences in hippocampal volume and neurite density with trace EBC performance in young children. We used onset latency of conditioned responses (CR) and percentage of conditioned responses (% CR) as measures of hippocampal-dependent associative learning. Using a sample of typically developing children aged 4 to 6 years (N = 30; 14 girls; M = 5.70 years), participants underwent T1- and diffusion-weighted MRI scans and completed a 15-min trace eyeblink conditioning task conducted outside the MRI. % CR and CR onset latency were calculated based on all trials involving tone-puff presentations and tone-alone trials. Findings revealed a connection between greater left hippocampal neurite density and delayed CR onset latency. Children with higher neurite density in the left hippocampus tended to blink closer to the onset of the unconditioned stimulus, indicating that structural variations in the hippocampus were associated with more precise timing of conditioned responses. No other relationships were observed between hippocampal volume, cerebellum volume or neurite density, hippocampal white matter connectivity and any EBC measures. Preliminary results suggest that trace EBC may serve as a straightforward yet innovative approach for studying hippocampal development in young children and populations with atypical development.
Collapse
Affiliation(s)
- Vanessa Vieites
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yvonne Ralph
- Department of Psychology, University of Texas at Tyler, Tyler, Texas, USA
| | | | - Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Aaron T Mattfeld
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Shannon M Pruden
- Department of Psychology, Florida International University, Miami, Florida, USA
| |
Collapse
|
26
|
Parekh P, Fan CC, Frei O, Palmer CE, Smith DM, Makowski C, Iversen JR, Pecheva D, Holland D, Loughnan R, Nedelec P, Thompson WK, Hagler DJ, Andreassen OA, Jernigan TL, Nichols TE, Dale AM. FEMA: Fast and efficient mixed-effects algorithm for large sample whole-brain imaging data. Hum Brain Mapp 2024; 45:e26579. [PMID: 38339910 PMCID: PMC10823765 DOI: 10.1002/hbm.26579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024] Open
Abstract
The linear mixed-effects model (LME) is a versatile approach to account for dependence among observations. Many large-scale neuroimaging datasets with complex designs have increased the need for LME; however LME has seldom been used in whole-brain imaging analyses due to its heavy computational requirements. In this paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large samples possible. We validate FEMA with extensive simulations, showing that the estimates of the fixed effects are equivalent to standard maximum likelihood estimates but obtained with orders of magnitude improvement in computational speed. We demonstrate the applicability of FEMA by studying the cross-sectional and longitudinal effects of age on region-of-interest level and vertex-wise cortical thickness, as well as connectome-wide functional connectivity values derived from resting state functional MRI, using longitudinal imaging data from the Adolescent Brain Cognitive DevelopmentSM Study release 4.0. Our analyses reveal distinct spatial patterns for the annualized changes in vertex-wise cortical thickness and connectome-wide connectivity values in early adolescence, highlighting a critical time of brain maturation. The simulations and application to real data show that FEMA enables advanced investigation of the relationships between large numbers of neuroimaging metrics and variables of interest while considering complex study designs, including repeated measures and family structures, in a fast and efficient manner. The source code for FEMA is available via: https://github.com/cmig-research-group/cmig_tools/.
Collapse
Affiliation(s)
- Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Chun Chieh Fan
- Center for Population Neuroscience and GeneticsLaureate Institute for Brain ResearchTulsaOklahomaUSA
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
- Centre for Bioinformatics, Department of InformaticsUniversity of OsloOsloNorway
| | - Clare E. Palmer
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Diana M. Smith
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Neurosciences Graduate ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
- Medical Scientist Training ProgramUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Carolina Makowski
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - John R. Iversen
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute for Neural ComputationUniversity of California San DiegoLa JollaCaliforniaUSA
- The Swartz Center for Computational NeuroscienceUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Psychology Neuroscience & BehaviourMcMaster UniversityHamiltonOntarioCanada
| | - Diliana Pecheva
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Dominic Holland
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Robert Loughnan
- Population Neuroscience and Genetics LabUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Pierre Nedelec
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wesley K. Thompson
- Center for Population Neuroscience and GeneticsLaureate Institute for Brain ResearchTulsaOklahomaUSA
| | - Donald J. Hagler
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Terry L. Jernigan
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Human DevelopmentUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Cognitive ScienceUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Thomas E. Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Anders M. Dale
- Department of Radiology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Cognitive ScienceUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of NeuroscienceUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
27
|
Sullivan-Toole H, Jobson KR, Hoffman LJ, Stewart LC, Olson IR, Olino TM. Adolescents at risk for depression show increased white matter microstructure with age across diffuse areas of the brain. Dev Cogn Neurosci 2023; 64:101307. [PMID: 37813039 PMCID: PMC10570597 DOI: 10.1016/j.dcn.2023.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023] Open
Abstract
Maternal history of depression is a strong predictor of depression in offspring and linked to structural and functional alterations in the developing brain. However, very little work has examined differences in white matter in adolescents at familial risk for depression. In a sample aged 9-14 (n = 117), we used tract-based spatial statistics (TBSS) to examine differences in white matter microstructure between adolescents with (n = 42) and without (n = 75) maternal history of depression. Microstructure was indexed using fractional anisotropy (FA). Threshold-free cluster enhancement was applied and cluster maps were thresholded at whole-brain family-wise error < .05. There was no significant main effect of risk status on FA. However, there was a significant interaction between risk status and age, such that large and diffuse portions of the white matter skeleton showed relatively increased FA with age for youth with a maternal history of depression compared to those without. Most tracts identified by the interaction were robust to controlling for sex, youth internalizing, in-scanner motion, neighborhood SES, and intra-cranial volume, evidence that maternal depression is a unique predictor of white matter alterations in youth. Widespread increases in FA with age may correspond to a global pattern of accelerated brain maturation in youth at risk for depression.
Collapse
Affiliation(s)
| | - Katie R Jobson
- Department of Psychology and Neuroscience, Temple University, USA
| | - Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, USA
| | | | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, USA
| | - Thomas M Olino
- Department of Psychology and Neuroscience, Temple University, USA
| |
Collapse
|
28
|
Baranger DA, Miller AP, Gorelik AJ, Paul SE, Hatoum AS, Johnson EC, Colbert SM, Smyser CD, Rogers CE, Bijsterbosch JD, Agrawal A, Bogdan R. Prenatal cannabis exposure is associated with localized brain differences that partially mediate associations with increased adolescent psychopathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295792. [PMID: 37790406 PMCID: PMC10543205 DOI: 10.1101/2023.09.19.23295792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Prenatal cannabis exposure (PCE) is associated with mental health problems, but the neurobiological mechanisms remain unknown. We find that PCE is associated with localized differences across neuroimaging metrics that longitudinally mediate associations with mental health in adolescence (n=9,322-10,186). Differences in brain development may contribute to PCE-related variability in adolescent mental health.
Collapse
Affiliation(s)
- David Aa Baranger
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Alex P Miller
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Aaron J Gorelik
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Sarah E Paul
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Sarah Mc Colbert
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
29
|
Bottenhorn KL, Cardenas-Iniguez C, Mills KL, Laird AR, Herting MM. Profiling intra- and inter-individual differences in brain development across early adolescence. Neuroimage 2023; 279:120287. [PMID: 37536527 PMCID: PMC10833064 DOI: 10.1016/j.neuroimage.2023.120287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
As we move toward population-level developmental neuroscience, understanding intra- and inter-individual variability in brain maturation and sources of neurodevelopmental heterogeneity becomes paramount. Large-scale, longitudinal neuroimaging studies have uncovered group-level neurodevelopmental trajectories, and while recent work has begun to untangle intra- and inter-individual differences, they remain largely unclear. Here, we aim to quantify both intra- and inter-individual variability across facets of neurodevelopment across early adolescence (ages 8.92 to 13.83 years) in the Adolescent Brain Cognitive Development (ABCD) Study and examine inter-individual variability as a function of age, sex, and puberty. Our results provide novel insight into differences in annualized percent change in macrostructure, microstructure, and functional brain development from ages 9-13 years old. These findings reveal moderate age-related intra-individual change, but age-related differences in inter-individual variability only in a few measures of cortical macro- and microstructure development. Greater inter-individual variability in brain development were seen in mid-pubertal individuals, except for a few aspects of white matter development that were more variable between prepubertal individuals in some tracts. Although both sexes contributed to inter-individual differences in macrostructure and functional development in a few regions of the brain, we found limited support for hypotheses regarding greater male-than-female variability. This work highlights pockets of individual variability across facets of early adolescent brain development, while also highlighting regional differences in heterogeneity to facilitate future investigations in quantifying and probing nuances in normative development, and deviations therefrom.
Collapse
Affiliation(s)
- Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA; Department of Psychology, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, 1227 University St, Eugene, OR 97403, USA
| | - Angela R Laird
- Department of Physics, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, 1845 N Soto St, Los Angeles, CA 90032, USA.
| |
Collapse
|
30
|
Makowski C, Brown TT, Zhao W, Hagler DJ, Parekh P, Garavan H, Nichols TE, Jernigan TL, Dale AM. Leveraging the Adolescent Brain Cognitive Development Study to improve behavioral prediction from neuroimaging in smaller replication samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545340. [PMID: 37398195 PMCID: PMC10312746 DOI: 10.1101/2023.06.16.545340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Magnetic resonance imaging (MRI) is a popular and useful non-invasive method to map patterns of brain structure and function to complex human traits. Recently published observations in multiple large scale studies cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional MRI, which seems to account for little behavioral variability. We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM (ABCD®) Study to inform the replication sample size required with both univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~100 subjects for structural MRI. Even with 100 random re-samplings of 50 subjects in the discovery sample, prediction can be adequately powered with 98 subjects in the replication sample for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many investigators' research programs and grants.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Timothy T Brown
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Weiqi Zhao
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, California USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont, USA
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, California USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Newman BT, Patrie JT, Druzgal TJ. An intracellular isotropic diffusion signal is positively associated with pubertal development in white matter. Dev Cogn Neurosci 2023; 63:101301. [PMID: 37717292 PMCID: PMC10511341 DOI: 10.1016/j.dcn.2023.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Puberty is a key event in adolescent development that involves significant, hormone-driven changes to many aspects of physiology including the brain. Understanding how the brain responds during this time period is important for evaluating neuronal developments that affect mental health throughout adolescence and the adult lifespan. This study examines diffusion MRI scans from the cross-sectional ABCD Study baseline cohort, a large multi-site study containing thousands of participants, to describe the relationship between pubertal development and brain microstructure. Using advanced, 3-tissue constrained spherical deconvolution methods, this study is able to describe multiple tissue compartments beyond only white matter (WM) axonal qualities. After controlling for age, sex, brain volume, subject handedness, scanning site, and sibling relationships, we observe a positive relationship between an isotropic, intracellular diffusion signal fraction and pubertal development across a majority of regions of interest (ROIs) in the WM skeleton. We also observe regional effects from an intracellular anisotropic signal fraction compartment and extracellular isotropic free water-like compartment in several ROIs. This cross-sectional work suggests that changes in pubertal status are associated with a complex response from brain tissue that cannot be completely described by traditional methods focusing only on WM axonal properties.
Collapse
Affiliation(s)
- Benjamin T Newman
- Department of Radiology and Medical Imaging, School of Medicine, University of Virginia, USA.
| | - James T Patrie
- Department of Public Health Sciences, School of Medicine, University of Virginia, USA
| | - T Jason Druzgal
- Department of Radiology and Medical Imaging, School of Medicine, University of Virginia, USA
| |
Collapse
|
32
|
Herting M, Cotter D, Ahmadi H, Cardenas-Iniguez C, Bottenhorn K, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman D, Chen JC. Sex-specific effects in how childhood exposures to multiple ambient air pollutants affect white matter microstructure development across early adolescence. RESEARCH SQUARE 2023:rs.3.rs-3213618. [PMID: 37645919 PMCID: PMC10462194 DOI: 10.21203/rs.3.rs-3213618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ambient air pollution is ubiquitous, yet questions remain as to how it might impact the developing brain. Large changes occur in the brain's white matter (WM) microstructure across adolescence, with noticeable differences in WM integrity in male and female youth. Here we report sex-stratified effects of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on longitudinal patterns of WM microstructure from 9-13 years-old in 8,182 (49% female) participants using restriction spectrum imaging. After adjusting for key sociodemographic factors, multi-pollutant, sex-stratified models showed that one-year annual exposure to PM2.5 and NO2 was associated with higher, while O3 was associated with lower, intracellular diffusion at age 9. All three pollutants also affected trajectories of WM maturation from 9-13 years-old, with some sex-specific differences in the number and anatomical locations of tracts showing altered trajectories of intracellular diffusion. Concentrations were well-below current U.S. standards, suggesting exposure to these criteria pollutants during adolescence may have long-term consequences on brain development.
Collapse
|
33
|
Ma J, McGlade EC, Huber RS, Lyoo IK, Renshaw PF, Yurgelun-Todd DA. Overweight/Obesity-related microstructural alterations of the fimbria-fornix in the ABCD study: The role of aerobic physical activity. PLoS One 2023; 18:e0287682. [PMID: 37437033 PMCID: PMC10337868 DOI: 10.1371/journal.pone.0287682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023] Open
Abstract
Childhood overweight/obesity has been associated with negative consequences related to brain function and may involve alterations in white matter pathways important for cognitive and emotional processing. Aerobic physical activity is a promising lifestyle factor that could restore white matter alterations. However, little is known about either regional white matter alterations in children with overweight/obesity or the effects of aerobic physical activity targeting the obesity-related brain alterations in children. Using a large-scale cross-sectional population-based dataset of US children aged 9 to 10 years (n = 8019), this study explored the associations between overweight/obesity and microstructure of limbic white matter tracts, and examined whether aerobic physical activity may reduce the overweight/obesity-related white matter alterations in children. The primary outcome measure was restriction spectrum imaging (RSI)-derived white matter microstructural integrity measures. The number of days in a week that children engaged in aerobic physical activity for at least 60 minutes per day was assessed. We found that females with overweight/obesity had lower measures of integrity of the fimbria-fornix, a major limbic-hippocampal white matter tract, than their lean peers, while this difference was not significant in males. We also found a positive relationship between the number of days of aerobic physical activity completed in a week and integrity measures of the fimbria-fornix in females with overweight/obesity. Our results provide cross-sectional evidence of sex-specific microstructural alteration in the fimbria-fornix in children with overweight/obesity and suggest that aerobic physical activity may play a role in reducing this alteration. Future work should examine the causal direction of the relationship between childhood overweight/obesity and brain alterations and evaluate potential interventions to validate the effects of aerobic physical activity on this relationship.
Collapse
Affiliation(s)
- Jiyoung Ma
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Erin C. McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
| | - Rebekah S. Huber
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - In Kyoon Lyoo
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
| | - Deborah A. Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
34
|
Li ZA, Cai Y, Taylor RL, Eisenstein SA, Barch DM, Marek S, Hershey T. Associations Between Socioeconomic Status, Obesity, Cognition, and White Matter Microstructure in Children. JAMA Netw Open 2023; 6:e2320276. [PMID: 37368403 DOI: 10.1001/jamanetworkopen.2023.20276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Importance Lower neighborhood and household socioeconomic status (SES) are associated with negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter and via what mechanisms. Objective To assess whether and how neighborhood and household SES are independently associated with children's white matter microstructure and examine whether obesity and cognitive performance (reflecting environmental cognitive and sensory stimulation) are plausible mediators. Design, Setting, and Participants This cross-sectional study used baseline data from participants in the Adolescent Brain Cognitive Development (ABCD) study. Data were collected at 21 US sites, and school-based recruitment was used to represent the US population. Children aged 9 to 11 years and their parents or caregivers completed assessments between October 1, 2016, and October 31, 2018. After exclusions, 8842 of 11 875 children in the ABCD study were included in the analyses. Data analysis was conducted from July 11 to December 19, 2022. Exposures Neighborhood disadvantage was derived from area deprivation indices at participants' primary residence. Household SES factors were total income and highest parental educational attainment. Main Outcomes and Measures A restriction spectrum imaging (RSI) model was used to quantify restricted normalized directional (RND; reflecting oriented myelin organization) and restricted normalized isotropic (RNI; reflecting glial and neuronal cell bodies) diffusion in 31 major white matter tracts. The RSI measurements were scanner harmonized. Obesity was assessed through body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), age- and sex-adjusted BMI z scores, and waist circumference, and cognition was assessed through the National Institutes of Health Toolbox Cognition Battery. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, mean head motion, and twin or siblingship. Results Among 8842 children, 4543 (51.4%) were boys, and the mean (SD) age was 9.9 (0.7) years. Linear mixed-effects models revealed that greater neighborhood disadvantage was associated with lower RSI-RND in the left superior longitudinal fasciculus (β = -0.055; 95% CI, -0.081 to -0.028) and forceps major (β = -0.040; 95% CI, -0.067 to -0.013). Lower parental educational attainment was associated with lower RSI-RND in the bilateral superior longitudinal fasciculus (eg, right hemisphere: β = 0.053; 95% CI, 0.025-0.080) and bilateral corticospinal or pyramidal tract (eg, right hemisphere: β = 0.042; 95% CI, 0.015-0.069). Structural equation models revealed that lower cognitive performance (eg, lower total cognition score and higher neighborhood disadvantage: β = -0.012; 95% CI, -0.016 to -0.009) and greater obesity (eg, higher BMI and higher neighborhood disadvantage: β = -0.004; 95% CI, -0.006 to -0.001) partially accounted for the associations between SES and RSI-RND. Lower household income was associated with higher RSI-RNI in most tracts (eg, right inferior longitudinal fasciculus: β = -0.042 [95% CI, -0.073 to -0.012]; right anterior thalamic radiations: β = -0.045 [95% CI, -0.075 to -0.014]), and greater neighborhood disadvantage had similar associations in primarily frontolimbic tracts (eg, right fornix: β = 0.046 [95% CI, 0.019-0.074]; right anterior thalamic radiations: β = 0.045 [95% CI, 0.018-0.072]). Lower parental educational attainment was associated with higher RSI-RNI in the forceps major (β = -0.048; 95% CI, -0.077 to -0.020). Greater obesity partially accounted for these SES associations with RSI-RNI (eg, higher BMI and higher neighborhood disadvantage: β = 0.015; 95% CI, 0.011-0.020). Findings were robust in sensitivity analyses and were corroborated using diffusion tensor imaging. Conclusions and Relevance In this cross-sectional study, both neighborhood and household contexts were associated with white matter development in children, and findings suggested that obesity and cognitive performance were possible mediators in these associations. Future research on children's brain health may benefit from considering these factors from multiple socioeconomic perspectives.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Yuqi Cai
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Now with Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rita L Taylor
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri
| |
Collapse
|
35
|
Massett R, Maher A, Imms P, Amgalan A, Chaudhari N, Chowdhury N, Irimia A. Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression. J Gerontol A Biol Sci Med Sci 2023; 78:872-881. [PMID: 36183259 PMCID: PMC10235198 DOI: 10.1093/gerona/glac209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we describe a ridge regression model that quantifies each region's contribution to BA. After model testing on an independent sample of 651 HCs, we compute the coefficient of partial determination R¯p2 for each regional brain volume to quantify its contribution to BA. Model performance is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE ) and mean squared error (MSE) of BA estimates. On training data, r=0.92, MSE=70.94 years, MAE=6.57 years, and R¯2=0.81; on test data, r=0.90, MSE=81.96 years, MAE=7.00 years, and R¯2=0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R¯p2=7.27%), inferior temporal gyrus (R¯p2=4.03%), thalamus (R¯p2=3.61%), brainstem (R¯p2=3.29%), posterior lateral sulcus (R¯p2=3.22%), caudate nucleus (R¯p2=3.05%), orbital gyrus (R¯p2=2.96%), and precentral gyrus (R¯p2=2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, our model can be used to validate future ML approaches for BA estimation.
Collapse
Affiliation(s)
- Roy J Massett
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Alexander S Maher
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Phoebe E Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Nahian F Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
36
|
Genc S, Raven EP, Drakesmith M, Blakemore SJ, Jones DK. Novel insights into axon diameter and myelin content in late childhood and adolescence. Cereb Cortex 2023; 33:6435-6448. [PMID: 36610731 PMCID: PMC10183755 DOI: 10.1093/cercor/bhac515] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
White matter microstructural development in late childhood and adolescence is driven predominantly by increasing axon density and myelin thickness. Ex vivo studies suggest that the increase in axon diameter drives developmental increases in axon density observed with pubertal onset. In this cross-sectional study, 50 typically developing participants aged 8-18 years were scanned using an ultra-strong gradient magnetic resonance imaging scanner. Microstructural properties, including apparent axon diameter $({d}_a)$, myelin content, and g-ratio, were estimated in regions of the corpus callosum. We observed age-related differences in ${d}_a$, myelin content, and g-ratio. In early puberty, males had larger ${d}_a$ in the splenium and lower myelin content in the genu and body of the corpus callosum, compared with females. Overall, this work provides novel insights into developmental, pubertal, and cognitive correlates of individual differences in apparent axon diameter and myelin content in the developing human brain.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
- Department of Radiology, New York University School of Medicine, 550 1st Ave., New York, NY 10016, United States
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Sarah-Jayne Blakemore
- Department of Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
37
|
Li ZA, Samara A, Ray MK, Rutlin J, Raji CA, Shimony JS, Sun P, Song SK, Hershey T, Eisenstein SA. Childhood obesity is linked to putative neuroinflammation in brain white matter, hypothalamus, and striatum. Cereb Cortex Commun 2023; 4:tgad007. [PMID: 37207193 PMCID: PMC10191798 DOI: 10.1093/texcom/tgad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Neuroinflammation is both a consequence and driver of overfeeding and weight gain in rodent obesity models. Advances in magnetic resonance imaging (MRI) enable investigations of brain microstructure that suggests neuroinflammation in human obesity. To assess the convergent validity across MRI techniques and extend previous findings, we used diffusion basis spectrum imaging (DBSI) to characterize obesity-associated alterations in brain microstructure in 601 children (age 9-11 years) from the Adolescent Brain Cognitive DevelopmentSM Study. Compared with children with normal-weight, greater DBSI restricted fraction (RF), reflecting neuroinflammation-related cellularity, was seen in widespread white matter in children with overweight and obesity. Greater DBSI-RF in hypothalamus, caudate nucleus, putamen, and, in particular, nucleus accumbens, correlated with higher baseline body mass index and related anthropometrics. Comparable findings were seen in the striatum with a previously reported restriction spectrum imaging (RSI) model. Gain in waist circumference over 1 and 2 years related, at nominal significance, to greater baseline RSI-assessed restricted diffusion in nucleus accumbens and caudate nucleus, and DBSI-RF in hypothalamus, respectively. Here we demonstrate that childhood obesity is associated with microstructural alterations in white matter, hypothalamus, and striatum. Our results also support the reproducibility, across MRI methods, of findings of obesity-related putative neuroinflammation in children.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Amjad Samara
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
| | - Mary Katherine Ray
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Cyrus A Raji
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
38
|
Sukumaran K, Cardenas-Iniguez C, Burnor E, Bottenhorn KL, Hackman DA, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Ambient fine particulate exposure and subcortical gray matter microarchitecture in 9- and 10-year-old children across the United States. iScience 2023; 26:106087. [PMID: 36915692 PMCID: PMC10006642 DOI: 10.1016/j.isci.2023.106087] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Neuroimaging studies showing the adverse effects of air pollution on neurodevelopment have largely focused on smaller samples from limited geographical locations and have implemented univariant approaches to assess exposure and brain macrostructure. Herein, we implement restriction spectrum imaging and a multivariate approach to examine how one year of annual exposure to daily fine particulate matter (PM2.5), daily nitrogen dioxide (NO2), and 8-h maximum ozone (O3) at ages 9-10 years relates to subcortical gray matter microarchitecture in a geographically diverse subsample of children from the Adolescent Brain Cognitive Development (ABCD) Study℠. Adjusting for confounders, we identified a latent variable representing 66% of the variance between one year of air pollution and subcortical gray matter microarchitecture. PM2.5 was related to greater isotropic intracellular diffusion in the thalamus, brainstem, and accumbens, which related to cognition and internalizing symptoms. These findings may be indicative of previously identified air pollution-related risk for neuroinflammation and early neurodegenerative pathologies.
Collapse
Affiliation(s)
- Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Daniel A. Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
39
|
Li ZA, Cai Y, Taylor RL, Eisenstein SA, Barch DM, Marek S, Hershey T. Associations between socioeconomic status and white matter microstructure in children: indirect effects via obesity and cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285150. [PMID: 36798149 PMCID: PMC9934783 DOI: 10.1101/2023.02.09.23285150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Importance Both neighborhood and household socioeconomic disadvantage relate to negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter development, and via what mechanisms socioeconomic status (SES) influences the brain. Objective To test independent associations between neighborhood and household SES indicators and white matter microstructure in children, and examine whether body mass index and cognitive function (a proxy of environmental cognitive/sensory stimulation) may plausibly mediate these associations. Design This cross-sectional study used baseline data from the Adolescent Brain Cognitive Development (ABCD) Study, an ongoing 10-year cohort study tracking child health. Setting School-based recruitment at 21 U.S. sites. Participants Children aged 9 to 11 years and their parents/caregivers completed baseline assessments between October 1 st , 2016 and October 31 st , 2018. Data analysis was conducted from July to December 2022. Exposures Neighborhood disadvantage was derived from area deprivation indices at primary residence. Household SES indicators were total income and the highest parental education attainment. Main Outcomes and Measures Thirty-one major white matter tracts were segmented from diffusion-weighted images. The Restriction Spectrum Imaging (RSI) model was implemented to measure restricted normalized directional (RND; reflecting oriented myelin organization) and isotropic (RNI; reflecting glial/neuronal cell bodies) diffusion in each tract. Obesity-related measures were body mass index (BMI), BMI z -scores, and waist circumference, and cognitive performance was assessed using the NIH Toolbox Cognition Battery. Linear mixed-effects models tested the associations between SES indicators and scanner-harmonized RSI metrics. Structural equation models examined indirect effects of obesity and cognitive performance in the significant associations between SES and white mater microstructure summary principal components. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, and head motion. Results The analytical sample included 8842 children (4299 [48.6%] girls; mean age [SD], 9.9 [0.7] years). Greater neighborhood disadvantage and lower parental education were independently associated with lower RSI-RND in forceps major and corticospinal/pyramidal tracts, and had overlapping associations in the superior longitudinal fasciculus. Lower cognition scores and greater obesity-related measures partially accounted for these SES associations with RSI-RND. Lower household income was related to higher RSI-RNI in almost every tract, and greater neighborhood disadvantage had similar effects in primarily frontolimbic tracts. Lower parental education was uniquely linked to higher RSI-RNI in forceps major. Greater obesity-related measures partially accounted for these SES associations with RSI-RNI. Findings were robust in sensitivity analyses and mostly corroborated using traditional diffusion tensor imaging (DTI). Conclusions and Relevance These cross-sectional results demonstrate that both neighborhood and household contexts are relevant to white matter development in children, and suggest cognitive performance and obesity as possible pathways of influence. Interventions targeting obesity reduction and improving cognition from multiple socioeconomic angles may ameliorate brain health in low-SES children. Key Points Question: Are neighborhood and household socioeconomic levels associated with children’s brain white matter microstructure, and if so, do obesity and cognitive performance (reflecting environmental stimulation) mediate the associations?Findings: In a cohort of 8842 children, higher neighborhood disadvantage, lower household income, and lower parental education had independent and overlapping associations with lower restricted directional diffusion and greater restricted isotropic diffusion in white matter. Greater body mass index and poorer cognitive performance partially mediated these associations.Meaning: Both neighborhood and household poverty may contribute to altered white matter development in children. These effects may be partially explained by obesity incidence and poorer cognitive performance.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuqi Cai
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rita L. Taylor
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sarah A. Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
Lawrence KE, Abaryan Z, Laltoo E, Hernandez LM, Gandal MJ, McCracken JT, Thompson PM. White matter microstructure shows sex differences in late childhood: Evidence from 6797 children. Hum Brain Mapp 2023; 44:535-548. [PMID: 36177528 PMCID: PMC9842921 DOI: 10.1002/hbm.26079] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023] Open
Abstract
Sex differences in white matter microstructure have been robustly demonstrated in the adult brain using both conventional and advanced diffusion-weighted magnetic resonance imaging approaches. However, sex differences in white matter microstructure prior to adulthood remain poorly understood; previous developmental work focused on conventional microstructure metrics and yielded mixed results. Here, we rigorously characterized sex differences in white matter microstructure among over 6000 children from the Adolescent Brain Cognitive Development study who were between 9 and 10 years old. Microstructure was quantified using both the conventional model-diffusion tensor imaging (DTI)-and an advanced model, restriction spectrum imaging (RSI). DTI metrics included fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). RSI metrics included normalized isotropic, directional, and total intracellular diffusion (N0, ND, NT). We found significant and replicable sex differences in DTI or RSI microstructure metrics in every white matter region examined across the brain. Sex differences in FA were regionally specific. Across white matter regions, boys exhibited greater MD, AD, and RD than girls, on average. Girls displayed increased N0, ND, and NT compared to boys, on average, suggesting greater cell and neurite density in girls. Together, these robust and replicable findings provide an important foundation for understanding sex differences in health and disease.
Collapse
Affiliation(s)
- Katherine E. Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zvart Abaryan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Emily Laltoo
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Leanna M. Hernandez
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Michael J. Gandal
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - James T. McCracken
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
41
|
Zhang JL, Zhou N, Song KR, Zou BW, Xu LX, Fu Y, Geng XM, Wang ZL, Li X, Potenza MN, Nan Y, Zhang JT. Neural activations to loss anticipation mediates the association between difficulties in emotion regulation and screen media activities among early adolescent youth: A moderating role for depression. Dev Cogn Neurosci 2022; 58:101186. [PMID: 36516611 PMCID: PMC9764194 DOI: 10.1016/j.dcn.2022.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Screen media activities (SMAs; e.g., watching videos, playing videogames) have become increasingly prevalent among youth as ways to alleviate or escape from negative emotional states. However, neural mechanisms underlying these processes in youth are incompletely understood. METHOD Seventy-nine youth aged 11-15 years completed a monetary incentive delay task during fMRI scanning. Neural correlates of reward/loss processing and their associations with SMAs were explored. Next, brain activations during reward/loss processing in regions implicated in the processing of emotions were examined as potential mediating factors between difficulties in emotion regulation (DER) and engagement in SMAs. Finally, a moderated mediation model tested the effects of depressive symptoms in such relationships. RESULT The emotional components associated with SMAs in reward/loss processing included activations in the left anterior insula (AI) and right dorsolateral prefrontal cortex (DLPFC) during anticipation of working to avoid losses. Activations in both the AI and DLPFC mediated the relationship between DER and SMAs. Moreover, depressive symptoms moderated the relationship between AI activation in response to loss anticipation and SMAs. CONCLUSION The current findings suggest that DER link to SMAs through loss-related brain activations implicated in the processing of emotions and motivational avoidance, particularly in youth with greater levels of depressive symptoms. The findings suggest the importance of enhancing emotion-regulation tendencies/abilities in youth and, in particular, their regulatory responses to negative emotional situations in order to guide moderate engagement in SMAs.
Collapse
Affiliation(s)
- Jia-Lin Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Nan Zhou
- Faculty of Education, University of Macau, Macau, China
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bo-Wen Zou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lin-Xuan Xu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yu Fu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Min Geng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zi-Liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Department of Neuroscience and Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Yun Nan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|