1
|
Gudina A, Wordofa M, Urgessa F. Immuno-hematological parameters among adult HIV patients before and after initiation of Dolutegravir based antiretroviral therapy, Addis Ababa, Ethiopia. PLoS One 2024; 19:e0310239. [PMID: 39480901 PMCID: PMC11527299 DOI: 10.1371/journal.pone.0310239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/27/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Immuno-hematological abnormalities are common among HIV infected individuals as well as patients with highly active antiretroviral therapy (HAART). However, the immuno-hematological outcome of Dolutegravir based antiretroviral therapy (ART) usage is not well investigated. OBJECTIVES To assess hematological and immunological parameters among adult HIV patients before and after initiation of Dolutegravir based ART regimen at St. Peter Specialized Hospital, Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted from May to July 2021 at St. Peter Specialized Hospital among adult HIV patients. A total of 422 HIV patients on Dolutegravir based ART (combination of Dolutegravir/lamivudine/tenofovir disoproxil fumarate (DTG/3TC/TDF)) for a minimum of 3 months were selected using convenient sampling methods. Socio-demographic as well as clinical data of the participants was obtained using pre-tested structured questionnaires and a review of medical records. Hematological parameters such as CBC was obtained using Beckman coulter automated hematology analyzer and immunological parameters such as CD4 count were determined using BD FACS presto. Statistical analysis of the data was done using SPSS version 21. Paired t-test was used to compare dependent variables before and after initiation of the new HAART and binary logistic regression was used to determine predictors of immuno-hematological abnormalities. P-value < 0.05 was considered as statistically significant. RESULTS Of 422 adult HIV patients, about 273(64.7%) were females. The mean age of study participants was 42.2 years (±10.4SD). The mean white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin (Hb), platelet distribution width (PDW), CD4 count, as well as lymphocyte percentage, neutrophil percentage, and platelet counts (PLT) were increased significantly(P<0.05) after 3 months of the Dolutegravir based therapy. While, red cell distribution width (RDW) and mean cell hemoglobin (MCH) were decreased (P<0.05) after the treatment. Other hematological parameters such as mean cell volume (MCV), hematocrit (HCT), mean cell hemoglobin concentration (MCHC), mean platelet volume (MPV) and platelet distribution width (PDW) showed no significant change. On the other hand, the most common hematological abnormalities identified after the new HAART were anemia (12.1%); followed by Leucopenia (11.3%), neutropenia (6%), and thrombocytopenia (4%). Anemia was associated with female sex (AOR = 7.8, 95% CI: 1.9-32.2, P<0.005) and WHO clinical stage III/IV (AOR = 16, 95% CI: 10.63-66.46, P<0.01). CONCLUSION There was a significant change in certain immuno-hematological parameters such as WBC count, RBC count, PLT count, Hb, PDW, CD4 count, lymphocyte and neutrophil percentage after initiation of the Dolutegravir based therapy. Anemia was the most common hematological abnormality. Further studies are required to fully comprehend the outcome of the new treatment regimen on immuno-hematological parameters.
Collapse
Affiliation(s)
- Ayantu Gudina
- Maychew Health Center, Gulale Sub City, Addis Ababa, Ethiopia
| | - Moges Wordofa
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fekadu Urgessa
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Awamura T, Nakasone ES, Gangcuangco LM, Subia NT, Bali AJ, Chow DC, Shikuma CM, Park J. Platelet and HIV Interactions and Their Contribution to Non-AIDS Comorbidities. Biomolecules 2023; 13:1608. [PMID: 38002289 PMCID: PMC10669125 DOI: 10.3390/biom13111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Platelets are anucleate cytoplasmic cell fragments that circulate in the blood, where they are involved in regulating hemostasis. Beyond their normal physiologic role, platelets have emerged as versatile effectors of immune response. During an infection, cell surface receptors enable platelets to recognize viruses, resulting in their activation. Activated platelets release biologically active molecules that further trigger host immune responses to protect the body against infection. Their impact on the immune response is also associated with the recruitment of circulating leukocytes to the site of infection. They can also aggregate with leukocytes, including lymphocytes, monocytes, and neutrophils, to immobilize pathogens and prevent viral dissemination. Despite their host protective role, platelets have also been shown to be associated with various pathophysiological processes. In this review, we will summarize platelet and HIV interactions during infection. We will also highlight and discuss platelet and platelet-derived mediators, how they interact with immune cells, and the multifaceted responsibilities of platelets in HIV infection. Furthermore, we will give an overview of non-AIDS comorbidities linked to platelet dysfunction and the impact of antiretroviral therapy on platelet function.
Collapse
Affiliation(s)
- Thomas Awamura
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Elizabeth S. Nakasone
- University of Hawai‘i Cancer Center, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
| | - Louie Mar Gangcuangco
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Natalie T. Subia
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Aeron-Justin Bali
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Dominic C. Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Cecilia M. Shikuma
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| |
Collapse
|
3
|
Castell N, Guerrero-Martin SM, Rubin LH, Shirk EN, Brockhurst JK, Lyons CE, Najarro KM, Queen SE, Carlson BW, Adams RJ, Morrell CN, Gama L, Graham DR, Zink C, Mankowski JL, Clements JE, Metcalf Pate KA. Effect of Single Housing on Innate Immune Activation in Immunodeficiency Virus-Infected Pigtail Macaques ( Macaca nemestrina ) as a Model of Psychosocial Stress in Acute HIV Infection. Psychosom Med 2022; 84:966-975. [PMID: 36162063 PMCID: PMC9553260 DOI: 10.1097/psy.0000000000001132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/27/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Simian immunodeficiency virus (SIV) infection of macaques recapitulates many aspects of HIV pathogenesis and is similarly affected by both genetic and environmental factors. Psychosocial stress is associated with immune system dysregulation and worse clinical outcomes in people with HIV. This study assessed the impact of single housing, as a model of psychosocial stress, on innate immune responses of pigtailed macaques ( Macaca nemestrina ) during acute SIV infection. METHODS A retrospective analysis of acute SIV infection of 2- to si6-year-old male pigtailed macaques was performed to compare the innate immune responses of socially ( n = 41) and singly ( n = 35) housed animals. Measures included absolute monocyte count and subsets, and in a subset ( n ≤ 18) platelet counts and activation data. RESULTS SIV infection resulted in the expected innate immune parameter changes with a modulating effect from housing condition. Monocyte number increased after infection for both groups, driven by classical monocytes (CD14 + CD16 - ), with a greater increase in socially housed animals (227%, p < .001, by day 14 compared with preinoculation time points). Platelet numbers recovered more quickly in the socially housed animals. Platelet activation (P-selectin) increased by 65% ( p = .004) and major histocompatibility complex class I surface expression by 40% ( p = .009) from preinoculation only in socially housed animals, whereas no change in these measures occurred in singly housed animals. CONCLUSIONS Chronic psychosocial stress produced by single housing may play an immunomodulatory role in the innate immune response to acute retroviral infection. Dysregulated innate immunity could be one of the pathways by which psychosocial stress contributes to immune suppression and increased disease severity in people with HIV.
Collapse
|
4
|
Lawrence SP, Elser SE, Torben W, Blair RV, Pahar B, Aye PP, Schiro F, Szeltner D, Doyle-Meyers LA, Haggarty BS, Jordan APO, Romano J, Leslie GJ, Alvarez X, O’Connor DH, Wiseman RW, Fennessey CM, Li Y, Piatak M, Lifson JD, LaBranche CC, Lackner AA, Keele BF, Maness NJ, Marsh M, Hoxie JA. A cellular trafficking signal in the SIV envelope protein cytoplasmic domain is strongly selected for in pathogenic infection. PLoS Pathog 2022; 18:e1010507. [PMID: 35714165 PMCID: PMC9275724 DOI: 10.1371/journal.ppat.1010507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.
Collapse
Affiliation(s)
- Scott P. Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Samra E. Elser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Dawn Szeltner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Beth S. Haggarty
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrea P. O. Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Josephine Romano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George J. Leslie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David H. O’Connor
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yuan Li
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Celia C. LaBranche
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew A. Lackner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - James A. Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
HIV-Related Immune Activation and Inflammation: Current Understanding and Strategies. J Immunol Res 2021; 2021:7316456. [PMID: 34631899 PMCID: PMC8494587 DOI: 10.1155/2021/7316456] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Although antiretroviral therapy effectively controls human immunodeficiency virus (HIV) replication, a residual chronic immune activation/inflammation persists throughout the disease. This aberrant immune activation and inflammation are considered an accelerator of non-AIDS-related events and one of the driving forces of CD4+ T cell depletion. Unfortunately, HIV-associated immune activation is driven by various factors, while the mechanism of excessive inflammation has not been formally clarified. To date, several clinical interventions or treatment candidates undergoing clinical trials have been proposed to combat this systemic immune activation/inflammation. However, these strategies revealed limited results, or their nonspecific anti-inflammatory properties are similar to previous interventions. Here, we reviewed recent learnings of immune activation and persisting inflammation associated with HIV infection, as well as the current directions to overcome it. Of note, a more profound understanding of the specific mechanisms for aberrant inflammation is still imperative for identifying an effective clinical intervention strategy.
Collapse
|
6
|
Madzime M, Rossouw TM, Theron AJ, Anderson R, Steel HC. Interactions of HIV and Antiretroviral Therapy With Neutrophils and Platelets. Front Immunol 2021; 12:634386. [PMID: 33777022 PMCID: PMC7994251 DOI: 10.3389/fimmu.2021.634386] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are important components of the innate immune system that mediate pathogen defense by multiple processes including phagocytosis, release of proteolytic enzymes, production of reactive oxygen species, and neutrophil extracellular trap formation. Abnormalities of neutrophil count and function have been described in the setting of HIV infection, with the majority of antiretroviral agents (ARVs), excluding zidovudine, having been reported to correct neutropenia. Questions still remain, however, about their impact on neutrophil function, particularly the possibility of persistent neutrophil activation, which could predispose people living with HIV to chronic inflammatory disorders, even in the presence of virally-suppressive treatment. In this context, the effects of protease inhibitors and integrase strand transfer inhibitors, in particular, on neutrophil function remain poorly understood and deserve further study. Besides mediating hemostatic functions, platelets are increasingly recognized as critical role players in the immune response against infection. In the setting of HIV, these cells have been found to harbor the virus, even in the presence of antiretroviral therapy (ART) potentially promoting viral dissemination. While HIV-infected individuals often present with thrombocytopenia, they have also been reported to have increased platelet activation, as measured by an upregulation of expression of CD62P (P-selectin), CD40 ligand, glycoprotein IV, and RANTES. Despite ART-mediated viral suppression, HIV-infected individuals reportedly have sustained platelet activation and dysfunction. This, in turn, contributes to persistent immune activation and an inflammatory vascular environment, seemingly involving neutrophil-platelet-endothelium interactions that increase the risk for development of comorbidities such as cardiovascular disease (CVD) that has become the leading cause of morbidity and mortality in HIV-infected individuals on treatment, clearly underscoring the importance of unraveling the possible etiologic roles of ARVs. In this context, abacavir and ritonavir-boosted lopinavir and darunavir have all been linked to an increased risk of CVD. This narrative review is therefore focused primarily on the role of neutrophils and platelets in HIV transmission and disease, as well as on the effect of HIV and the most common ARVs on the numbers and functions of these cells, including neutrophil-platelet-endothelial interactions.
Collapse
Affiliation(s)
- Morris Madzime
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Jackson BS, Nunes Goncalves J, Pretorius E. Comparison of pathological clotting using haematological, functional and morphological investigations in HIV-positive and HIV-negative patients with deep vein thrombosis. Retrovirology 2020; 17:14. [PMID: 32571345 PMCID: PMC7310079 DOI: 10.1186/s12977-020-00523-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients infected with the human immunodeficiency virus (HIV) are more prone to systemic inflammation and pathological clotting, and many may develop deep vein thrombosis (DVT) as a result of this dysregulated inflammatory profile. Coagulation tests are not routinely performed unless there is a specific reason. METHODS We recruited ten healthy control subjects, 35 HIV negative patients with deep vein thrombosis (HIV negative-DVT), and 13 HIV patients with DVT (HIV positive-DVT) on the primary antiretroviral therapy (ARV) regimen-emtricitabine, tenofovir and efavirenz. Serum inflammatory markers, haematological results, viscoelastic properties using thromboelastography (TEG) and scanning electron microscopy (SEM) of whole blood (WB) were used to compare the groups. RESULTS The DVT patients (HIV positive and HIV negative) had raised inflammatory markers. The HIV positive-DVT group had anaemia in keeping with anaemia of chronic disorders. DVT patients had a hypercoagulable profile on the TEG but no significant difference between HIV negative-DVT and HIV positive-DVT groups. The TEG analysis compared well and supported our ultrastructural results. Scanning electron microscopy of DVT patient's red blood cells (RBCs) and platelets demonstrated inflammatory changes including abnormal cell shapes, irregular membranes and microparticle formation. All the ultrastructural changes were more prominent in the HIV positive-DVT patients. CONCLUSIONS Although there were trends that HIV-positive patients were more hypercoagulable on functional tests (viscoelastic profile) compared to HIV-negative patients, there were no significant differences between the 2 groups. The sample size was, however, small in number. Morphologically there were inflammatory changes in patients with DVT. These ultrastructural changes, specifically with regard to platelets, appear more pronounced in HIV-positive patients which may contribute to increased risk for hypercoagulability and deep vein thrombosis.
Collapse
Affiliation(s)
- Brandon S Jackson
- Department of Surgery, University of Pretoria, Pretoria, 0007, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa.
| |
Collapse
|
8
|
Schander A, Glickman AA, Weber N, Rodgers B, Carney MB. A 45-year-old Female with an Atypical Presentation of Pharyngitis. Clin Pract Cases Emerg Med 2020; 4:234-240. [PMID: 32426682 PMCID: PMC7219994 DOI: 10.5811/cpcem.2020.2.46974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/22/2020] [Indexed: 11/11/2022] Open
Abstract
Introduction Emergency physicians are trained to treat a variety of ailments in the emergency department (ED), some of which are emergent, while others are not. A common complaint seen in the ED is a sore throat. While most sore throats are easily diagnosed and treated, less common causes are often not considered in the differential diagnoses. Therefore, the purpose of this case study was to present an atypical case of sore throat and discuss differential diagnoses. Case Presentation The patient was a 45-year-old female who presented to the ED with a three-day history of sore throat that was exacerbated by eating and drinking. The patient was not on any prescription medications, but tried over-the-counter medications for the sore throat without any improvement in symptoms. Review of systems was positive for sore throat, fevers, and chills. Physical examination of her oropharynx revealed mildly dry mucous membranes with confluent plaques and white patchy ulcerative appearance involving the tongue, tonsils, hard palate, and soft palate. Rapid streptococcal antigen, mononucleosis spot test, and KOH test were performed and found to be negative. Discussion After initial testing was negative, a follow-up complete blood count with differential and complete metabolic profile were ordered. The patient was found to have decreased lymphocytes and platelets. Based upon those results, a diagnosis was made in the ED, the patient was started on medication, and further laboratory workup was ordered to confirm the diagnosis. ED providers should consider non-infectious as well as infectious causes for a sore throat, as this might lead to a diagnosis of an underlying condition.
Collapse
Affiliation(s)
- Artur Schander
- Sacred Heart Hospital, Department of Emergency Medicine, Pensacola, Florida
| | - Andrew A Glickman
- HCA/USF Morsani College of Medicine GME Consortium: Brandon Regional Hospital, Department of Emergency Medicine, Brandon, Florida
| | - Nancy Weber
- Texas Tech University Health Sciences Center, Department of Emergency Medicine, El Paso, Texas.,Paul L. Foster School of Medicine, Department of Emergency Medicine, El Paso, Texas
| | | | - Michael B Carney
- Reynold's Memorial Hospital, Department of Emergency Medicine, Glen Dale, West Virginia
| |
Collapse
|
9
|
Jackson JW, Rivera-Marquez GM, Beebe K, Tran AD, Trepel JB, Gestwicki JE, Blagg BS, Ohkubo S, Neckers LM. Pharmacologic dissection of the overlapping impact of heat shock protein family members on platelet function. J Thromb Haemost 2020; 18:1197-1209. [PMID: 32022992 PMCID: PMC7497839 DOI: 10.1111/jth.14758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Platelets play a pivotal role in hemostasis, wound healing, and inflammation, and are thus implicated in a variety of diseases, including cancer. Platelet function is associated with release of granule content, cellular shape change, and upregulation of receptors that promote establishment of a thrombus and maintenance of hemostasis. OBJECTIVES The role of heat shock proteins (Hsps) in modulating platelet function has been studied for a number of years, but comparative roles of individual Hsps have not been thoroughly examined. METHODS We utilized a panel of specific inhibitors of Hsp40, Hsp70, Hsp90, and Grp94 (the endoplasmic reticulum homolog of Hsp90) to assess their impact on several aspects of platelet function. RESULTS Inhibition of each of the aforementioned Hsps reduced alpha granule release. In contrast, there was some selectivity in impacts on dense granule release. Thromboxane synthesis was impaired after exposure to inhibitors of Hsp40, Hsp90, and Grp94, but not after inhibition of Hsp70. Both expression of active glycoprotein IIb/IIIa (GPIIb/IIIa) and fibrinogen-induced platelet shape change were diminished by our inhibitors. In contrast, aggregation was selectively abrogated after inhibition of Hsp40 or Hsp90. Lastly, activated platelet-cancer cell interactions were reduced by inhibition of both Hsp70 and Grp94. CONCLUSIONS These data suggest the importance of Hsp networks in regulating platelet activity.
Collapse
Affiliation(s)
- Joseph W. Jackson
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| | - Genesis M. Rivera-Marquez
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| | - Andy D. Tran
- Confocal Microscopy Core Facility, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jane B. Trepel
- Developmental Therapeutics Branch, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the
Institute for Neurodegenerative Disease, University of California at San Francisco,
San Francisco, California
| | - Brian S.J. Blagg
- Department of Chemistry and Biochemistry, The
University of Notre Dame, Notre Dame, Illinois
| | - Shuichi Ohkubo
- Tsukuba Research Center, Taiho
Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research,
National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
10
|
Papain Ameliorates the MPAs Formation-Mediated Activation of Monocytes by Inhibiting Cox-2 Expression via Regulating the MAPKs and PI3K/Akt Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3632084. [PMID: 30410927 PMCID: PMC6206584 DOI: 10.1155/2018/3632084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022]
Abstract
Monocytes activation and subsequent inflammatory response mediated by monocyte-platelet aggregates (MPAs) formation play the key roles in the early pathogenesis of atherosclerosis (AS). Exploration of novel drugs to ameliorate MPAs formation-mediated monocytes activation would be helpful for the treatment of AS patients. Papain has definite pharmacological effects including antiplatelet, thrombolysis, and anti-inflammation. However, its effect on MPAs formation and the following monocytes activation remains vague. This study aimed to illustrate the underlying mechanisms of papain on MPAs formation-initiated monocytes activation in vitro. In this study, Papain, Cox-2 inhibitor (NS-398), and NF-κB agonist (TNF-α) were used as the treating agents, respectively. MPAs formation and activated monocytes were measured by flow cytometry (FCM). Cox-2 mRNA, MCP-1, and proteins of Cox-2 and NF-κB signal pathway were detected by qRT-PCR, ELISA, and western blotting, respectively. As we observed, papain exhibited the powerful inhibitory effects on thrombin-mediated MPAs formation and monocytes activation in a concentration-dependent manner as what Cox-2 inhibitor demonstrated. However, the inhibitory tendency was significantly reversed by TNF-α. We also discovered that both Cox-2 mRNA and protein expression as well as the release of MCP-1 of monocyte was inhibited by either papain or NS-398, but TNF-α stimulated Cox-2 expression and release of MCP-1. The results of western blotting assay indicated that thrombin-mediated proteins expression of MAPKs and PI3K/Akt signal pathway was inhibited by papain and NS-398. However, TNF-α notably abated the inhibitory effects of papain on the process of MPAs-initiated monocytes activation. Our findings suggest that papain can inhibit the MPAs formation-mediated activation of monocytes by inhibiting the MAPKs and PI3K/Akt signal pathway.
Collapse
|
11
|
Mietsch M, Sauermann U, Mätz-Rensing K, Klippert A, Daskalaki M, Stolte-Leeb N, Stahl-Hennig C. Revisiting a quarter of a century of simian immunodeficiency virus (SIV)-associated cardiovascular diseases at the German Primate Center. Primate Biol 2017; 4:107-115. [PMID: 32110698 PMCID: PMC7041533 DOI: 10.5194/pb-4-107-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus (HIV) comorbidities have become
clinically more important due to antiretroviral therapy. Although therapy
increases life expectancy, it does not completely suppress immune activation
and its associated complications. The simian immunodeficiency virus
(SIV)-infected rhesus macaque (Macaca mulatta) represents a valuable
model for the investigation of SIV-associated diseases. Although
cardiovascular (CV) changes are common in HIV-infected patients, there are
only a few reports on the incidence of CV findings in SIV-infected animals.
In addition, potential associations between pathohistological findings and
hematological parameters are still unclear. We therefore conducted a retrospective analysis of 195 SIV-infected rhesus
macaques that were euthanized with AIDS-related symptoms at the German
Primate Center, Goettingen, over a 25-year period. Pathological findings
were correlated with hematological data. The main findings included myocarditis (12.8 %), endocarditis
(9.7 %),
and arteriopathy (10.3 %) in various organs. Thrombocytopenia occurred
more frequently in macaques with endocarditis or arteriopathy than in
macaques without CV disease (80 % in animals with endocarditis, 60 %
in animals with arteriopathy, p<0.0001 and p=0.0016, respectively). Further investigations of the interaction between coagulation markers,
proinflammatory cytokines, and biomarkers associated with endothelial
dysfunction (e.g., D-dimers) and histological data (vascular wall structure)
may unravel the mechanisms underlying HIV/SIV-associated CV comorbidities.
Collapse
Affiliation(s)
- Matthias Mietsch
- Unit of Infection Models, German Primate Center, 37077 Goettingen, Germany.,These authors contributed equally to this work
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, 37077 Goettingen, Germany.,These authors contributed equally to this work
| | | | - Antonina Klippert
- Unit of Infection Models, German Primate Center, 37077 Goettingen, Germany
| | - Maria Daskalaki
- Unit of Infection Models, German Primate Center, 37077 Goettingen, Germany
| | - Nicole Stolte-Leeb
- Unit of Infection Models, German Primate Center, 37077 Goettingen, Germany
| | | |
Collapse
|
12
|
Allam O, Samarani S, Jenabian MA, Routy JP, Tremblay C, Amre D, Ahmad A. Differential synthesis and release of IL-18 and IL-18 Binding Protein from human platelets and their implications for HIV infection. Cytokine 2016; 90:144-154. [PMID: 27914933 DOI: 10.1016/j.cyto.2016.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Abstract
IL-18 is a pro-inflammatory cytokine belonging to the IL-1 family and is produced in the body from macrophages, epithelial and dendritic cells, keratinocytes, adrenal cortex etc. The cytokine is produced as an inactive precursor that is cleaved inside cells into its mature form by activated caspase 1, which exists as an inactive precursor in human cells and requires assembly of an inflammasomes for its activation. We show here for the first time that human platelets contain transcripts for the IL-18 gene. They synthesize the cytokine de novo, process and release it upon activation. The activation also results in the assembly of an inflammasome and activation of caspase-1. Platelets also contain the IL-18 antagonist, the IL-18-Binding Protein (IL-18BP); however, it is not synthesized in them de novo, is present in pre-made form and is released irrespective of platelet activation. IL-18 and IL-18BP co-localize to α granules inside platelets and are secreted out with different kinetics. Platelet activation contributes to plasma concentrations in healthy individuals, as their plasma samples contain abundant IL-18, while their platelet-poor plasma samples contain very little amounts of the cytokine. The plasma and PPP samples from these donors, however, contain comparable amounts of IL-18BP. Unlike healthy individuals, the platelet-poor plasma from HIV-infected individuals contains significant amounts of IL-18. Our findings have important implications for viral infections and other human diseases that are accompanied by platelet activation.
Collapse
Affiliation(s)
- Ossama Allam
- Laboratory of Innate Immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada
| | - Suzanne Samarani
- Laboratory of Innate Immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University, Montreal, QC, Canada
| | - Cecile Tremblay
- CHUM/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada
| | - Devendra Amre
- CHU Ste-Justine Research Center/Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Ali Ahmad
- Laboratory of Innate Immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
13
|
Parker ZF, Rux AH, Riblett AM, Lee FH, Rauova L, Cines DB, Poncz M, Sachais BS, Doms RW. Platelet Factor 4 Inhibits and Enhances HIV-1 Infection in a Concentration-Dependent Manner by Modulating Viral Attachment. AIDS Res Hum Retroviruses 2016; 32:705-17. [PMID: 26847431 DOI: 10.1089/aid.2015.0344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Platelet factor 4 (PF4) has been recently shown to inhibit infection by a broad range of human immunodeficiency virus type 1 (HIV-1) isolates in vitro. We found that the inhibitory effects of PF4 are limited to a defined concentration range where PF4 exists largely in a monomeric state. Under these conditions, PF4 bound the HIV-1 envelope protein and inhibited HIV-1 attachment to the cell surface. However, as concentrations increased to the point where PF4 exists largely in tetrameric or higher-order forms, viral infection in vitro was enhanced. Enhancement could be inhibited by mutations in PF4 that shift the oligomeric equilibrium toward the monomeric state, or by using soluble glycosaminoglycans (GAGs) to which tetrameric PF4 avidly binds. We conclude that at physiologically relevant concentrations, oligomeric PF4 enhances infection by HIV-1 by interacting with the viral envelope protein as well as cell surface GAGs, enhancing virus attachment to the cell surface. This effect was not specific to HIV-1, as enhancement was seen with some but not all other viruses tested. The biphasic effects of PF4 on HIV-1 infection suggest that native PF4 will not be a useful antiviral agent and that PF4 could contribute to the hematologic abnormalities commonly seen in HIV-infected individuals by enhancing virus infection in the bone marrow.
Collapse
Affiliation(s)
- Zahra F. Parker
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ann H. Rux
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Amber M. Riblett
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Fang-Hua Lee
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lubica Rauova
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Douglas B. Cines
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mortimer Poncz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Bruce S. Sachais
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- New York Blood Center, New York, New York
| | - Robert W. Doms
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Departments of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Nair M, Maria JM, Agudelo M, Yndart A, Vargas-Rivera ME. Platelets Contribute to BBB Disruption Induced by HIV and Alcohol. ACTA ACUST UNITED AC 2015; 3:182. [PMID: 26501067 PMCID: PMC4612493 DOI: 10.4172/2329-6488.1000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The role of platelets in the neurological diseases that underlie cognitive impairment has attracted increasing attention in recent years. Multiple pathways in platelets contribute to host defenses, as well as to CNS function. In the current study, we hypothesize that the Blood Brain Barrier (BBB) is disrupted when exposed to platelets from patients with triple Co-morbidity (hazardous alcohol users+ HIV+ thrombocytopenia), compared to those with dual, single or no morbidity (HIV only, alcohol only or healthy controls).
Collapse
Affiliation(s)
- Madhavan Nair
- Professor and Chair, Institute of Neuro-Immune Pharmacology, Department of Immunology, Florida International University, Miami, FL, USA
| | - Jose Mb Maria
- Professor, School of Integrated Health and Science, Department of Art and Science, Florida International University, Miami, FL, USA
| | - Marisela Agudelo
- Institute of Neuro-Immune Pharmacology, Department of Immunology, Florida International University, Miami, FL, USA
| | - Adriana Yndart
- Institute of Neuro-Immune Pharmacology, Department of Immunology, Florida International University, Miami, FL, USA
| | - Mayra E Vargas-Rivera
- School of Integrated Science and Humanity, College of Arts and Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
15
|
TGFβ-Mediated Downregulation of Thrombopoietin Is Associated With Platelet Decline in Asymptomatic SIV Infection. J Acquir Immune Defic Syndr 2014; 65:510-6. [PMID: 24220290 DOI: 10.1097/qai.0000000000000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Thrombocytopenia is a known consequence of HIV infection, and decreased production of platelets has been previously implicated in the pathogenesis of platelet decline during asymptomatic infection. Thrombopoietin (THPO) drives platelet production by stimulating the maturation of bone marrow megakaryocytes and can be transcriptionally downregulated by cytokines that are increased during infection such as transforming growth factor β (TGFβ) and platelet factor 4 (pf4). DESIGN To determine whether transcriptional downregulation of THPO contributed to decreased platelet production during asymptomatic infection in the simian immunodeficiency virus (SIV)/macaque model of HIV, we compared hepatic THPO mRNA levels to platelet number and megakaryocyte density. To identify potential inhibitory factors that decrease THPO transcription during asymptomatic infection, we measured TGFβ and pf4 plasma levels. To determine whether combined antiretroviral therapy (cART) could correct platelet decline by altering cytokine levels, we measured TGFβ and pf4 in cART-treated SIV-infected macaques and compared these values to cART-untreated SIV-infected macaques. RESULTS Hepatic THPO transcription was downregulated during asymptomatic SIV infection concurrent with platelet decline. Hepatic THPO mRNA levels correlated with bone marrow megakaryocyte density. In contrast, plasma TGFβ levels were inversely correlated with hepatic THPO transcription and bone marrow megakaryocyte density. With cART treatment, plasma TGFβ levels and platelet count returned to values similar to those in uninfected macaques. CONCLUSIONS TGFβ-mediated downregulation of hepatic THPO may lead to decline in platelet number during asymptomatic SIV infection, and cART may prevent platelet decline by normalizing plasma TGFβ levels.
Collapse
|
16
|
Davidson DC, Jackson JW, Maggirwar SB. Targeting platelet-derived soluble CD40 ligand: a new treatment strategy for HIV-associated neuroinflammation? J Neuroinflammation 2013; 10:144. [PMID: 24289660 PMCID: PMC3906985 DOI: 10.1186/1742-2094-10-144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/16/2013] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) continues to be one of the most prevalent global health afflictions to date. The advent and introduction of combined antiretroviral therapy (cART) has made a significant impact on the course of infection. However, as patients are living longer, many HIV-associated illnesses are becoming prevalent among the infected population, especially those associated with chronic inflammation. Consistently, HIV-associated neuroinflammation is believed to be a major catalyst in the development of HIV-associated neurocognitive disorders (HAND), which are estimated to persist in approximately 50% of infected individuals regardless of cART. This dramatically underscores the need to develop effective adjunctive therapies capable of controlling this aspect of the disease, which are currently lacking. We previously demonstrated that the inflammatory mediator soluble CD40 ligand (sCD40L) is elevated in both the plasma and cerebrospinal fluid of cognitively impaired infected individuals compared to their non-impaired infected counterparts. Our group, and others have recently demonstrated that there is an increasing role for this inflammatory mediator in the pathogenesis of HIV-associated neuroinflammation, thereby identifying this molecule as a potential therapeutic target for the management of HAND. Platelets are the major source of circulating sCD40L, and these small cells are increasingly implicated in a multitude of inflammatory disorders, including those common during HIV infection. Thus, antiplatelet therapies that minimize the release of platelet-derived inflammatory mediators such as sCD40L are an innovative, non-traditional approach for the treatment of HIV-associated neuroinflammation, with the potential to benefit other HIV-associated illnesses.
Collapse
Affiliation(s)
| | | | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Metcalf Pate KA, Lyons CE, Dorsey JL, Shirk EN, Queen SE, Adams RJ, Gama L, Morrell CN, Mankowski JL. Platelet activation and platelet-monocyte aggregate formation contribute to decreased platelet count during acute simian immunodeficiency virus infection in pig-tailed macaques. J Infect Dis 2013; 208:874-83. [PMID: 23852120 DOI: 10.1093/infdis/jit278] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelets are key participants in innate immune responses to pathogens. As a decrease in circulating platelet count is one of the initial hematologic indicators of human immunodeficiency virus (HIV) infection, we sought to determine whether decline in platelet number during acute infection results from decreased production, increased antibody-mediated destruction, or increased platelet activation in a simian immunodeficiency virus (SIV)/macaque model. During acute SIV infection, circulating platelets were activated with increased surface expression of P-selection, CD40L and major histocompatibility complex class I. Platelet production was maintained and platelet autoantibodies were not detected during acute infection. Concurrent with a decrease in platelet numbers and an increase in circulating monocytes, platelets were found sequestered in platelet-monocyte aggregates, thereby contributing to the decline in platelet counts. Because the majority of circulating CD16(+) monocytes formed complexes with platelets during acute SIV infection, a decreased platelet count may represent platelet participation in the innate immune response to HIV.
Collapse
Affiliation(s)
- Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|