1
|
Wei M, Nurjanah U, Li J, Luo X, Hosea R, Li Y, Zeng J, Duan W, Song G, Miyagishi M, Kasim V, Wu S. YY2-DRP1 Axis Regulates Mitochondrial Fission and Determines Cancer Stem Cell Asymmetric Division. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207349. [PMID: 37300334 PMCID: PMC10427375 DOI: 10.1002/advs.202207349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/24/2023] [Indexed: 06/12/2023]
Abstract
Cancer stem cells (CSCs) are associated with tumor progression, recurrence, and therapeutic resistance. To maintain their pool while promoting tumorigenesis, CSCs divide asymmetrically, producing a CSC and a highly proliferative, more differentiated transit-amplifying cell. Exhausting the CSC pool has been proposed as an effective antitumor strategy; however, the mechanism underlying CSC division remains poorly understood, thereby largely limiting its clinical application. Here, through cross-omics analysis, yin yang 2 (YY2) is identified as a novel negative regulator of CSC maintenance. It is shown that YY2 is downregulated in stem-like tumor spheres formed by hepatocarcinoma cells and in liver cancer, in which its expression is negatively correlated with disease progression and poor prognosis. Furthermore, it is revealed that YY2 overexpression suppressed liver CSC asymmetric division, leading to depletion of the CSC pool and decreased tumor-initiating capacity. Meanwhile, YY2 knock-out in stem-like tumor spheres caused enrichment in mitochondrial functions. Mechanistically, it is revealed that YY2 impaired mitochondrial fission, and consequently, liver CSC asymmetric division, by suppressing the transcription of dynamin-related protein 1. These results unravel a novel regulatory mechanism of mitochondrial dynamic-mediated CSCs asymmetric division and highlight the role of YY2 as a tumor suppressor and a therapeutic target in antitumor treatment.
Collapse
Affiliation(s)
- Mankun Wei
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Uli Nurjanah
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Juan Li
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Xinxin Luo
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Rendy Hosea
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Jianting Zeng
- Department of Hepatobiliary and Pancreatic OncologyChongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| | - Wei Duan
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Makoto Miyagishi
- Life Science InnovationSchool of Integrative and Global MajorsUniversity of TsukubaTsukubaIbaraki305‐0006Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue RepairCollege of BioengineeringChongqing UniversityChongqing400044P. R. China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| |
Collapse
|
2
|
Li J, Zhu R, Zhuang X, Zhang C, Shen H, Wu X, Zhang M, Huang C, Xiang Q, Zhao L, Xu Y, Zhang Y. Rational Design, Synthesis and Biological Evaluation of Benzo[d]isoxazole Derivatives as Potent BET Bivalent Inhibitors for Potential Treatment of Prostate Cancer. Bioorg Chem 2023; 135:106495. [PMID: 37004437 DOI: 10.1016/j.bioorg.2023.106495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Multivalency is an attractive strategy for effective binding to target protein. Bromodomain and extra-terminal (BET) family features two tandem bromodomains (BD1, BD2), which are considered to be potential new targets for prostate cancer. Herein, we report the rational design, optimization, and evaluation of a class of novel BET bivalent inhibitors based on our monovalent BET inhibitor 7 (Y06037). The representative bivalent inhibitor 17b effectively inhibited the cell growth of LNCaP, exhibiting 32 folds more potency than monovalent inhibitor 7. Besides, 17b induced 95.1 % PSA regression in LNCaP cell at 2 μM. Docking study was further carried out to reveal the potential binding mode of 17b with two BET bromodomains. Our study demonstrates that 17b (Y13021) is a promising BET bivalent inhibitor for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Run Zhu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Maofeng Zhang
- Suzhou Vocational Health College, No. 28 Kehua Road, Suzhou 215009, China
| | - Cen Huang
- Jiangsu S&T Exchange Center with Foreign Countries, No. 175 Longpan Road, Nanjing 210042, China
| | - Qiuping Xiang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
3
|
Zhong S, Peng S, Chen Z, Chen Z, Luo JL. Choosing Kinase Inhibitors for Androgen Deprivation Therapy-Resistant Prostate Cancer. Pharmaceutics 2022; 14:498. [PMID: 35335873 PMCID: PMC8950316 DOI: 10.3390/pharmaceutics14030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a systemic therapy for advanced prostate cancer (PCa). Although most patients initially respond to ADT, almost all cancers eventually develop castration resistance. Castration-resistant PCa (CRPC) is associated with a very poor prognosis, and the treatment of which is a serious clinical challenge. Accumulating evidence suggests that abnormal expression and activation of various kinases are associated with the emergence and maintenance of CRPC. Many efforts have been made to develop small molecule inhibitors to target the key kinases in CRPC. These inhibitors are designed to suppress the kinase activity or interrupt kinase-mediated signal pathways that are associated with PCa androgen-independent (AI) growth and CRPC development. In this review, we briefly summarize the roles of the kinases that are abnormally expressed and/or activated in CRPC and the recent advances in the development of small molecule inhibitors that target kinases for the treatment of CRPC.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Shoujiao Peng
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, China; (S.Z.); (S.P.); (Z.C.)
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33459, USA
| |
Collapse
|
4
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
5
|
Tang DE, Dai Y, He JX, Lin LW, Leng QX, Geng XY, Fu DX, Jiang HW, Xu SH. Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor-targeted therapy in advanced prostate cancer. J Pathol 2020; 252:101-113. [PMID: 32617978 DOI: 10.1002/path.5495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
The histone demethylase KDM4B functions as a key co-activator for the androgen receptor (AR) and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 methylation marks. Constitutively active androgen receptor confers anti-androgen resistance in advanced prostate cancer. However, the role of KDM4B in resistance to next-generation anti-androgens and the mechanisms of KDM4B regulation are poorly defined. Here we found that KDM4B is overexpressed in enzalutamide-resistant prostate cancer cells. Overexpression of KDM4B promoted recruitment of AR to the c-Myc (MYC) gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA, which regulates the sensitivity to next-generation AR-targeted therapy. Inhibition of KDM4B significantly inhibited prostate tumor cell growth in xenografts, and improved enzalutamide treatments through suppression of c-Myc. Clinically, KDM4B expression was found upregulated and to correlate with prostate cancer progression and poor prognosis. Our results revealed a novel mechanism of anti-androgen resistance via histone demethylase alteration which could be targeted through inhibition of KDM4B to reduce AR-dependent c-Myc expression and overcome resistance to AR-targeted therapies. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dong-E Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China
| | - Jia-Xi He
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lie-Wen Lin
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China
| | - Qi-Xin Leng
- Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xin-Yan Geng
- Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - De-Xue Fu
- Department of Surgery, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hao-Wu Jiang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| | - Song-Hui Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, PR China.,Department of Pathology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Xu S, Fan L, Jeon HY, Zhang F, Cui X, Mickle MB, Peng G, Hussain A, Fazli L, Gleave ME, Dong X, Qi J. p300-Mediated Acetylation of Histone Demethylase JMJD1A Prevents Its Degradation by Ubiquitin Ligase STUB1 and Enhances Its Activity in Prostate Cancer. Cancer Res 2020; 80:3074-3087. [PMID: 32522824 DOI: 10.1158/0008-5472.can-20-0233] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/05/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
The androgen receptor (AR) pathway plays a central role in the development of castration-resistant prostate cancer (CRPC). The histone demethylase JMJD1A has been shown to regulate activities of AR and c-Myc transcription factors and promote prostate cancer progression. Here, we report that JMJD1A protein stability is controlled by the ubiquitin ligase STUB1. High levels of JMJD1A were strongly correlated with low STUB1 levels in human CRPC specimens. STUB1 inhibited AR activity, AR-V7 levels, and prostate cancer cell growth partly through degradation of JMJD1A. Furthermore, the acetyltransferase p300 acetylated JMJD1A at lysine (K) 421, a modification that recruits the BET family member BRD4 to block JMJD1A degradation and promote JMJD1A recruitment to AR targets. Increased levels of both total and K421-acetylated JMJD1A were observed in prostate cancer cells as they developed resistance to the AR antagonist enzalutamide. Treatment of prostate cancer cells with either p300 or BET inhibitors destabilized JMJD1A, and enzalutamide-resistant prostate cancer cells were more sensitive than parental cells to these inhibitors. Together, our findings identify a critical role for acetylation of JMJD1A in regulating JMJD1A stability and AR activity in CRPC. These newly identified mechanisms controlling JMJD1A protein stability provide potential druggable targets to encourage the development of additional therapies for advanced prostate cancer. SIGNIFICANCE: Identification of mechanisms regulating JMJD1A protein stability reveals new strategies to destabilize JMJD1A and concomitantly inhibit AR activities as potential prostate cancer therapy.
Collapse
Affiliation(s)
- Songhui Xu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Lingling Fan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Hee-Young Jeon
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Fengbo Zhang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Cui
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - McKayla B Mickle
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Guihong Peng
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Arif Hussain
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Baltimore VA Medical Center, Baltimore, Maryland
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
7
|
Xu Y, Wang Q, Xiao K, Liu Z, Zhao L, Song X, Hu X, Feng Z, Gao T, Zuo W, Zeng J, Wang N, Yu L. Novel Dual BET and PLK1 Inhibitor WNY0824 Exerts Potent Antitumor Effects in CRPC by Inhibiting Transcription Factor Function and Inducing Mitotic Abnormality. Mol Cancer Ther 2020; 19:1221-1231. [PMID: 32220972 DOI: 10.1158/1535-7163.mct-19-0578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/31/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is a lethal disease with few treatment alternatives once patients become resistant to second-generation antiandrogens. In CRPC, BET proteins are key regulators of AR- and MYC-mediated transcription, while the PLK1 inhibitor potentially downregulates AR and MYC besides influencing the cell cycle. Therefore, synchronous inhibition of BET and PLK1 would be a promising approach for CRPC therapy. This study developed a dual BET and PLK1 inhibitor WNY0824 with nanomolar and equipotent inhibition of BRD4 and PLK1. In vitro, WNY0824 exhibited excellent antiproliferation activity on AR-positive CRPC cells and induced apoptosis. These activities are attributable to its disruption of the AR-transcriptional program and the inhibition of the ETS pathway. Furthermore, WNY0824 downregulated MYC and induced mitotic abnormality. In vivo, oral WNY0824 administration suppressed tumor growth in the CRPC xenograft model of enzalutamide resistance. These findings suggest that WNY0824 is a selective dual BET and PLK1 inhibitor with potent anti-CRPC oncogenic activity and provides insights into the development of other novel dual BET- and PLK1-inhibiting drugs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Benzamides
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle
- Cell Cycle Proteins/antagonists & inhibitors
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitosis
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/antagonists & inhibitors
- Receptors, Androgen/chemistry
- Transcription Factors/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kunjie Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tiantao Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiqiong Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
8
|
Umbreen S, Banday MM, Jamroze A, Mansini AP, Ganaie AA, Ferrari MG, Maqbool R, Beigh FH, Murugan P, Morrissey C, Corey E, Konety BR, Saleem M. COMMD3:BMI1 Fusion and COMMD3 Protein Regulate C-MYC Transcription: Novel Therapeutic Target for Metastatic Prostate Cancer. Mol Cancer Ther 2019; 18:2111-2123. [PMID: 31467179 DOI: 10.1158/1535-7163.mct-19-0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Gene rearrangement is reported to be associated to the aggressive phenotype and poor prognosis in prostate cancer. We identified a gene fusion between a transcription repressor (BMI1) and transcriptional factor (COMMD3) in human prostate cancer. We show that COMMD3:BMI1 fusion expression is significantly increased in prostate cancer disease in an order: normal tissue < primary < metastatic tumors (Mets). Although elevated TMPRSS-ERG/ETV fusion is reported in prostate cancer, we identified a subtype of Mets exhibiting low TMPRSS:ETV and high COMMD3:BMI1 We delineated the mechanism and function of COMMD3 and COMMD3:BMI1 in prostate cancer. We show that COMMD3 level is elevated in prostate cancer cell models, PDX models (adenocarcinoma, NECaP), and Mets. The analysis of TCGA/NIH/GEO clinical data showed a positive correlation between increased COMMD3 expression to the disease recurrence and poor survival in prostate cancer. We show that COMMD3 drives proliferation of normal cells and promotes migration/invasiveness of neoplastic cells. We show that COMMD3:BMI1 and COMMD3 regulate C-MYC transcription and C-MYC downstream pathway. The ChIP analysis showed that COMMD3 protein is recruited at the promoter of C-MYC gene. On the basis of these data, we investigated the relevance of COMMD3:BMI1 and COMMD3 as therapeutic targets using in vitro and xenograft mouse models. We show that siRNA-mediated targeting of COMMD3:BMI1 and COMMD3 significantly decreases (i) C-MYC expression in BRD/BET inhibitor-resistant cells, (ii) proliferation/invasion in vitro, and (iii) growth of prostate cancer cell tumors in mice. The IHC analysis of tumors confirmed the targeting of COMMD3-regulated molecular pathway under in vivo conditions. We conclude that COMMD3:BMI1 and COMMD3 are potential progression biomarkers and therapeutic targets of metastatic prostate cancer.
Collapse
Affiliation(s)
- Syed Umbreen
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Queens University, Belfast, Northern Ireland
| | - Mudassir Meraj Banday
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anmbreen Jamroze
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Hormel Institute, Austin, Minnesota
| | - Adrian P Mansini
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Arsheed A Ganaie
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marina G Ferrari
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raihana Maqbool
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Firdous H Beigh
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Badrinath R Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
9
|
Civenni G, Bosotti R, Timpanaro A, Vàzquez R, Merulla J, Pandit S, Rossi S, Albino D, Allegrini S, Mitra A, Mapelli SN, Vierling L, Giurdanella M, Marchetti M, Paganoni A, Rinaldi A, Losa M, Mira-Catò E, D'Antuono R, Morone D, Rezai K, D'Ambrosio G, Ouafik L, Mackenzie S, Riveiro ME, Cvitkovic E, Carbone GM, Catapano CV. Epigenetic Control of Mitochondrial Fission Enables Self-Renewal of Stem-like Tumor Cells in Human Prostate Cancer. Cell Metab 2019; 30:303-318.e6. [PMID: 31130467 DOI: 10.1016/j.cmet.2019.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/06/2018] [Accepted: 04/30/2019] [Indexed: 01/16/2023]
Abstract
Cancer stem cells (CSCs) contribute to disease progression and treatment failure in human cancers. The balance among self-renewal, differentiation, and senescence determines the expansion or progressive exhaustion of CSCs. Targeting these processes might lead to novel anticancer therapies. Here, we uncover a novel link between BRD4, mitochondrial dynamics, and self-renewal of prostate CSCs. Targeting BRD4 by genetic knockdown or chemical inhibitors blocked mitochondrial fission and caused CSC exhaustion and loss of tumorigenic capability. Depletion of CSCs occurred in multiple prostate cancer models, indicating a common vulnerability and dependency on mitochondrial dynamics. These effects depended on rewiring of the BRD4-driven transcription and repression of mitochondrial fission factor (Mff). Knockdown of Mff reproduced the effects of BRD4 inhibition, whereas ectopic Mff expression rescued prostate CSCs from exhaustion. This novel concept of targeting mitochondrial plasticity in CSCs through BRD4 inhibition provides a new paradigm for developing more effective treatment strategies for prostate cancer.
Collapse
Affiliation(s)
- Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Roberto Bosotti
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Andrea Timpanaro
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Ramiro Vàzquez
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Jessica Merulla
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Shusil Pandit
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Simona Rossi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Sara Allegrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Abhishek Mitra
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Sarah N Mapelli
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland; Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano 6900, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Luca Vierling
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Martina Giurdanella
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Martina Marchetti
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Alyssa Paganoni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Marco Losa
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Enrica Mira-Catò
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Rocco D'Antuono
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Keyvan Rezai
- Institute Curie-Hospital René Huguenin, Saint Cloud 92210, France
| | | | | | - Sarah Mackenzie
- Oncology Therapeutic Development (OTD), Clichy 92110, France
| | - Maria E Riveiro
- Oncology Therapeutic Development (OTD), Clichy 92110, France
| | - Esteban Cvitkovic
- Oncology Therapeutic Development (OTD), Clichy 92110, France; Oncoethix GmbH, Merck Sharp and Dohme Corp., Lucerne 6006, Switzerland
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland; Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.
| |
Collapse
|
10
|
Nowak DG, Katsenelson KC, Watrud KE, Chen M, Mathew G, D'Andrea VD, Lee MF, Swamynathan MM, Casanova-Salas I, Jibilian MC, Buckholtz CL, Ambrico AJ, Pan CH, Wilkinson JE, Newton AC, Trotman LC. The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J Cell Biol 2019; 218:1943-1957. [PMID: 31092557 PMCID: PMC6548123 DOI: 10.1083/jcb.201902048] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Nowak et al. show that loss of the AKT-inactivating phosphatase PHLPP2 paradoxically blocks prostate tumor growth and metastasis. PHLPP2, they find, is critical for MYC stability, suggesting that PHLPP2 inhibitors may present a therapeutic opportunity to target MYC. Metastatic prostate cancer commonly presents with targeted, bi-allelic mutations of the PTEN and TP53 tumor suppressor genes. In contrast, however, most candidate tumor suppressors are part of large recurrent hemizygous deletions, such as the common chromosome 16q deletion, which involves the AKT-suppressing phosphatase PHLPP2. Using RapidCaP, a genetically engineered mouse model of Pten/Trp53 mutant metastatic prostate cancer, we found that complete loss of Phlpp2 paradoxically blocks prostate tumor growth and disease progression. Surprisingly, we find that Phlpp2 is essential for supporting Myc, a key driver of lethal prostate cancer. Phlpp2 dephosphorylates threonine-58 of Myc, which renders it a limiting positive regulator of Myc stability. Furthermore, we show that small-molecule inhibitors of PHLPP2 can suppress MYC and kill PTEN mutant cells. Our findings reveal that the frequent hemizygous deletions on chromosome 16q present a druggable vulnerability for targeting MYC protein through PHLPP2 phosphatase inhibitors.
Collapse
Affiliation(s)
- Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY .,Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | | | | | - Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Matthew F Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | | | - Megan C Jibilian
- Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Caroline L Buckholtz
- Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | | | - Chun-Hao Pan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA
| | | |
Collapse
|
11
|
Civenni G, Albino D, Shinde D, Vázquez R, Merulla J, Kokanovic A, Mapelli SN, Carbone GM, Catapano CV. Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Front Oncol 2019; 9:385. [PMID: 31143708 PMCID: PMC6521702 DOI: 10.3389/fonc.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlo V. Catapano
- Institute of Oncology (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
12
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
13
|
Braadland PR, Urbanucci A. Chromatin reprogramming as an adaptation mechanism in advanced prostate cancer. Endocr Relat Cancer 2019; 26:R211-R235. [PMID: 30844748 DOI: 10.1530/erc-18-0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Tumor evolution is based on the ability to constantly mutate and activate different pathways under the selective pressure of targeted therapies. Epigenetic alterations including those of the chromatin structure are associated with tumor initiation, progression and drug resistance. Many cancers, including prostate cancer, present enlarged nuclei, and chromatin appears altered and irregular. These phenotypic changes are likely to result from epigenetic dysregulation. High-throughput sequencing applied to bulk samples and now to single cells has made it possible to study these processes in unprecedented detail. It is therefore timely to review the impact of chromatin relaxation and increased DNA accessibility on prostate cancer growth and drug resistance, and their effects on gene expression. In particular, we focus on the contribution of chromatin-associated proteins such as the bromodomain-containing proteins to chromatin relaxation. We discuss the consequence of this for androgen receptor transcriptional activity and briefly summarize wider gain-of-function effects on other oncogenic transcription factors and implications for more effective prostate cancer treatment.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Xue X, Zhang Y, Wang C, Zhang M, Xiang Q, Wang J, Wang A, Li C, Zhang C, Zou L, Wang R, Wu S, Lu Y, Chen H, Ding K, Li G, Xu Y. Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer. Eur J Med Chem 2018; 152:542-559. [PMID: 29758518 DOI: 10.1016/j.ejmech.2018.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The bromodomain and extra-terminal proteins (BET) have emerged as promising therapeutic targets for the treatment of castration-resistant prostate cancer (CRPC). We report the design, synthesis and evaluation of a new series of benzoxazinone-containing 3,5-dimethylisoxazole derivatives as selective BET inhibitors. One of the new compounds, (R)-12 (Y02234), binds to BRD4(1) with a Kd value of 110 nM and blocks bromodomain and acetyl lysine interactions with an IC50 value of 100 nM. It also exhibits selectivity for BET over non-BET bromodomain proteins and demonstrates reasonable anti-proliferation and colony formation inhibition effect in prostate cancer cell lines such as 22Rv1 and C4-2B. The BRD4 inhibitor (R)-12 also significantly suppresses the expression of ERG, Myc and AR target gene PSA at the mRNA level in prostate cancer cells. Treatment with (R)-12 significantly suppresses the tumor growth of prostate cancer (TGI = 70%) in a 22Rv1-derived xenograft model. These data suggest that compound (R)-12 is a promising lead compound for the development of a new class of therapeutics for the treatment of CRPC.
Collapse
Affiliation(s)
- Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Maofeng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Anhui Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116023, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China.
| |
Collapse
|
15
|
Zhang M, Zhang Y, Song M, Xue X, Wang J, Wang C, Zhang C, Li C, Xiang Q, Zou L, Wu X, Wu C, Dong B, Xue W, Zhou Y, Chen H, Wu D, Ding K, Xu Y. Structure-Based Discovery and Optimization of Benzo[d]isoxazole Derivatives as Potent and Selective BET Inhibitors for Potential Treatment of Castration-Resistant Prostate Cancer (CRPC). J Med Chem 2018; 61:3037-3058. [DOI: 10.1021/acs.jmedchem.8b00103] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Maofeng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Ming Song
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xishan Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Chun Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Donghai Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| |
Collapse
|