1
|
Hao B, Lin S, Liu H, Xu J, Chen L, Zheng T, Zhang W, Dang Y, Reiter RJ, Li C, Zhai H, Xia Q, Fan L. Baicalein tethers CD274/PD-L1 for autophagic degradation to boost antitumor immunity. Autophagy 2025; 21:917-933. [PMID: 39710370 PMCID: PMC12013432 DOI: 10.1080/15548627.2024.2439657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Immune checkpoint inhibitors, especially those targeting CD274/PD-L1yield powerful clinical therapeutic efficacy. Thoughmuch progress has been made in the development of antibody-basedCD274 drugs, chemical compounds applied for CD274degradation remain largely unavailable. Herein,baicalein, a monomer of traditional Chinese medicine, isscreened and validated to target CD274 and induces itsmacroautophagic/autophagic degradation. Moreover, we demonstrate thatCD274 directly interacts with MAP1LC3B (microtubule associatedprotein 1 light chain 3 beta). Intriguingly, baicalein potentiatesCD274-LC3 interaction to facilitate autophagic-lysosomal degradationof CD274. Importantly, targeted CD274. degradation via baicaleininhibits tumor development by boosting T-cell-mediated antitumorimmunity. Thus, we elucidate a critical role of autophagy-lysosomalpathway in mediating CD274 degradation, and conceptually demonstratethat the design of a molecular "glue" that tethers the CD274-LC3interaction is an appealing strategy to develop CD274 inhibitors incancer therapy.Abbreviations: ATTECs: autophagy-tethering compounds; AUTACs: AUtophagy-TArgeting Chimeras; AUTOTACs: AUTOphagy-TArgeting Chimeras; AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; BiFC: bimolecular fluorescence complementation; BafA1: bafilomycin A1; CD274/PD-L1/B7-H1: CD274 molecule; CQ: chloroquine; CGAS: cyclic GMP-AMP synthase; DAPI: 4'6-diamino-2-phenylindole; FITC: fluorescein isothiocyanate isomer; GFP: green fluorescent protein; GZMB: granzyme B; IHC: immunohistochemistry; ICB: immune checkpoint blockade; KO: knockout; KD: equilibrium dissociation constant; LYTAC: LYsosome-TArgeting Chimera; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MST: microscale thermophoresis; NFAT: nuclear factor of activated T cells; NFKB/NF-kB: nuclear factor kappa B; NSCLC: non-small-cell lung cancer; PDCD1: programmed cell death 1; PROTACs: PROteolysis TArgeting Chimeras; PRF1: perforin 1; PE: phosphatidylethanolamine; PHA: phytohemagglutinin; PMA: phorbol 12-myristate 13-acetate; STAT: signal transducer and activator of transcription; SPR: surface plasmon resonance; TILs: tumor-infiltrating lymphocyte; TME: tumor microenvironment.
Collapse
Affiliation(s)
- Bingjie Hao
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shumeng Lin
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haipeng Liu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junfang Xu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Zhang
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifang Dang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chaoqun Li
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Zhai
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Xia
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lihong Fan
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
2
|
Spitz ML, Kashkush A, Benhamou RI. Advancing target validation with PROTAC technology. Expert Opin Drug Discov 2025:1-13. [PMID: 40188374 DOI: 10.1080/17460441.2025.2490248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/08/2025]
Abstract
INTRODUCTION Targeted protein degradation (TPD) is a cutting-edge technology that provides new avenues for drug discovery and development. PROteolysis TArgeting Chimeras (PROTACs) are the most established and advanced TPD strategy, enabling the selective degradation of disease-associated and 'undruggable' proteins of interest (POIs) by leveraging the cell's natural protein degradation machinery. To confirm that PROTAC-induced proximity drives protein degradation, target validation and ternary complex formation must be thoroughly assessed. AREAS COVERED In this perspective, the authors detail some of the most widely used in silico, structural, in vitro, and in cellulo methods to validate PROTAC target engagement and ternary complex formation. Additionally, they discuss the growing use of PROTACs as chemical probes for novel target identification and validation. EXPERT OPINION Target validation is essential in the PROTAC approach, and ongoing studies should prioritize confirming ternary complex formation using assays conducted under physiologically relevant cellular conditions. Proteomics analyses are among the most valuable tools for elucidating PROTAC mechanisms, selectivity, and outcomes. The authors are optimistic about the future of PROTACs in drug development and their use as probes to confirm target engagement. PROTAC technology holds vast opportunities for future exploration, offering significant potential to further both chemical and biological research.
Collapse
Affiliation(s)
- M Leora Spitz
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Aseel Kashkush
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Raphael I Benhamou
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
Tai Y, Kong L, Wang Y, Zhao D, Chen X, Wu Q, Hao J, Wang X, Liu X, Chen D, Li J, Hu Y, Zhang W, Yun CH, Zhan Q. Identification and characterization of Bufalin as a novel EGFR degrader. Cancer Lett 2025:217715. [PMID: 40220852 DOI: 10.1016/j.canlet.2025.217715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) stands out as a common cancer type worldwide, characterized by its notably high rates of occurrence and mortality. The epidermal growth factor receptor (EGFR) is one of the main targets for cancer treatment as it is one of the genes whose expression is often altered by overexpression, amplification, and mutation in a variety of solid tumors. Substantial efforts have been made to develop EGFR-targeted therapeutic agents, including monoclonal antibodies and tyrosine kinase inhibitors (TKIs). However, these agents exhibited limited efficacy due to the emergence of acquired resistance. Therefore, novel treatment strategies targeting EGFR are urgently needed. Recent studies have identified a few natural compounds that can efficiently inhibit EGFR, indicating that natural products may be potential sources for the development of new EGFR inhibitors. Here, using the Drug Affinity Responsive Target Stability (DARTS) assay combined with liquid chromatography/tandem mass spectrometry analysis, co-crystal method, we discovered that Bufalin directly interacts with EGFR and causes EGFR endocytosis and degradation in the lysosome. Moreover, Bufalin exhibits superior anti-tumor activity compared with another EGFR TKIs. Our study identified Bufalin as the first natural small-molecule EGFR degrader, which suppresses EGFR signaling by inducing the degradation of EGFR via the endosome-lysosome pathway.
Collapse
Affiliation(s)
- Yidi Tai
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lulu Kong
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Dongyu Zhao
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jia Hao
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xingyang Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Dongshao Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jinting Li
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuying Hu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
| | - Cai-Hong Yun
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing 100021, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China; Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Peking University International Cancer Institute, Beijing, 100191, China.
| |
Collapse
|
4
|
Zhang H, Zhang S, Wang T, Lan Y, Dai Y, Peng X, An Y, Xue Y, Ai J, Duan W. Design, synthesis, and biological evaluation of RIPK1-targeting PROTACs. Mol Divers 2025:10.1007/s11030-025-11166-x. [PMID: 40126738 DOI: 10.1007/s11030-025-11166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Cancer cells can hijack receptor-interacting protein kinase 1 (RIPK1) and exploit its scaffolding function to orchestrate pro-survival signaling and fuel immunosuppressive program. Accordingly, targeting RIPK1 for elimination has emerged as a promising anti-cancer strategy. Based on the RIPK1 inhibitor 4 previously reported by our group, we employed proteolysis targeting chimera (PROTAC) technology and designed a series of RIPK1 degraders. Structure-activity relationship (SAR) study revealed three types of ligands for E3 ligase - cereblon (CRBN), von Hippel-Lindau (VHL) and inhibitor of apoptosis protein (IAP) - demonstrated varied efficacy in RIPK1 degradation of human and mouse cells. The VHL-based compound 18 exhibited potent RIPK1 degradation activity in both human and mouse cellular scenarios. Further biological evaluation confirmed that compound 18 potently induced RIPK1 degradation of I2.1 cells with a DC50 value of 274.4 nM and maintained long-term and dramatic RIPK1 degradation within 72 h. This study provided important insights into future development of RIPK1-PORTACs, and compound 18 was a promising RIPK1 degrader candidate.
Collapse
Affiliation(s)
- Hefeng Zhang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Shuonan Zhang
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Tianchen Wang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yaohan Lan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yang Dai
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Xia Peng
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yuxiang An
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yi Xue
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Ai
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Wenhu Duan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
5
|
Jin P, Chen Z, Zhang J, Li H, Wei P, Wang Z, Feng Q, Wang H, Han D, Miao Y. Development of a nano-targeting chimera for the degradation of membrane and cytoplasmic proteins. Acta Biomater 2025; 195:509-521. [PMID: 39952883 DOI: 10.1016/j.actbio.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Various targeted protein degradation (TPD) approaches have been developed to overcome the limitations of traditional drug in eliminating pathogenic proteins by exploiting either the proteasomal or lysosomal pathway. However, there is still a lack of design strategies for TPD that utilize two distinct pathways to achieve the degradation of membrane and cytoplasmic proteins. Here, we develop a Nano-Targeting Chimera (Nano-APTAC), which is engineered by covalently attaching the protein-targeting aptamer to graphene oxide (GO) via the amide linkage, to hijack the autophagy-lysosome and ubiquitin-proteasome systems for targeted degradation of membrane and cytoplasmic proteins respectively. In contrast, a mixture of GO and aptamers without covalent interaction has no effect on protein degradation. Furthermore, the in vivo experiments demonstrate the efficacy of Nano-APTACs in depleting targeted proteins and inhibiting tumor growth. The work provides a versatile programmability platform, employing two distinct degradation systems to facilitate personalized design for the degradation of proteins regardless of their localization on the membrane or cytoplasm, and offering potential therapeutic benefits. STATEMENT OF SIGNIFICANCE: GO and aptamers have been combined for various applications. However, the utilization of this combination in TPD remains unknown. In this study, we found that the Nano-APTAC platform, constructed by covalently linking GO-aptamer chimera (not a simple mixture), can utilize autophagy-lysosome system and ubiquitin-proteasome system to degrade membrane and cytoplasmic proteins, respectively. The types of aptamers significantly influence the intracellular behavior of the chimeras, resulting in distinct subcellular localization and guiding the chimera to select specific degradation systems for protein removal. The Nano-APTAC's mode of action extremely expands the range of targeted proteins, prevents overload in specific degradation systems caused by excessive usage, and provides an exceptional level of adaptability in meeting diverse treatment requirements.
Collapse
Affiliation(s)
- Peipei Jin
- Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, Anhui, 230036, China
| | - Zhaozheng Chen
- Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Ju Zhang
- Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, Anhui, 230036, China
| | - Haowen Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Ziyu Wang
- Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Qiyu Feng
- Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China.
| | - Hongyang Wang
- Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China; National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital/Institute, the Second Military Medical University, Shanghai 201815, China.
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Yanyan Miao
- Department of Clinical Laboratory, Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China; Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
Krone MW, Crews CM. Next steps for targeted protein degradation. Cell Chem Biol 2025; 32:219-226. [PMID: 39500325 DOI: 10.1016/j.chembiol.2024.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 02/23/2025]
Abstract
Targeted protein degradation (TPD) has greatly advanced as a therapeutic strategy in the past two decades, and we are on the cusp of rationally designed protein degraders reaching clinical approval. Offering pharmacological advantages relative to occupancy-driven protein inhibition, chemical methods for regulating biomolecular proximity have provided opportunities to tackle disease-related targets that were undruggable. Despite the pre-clinical success of designed degraders and existence of clinical therapies that serendipitously utilize TPD, expansion of the TPD toolbox is necessary to identify and characterize the next generation of molecular degraders. Here we highlight three areas for continued growth in the field that should be prioritized: expansion of TPD platform with greater spatiotemporal precision, increased throughput of degrader synthesis, and optimization of cooperativity in chemically induced protein complexes. The future is bright for TPD in medicine, and we expect that innovative approaches will increase therapeutic applications of proximity-induced pharmacology.
Collapse
Affiliation(s)
- Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
7
|
Cheng B, Li H, Peng X, Chen J, Shao C, Kong Z. Recent advances in developing targeted protein degraders. Eur J Med Chem 2025; 284:117212. [PMID: 39736199 DOI: 10.1016/j.ejmech.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Targeted protein degradation (TPD) represents a promising therapeutic approach, encompassing several innovative strategies, including but not limited to proteolysis targeting chimeras (PROTACs), molecular glues, hydrophobic tag tethering degraders (HyTTD), and lysosome-targeted chimeras (LYTACs). Central to TPD are small molecule ligands, which play a critical role in mediating the degradation of target proteins. This review summarizes the current landscape of small molecule ligands for TPD molecules. These small molecule ligands can utilize the proteasome, lysosome, autophagy, or hydrophobic-tagging system to achieve the degradation of target proteins. The article mainly focuses on introducing their design principles, application advantages, and potential limitations. A brief discussion on the development prospects and future directions of TPD technology was also provided.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
8
|
Yang X, Wu L, Xu S. An overview of GPX4-targeting TPDs for cancer therapy. Bioorg Med Chem 2025; 118:118046. [PMID: 39693712 DOI: 10.1016/j.bmc.2024.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a newly identified form of regulated, non-apoptotic cell death caused by iron-dependent phospholipid peroxidation. Glutathione peroxidase 4 (GPX4) inactivation-induced ferroptosis is an efficient antitumor treatment. Currently, several GPX4 inhibitors have been identified. However, these inhibitors exhibit low selectivity and poor pharmacokinetic properties that preclude their clinical use. Targeted protein degradation (TPD) is an efficient strategy for discovering drugs and has unique advantages over target protein inhibition. Given GPX4's antitumor effects and the potential of TPD, researchers have explored GPX4-targeting TPDs, which outperform conventional inhibitors in several aspects, such as increased selectivity, strong anti-proliferative effects, overcoming drug resistance, and enhancing drug-like properties. In this review, we comprehensively summarize the progress in GPX4-targeting TPDs. In addition, we reviewed the changes and challenges related to the development of GPX4-targeting TPDs for cancer therapy.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
9
|
Ma MT, Qerqez AN, Hill KR, Azouz LR, Youngblood HA, Hill SE, Ku Y, Peters DM, Maynard JA, Lieberman RL. Antibody-mediated clearance of an ER-resident aggregate that causes glaucoma. PNAS NEXUS 2025; 4:pgae556. [PMID: 39726989 PMCID: PMC11670252 DOI: 10.1093/pnasnexus/pgae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER). Subsequent ER stress causes cytotoxicity that hastens dysregulation of intraocular pressure, the primary risk factor for most forms of glaucoma. Our antibody discovery campaign yielded two recombinant antibodies: anti-OLF1 recognizes a linear epitope, while anti-OLF2 is selective for natively folded OLF and inhibits aggregation in vitro. By binding OLF, these antibodies engage autophagy/lysosomal degradation to promote degradation of two pathogenic mutant myocilins. This work demonstrates the potential for therapeutic antibodies to disrupt ER-localized protein aggregates by altering the fate of folding intermediates. This approach could be translated as a precision medicine to treat myocilin-associated glaucoma with in situ antibody expression. More generally, the study supports the approach of enhancing lysosomal degradation to treat proteostasis decline in glaucoma and other diseases.
Collapse
Affiliation(s)
- Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Kamisha R Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
11
|
Göver T, Slezak M. Targeting glucocorticoid receptor signaling pathway for treatment of stress-related brain disorders. Pharmacol Rep 2024; 76:1333-1345. [PMID: 39361217 PMCID: PMC11582215 DOI: 10.1007/s43440-024-00654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a central role in governing stress-related disorders such as major depressive disorder (MDD), anxiety, and post-traumatic stress disorder. Chronic stress or early life trauma, known risk factors of disease, alter HPA axis activity and pattern of glucocorticoid (GC) secretion. These changes have consequences for physiological processes controlled by glucocorticoid receptor (GR) signaling, such as immune response and metabolism. In the brain, the aberrant GR signaling translates to altered behavior, making the GR pathway a viable target for therapies of stress-related disorders. One of the crucial elements of the pathway is FKBP5, a regulator of GR sensitivity and feedback control within the HPA axis, in which genetic variants were shown to moderate the risk of developing psychiatric conditions. The difficulty in targeting the GR-FKBP5 pathway stems from tailoring the intervention to specific brain regions and cell types, in the context of personalized genetic variations in GR and GR-associated genes, like FKBP5. The development of selective inhibitors, antagonists, and approaches based on targeted protein degradation offer insights into mechanistic aspects of disease and pave the way for improved therapy. These strategies can be employed either independently or in conjunction with conventional medications. Concomitant advancements in personalized drug screening (e.g. in vitro models exploiting induced pluripotent stem cells, iPSCs) bring the potential for optimization of therapy aiming to rescue central deficits originating from the HPA imbalance. In this mini-review, we discuss potential therapeutic strategies targeting GR signaling in stress-related disorders, with a focus on personalized approaches and advancements in drug development.
Collapse
Affiliation(s)
- Tansu Göver
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066, Wroclaw, Poland
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chałubińskiego 3A, 50-368, Wroclaw, Poland
| | - Michal Slezak
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066, Wroclaw, Poland.
| |
Collapse
|
12
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
13
|
Wang Y, He Y, You Q, Wang L. Design of bifunctional molecules to accelerate post-translational modifications: achievements and challenges. Drug Discov Today 2024; 29:104194. [PMID: 39343161 DOI: 10.1016/j.drudis.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Post-translational modifications (PTMs) of proteins are crucial for regulating biological processes and their dysregulation is linked to various diseases, highlighting PTM regulation as a significant target for drug development. Traditional drug targets often interact with multiple proteins, resulting in lower selectivity and inevitable adverse effects, which limits their clinical applicability. Recent advancements in bifunctional molecules, such as proteolysis-targeting chimeras (PROTACs), have shown promise in targeting PTMs precisely. However, regulatory mechanisms for many of the >600 known PTMs remain underexplored. This review examines current progress and challenges in designing bifunctional molecules for PTM regulation, focusing on effector selection and ligand design strategies, aiming to propel the utilization and advancement of bifunctional molecules to the forefront of PTM research.
Collapse
Affiliation(s)
- Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Grigoreva TA, Novikova DS, Melino G, Barlev NA, Tribulovich VG. Ubiquitin recruiting chimera: more than just a PROTAC. Biol Direct 2024; 19:55. [PMID: 38978100 PMCID: PMC11232244 DOI: 10.1186/s13062-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| | - Daria S Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Nick A Barlev
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russia
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Vyacheslav G Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| |
Collapse
|
15
|
Sobierajski T, Małolepsza J, Pichlak M, Gendaszewska-Darmach E, Błażewska KM. The impact of E3 ligase choice on PROTAC effectiveness in protein kinase degradation. Drug Discov Today 2024; 29:104032. [PMID: 38789027 DOI: 10.1016/j.drudis.2024.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Proteolysis targeting chimera (PROTACs) provide a novel therapeutic approach that is revolutionizing drug discovery. The success of PROTACs largely depends on the combination of their three fragments: E3 ligase ligand, linker and protein of interest (POI)-targeting ligand. We summarize the pivotal significance of the precise combination of the E3 ligase ligand with the POI-recruiting warhead, which is crucial for the successful execution of cellular processes and achieving the desired outcomes. Therefore, the key to our selection was the use of at least two ligands recruiting two different ligases. This approach enables a direct comparison of the impacts of the specific ligases on target degradation.
Collapse
Affiliation(s)
- Tomasz Sobierajski
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Marta Pichlak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | | | | |
Collapse
|
16
|
Wang Z, Che S, Yu Z. PROTAC: Novel degradable approach for different targets to treat breast cancer. Eur J Pharm Sci 2024; 198:106793. [PMID: 38740076 DOI: 10.1016/j.ejps.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.
Collapse
Affiliation(s)
- Zhenjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Siyao Che
- Hepatological Surgery Department, The People's Hospital of Gaozhou, Maoming, 525200, PR China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, PR China.
| |
Collapse
|
17
|
Su LY, Tian Y, Zheng Q, Cao Y, Yao M, Wang S, Xu W, Xi C, Clocchiatti A, Nie G, Zhou H. Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor. Cell Chem Biol 2024; 31:1219-1230.e5. [PMID: 38309277 DOI: 10.1016/j.chembiol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not in vivo due to short half-life and poor tumor targeting. A delivery platform was developed by fusing TfR-LYTAC to the surface of bacterial outer membrane vesicles (OMVs). The engineered OMV-LYTAC combines PD-1/PD-L1 pathway inhibition with LYTAC and immune activation by bacterial OMVs. OMV-LYTAC significantly reduced tumor growth in vivo. We have provided a modular and simple genetic strategy for lysosomal degradation as well as a delivery platform for in vivo tumor targeting. The study paves the way for the targeting and degradation of extracellular proteins using the TfR-LYTAC system.
Collapse
Affiliation(s)
- Ling-Yan Su
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650000, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650000, China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, The First People Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China
| | - Mengyu Yao
- Department of Cardiovascular Surgery, The First People Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China
| | - Shuangping Wang
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China
| | - Wen Xu
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China
| | - Chuyu Xi
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China
| | - Andrea Clocchiatti
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650000, China.
| |
Collapse
|
18
|
Lucas SCC, Ahmed A, Ashraf SN, Argyrou A, Bauer MR, De Donatis GM, Demanze S, Eisele F, Fusani L, Hock A, Kadamur G, Li S, Macmillan-Jones A, Michaelides IN, Phillips C, Rehnström M, Richter M, Rodrigo-Brenni MC, Shilliday F, Wang P, Storer RI. Optimization of Potent Ligands for the E3 Ligase DCAF15 and Evaluation of Their Use in Heterobifunctional Degraders. J Med Chem 2024; 67:5538-5566. [PMID: 38513086 DOI: 10.1021/acs.jmedchem.3c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Unlocking novel E3 ligases for use in heterobifunctional PROTAC degraders is of high importance to the pharmaceutical industry. Over-reliance on the current suite of ligands used to recruit E3 ligases could limit the potential of their application. To address this, potent ligands for DCAF15 were optimized using cryo-EM supported, structure-based design to improve on micromolar starting points. A potent binder, compound 24, was identified and subsequently conjugated into PROTACs against multiple targets. Following attempts on degrading a number of proteins using DCAF15 recruiting PROTACs, only degradation of BRD4 was observed. Deconvolution of the mechanism of action showed that this degradation was not mediated by DCAF15, thereby highlighting both the challenges faced when trying to expand the toolbox of validated E3 ligase ligands for use in PROTAC degraders and the pitfalls of using BRD4 as a model substrate.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Afshan Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - S Neha Ashraf
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Argyrides Argyrou
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthias R Bauer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - Sylvain Demanze
- Oncology Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Frederik Eisele
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83,Sweden
| | - Lucia Fusani
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Andreas Hock
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ganesh Kadamur
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Shuyou Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, People's Republic of China
| | | | | | - Christopher Phillips
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Marie Rehnström
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Magdalena Richter
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Monica C Rodrigo-Brenni
- Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Fiona Shilliday
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Peng Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, People's Republic of China
| | - R Ian Storer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
19
|
Kaushik A, Parashar S, Ambasta RK, Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer. Ageing Res Rev 2024; 96:102279. [PMID: 38521359 DOI: 10.1016/j.arr.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
E3 ligases, essential components of the ubiquitin-proteasome-mediated protein degradation system, play a critical role in cellular regulation. By covalently attaching ubiquitin (Ub) molecules to target proteins, these ligases mark them for degradation, influencing various bioprocesses. With over 600 E3 ligases identified, there is a growing realization of their potential as therapeutic candidates for addressing proteinopathies in cancer and neurodegenerative disorders (NDDs). Recent research has highlighted the need to delve deeper into the intricate roles of E3 ligases as nexus points in the pathogenesis of both cancer and NDDs. Their dysregulation is emerging as a common thread linking these seemingly disparate diseases, necessitating a comprehensive understanding of their molecular intricacies. Herein, we have discussed (i) the fundamental mechanisms through which different types of E3 ligases actively participate in selective protein degradation in cancer and NDDs, followed by an examination of common E3 ligases playing pivotal roles in both situations, emphasising common players. Moving to, (ii) the functional domains and motifs of E3 ligases involved in ubiquitination, we have explored their interactions with specific substrates in NDDs and cancer. Additionally, (iii) we have explored techniques like PROTAC, molecular glues, and other state-of-the-art methods for hijacking neurotoxic and oncoproteins. Lastly, (iv) we have provided insights into ongoing clinical trials, offering a glimpse into the evolving landscape of E3-based therapeutics for cancer and NDDs. Unravelling the intricate network of E3 ligase-mediated regulation holds the key to unlocking targeted therapies that address the specific molecular signatures of individual patients, heralding a new era in personalized medicines.
Collapse
Affiliation(s)
- Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University-Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
20
|
Lemaitre T, Cornu M, Schwalen F, Since M, Kieffer C, Voisin-Chiret AS. Molecular glue degraders: exciting opportunities for novel drug discovery. Expert Opin Drug Discov 2024; 19:433-449. [PMID: 38240114 DOI: 10.1080/17460441.2024.2306845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Molecular Glue Degraders (MGDs) is a concept that refers to a class of compounds that facilitate the interaction between two proteins or molecules within a cell. These compounds act as bridge that enhances specific Protein-Protein Interactions (PPIs). Over the past decade, this technology has gained attention as a potential strategy to target proteins that were traditionally considered undruggable using small molecules. AREAS COVERED This review presents the concept of cellular homeostasis and the balance between protein synthesis and protein degradation. The concept of protein degradation is concerned with molecular glues, which form part of the broader field of Targeted Protein Degradation (TPD). Next, pharmacochemical strategies for the rational design of MGDs are detailed and illustrated by examples of Ligand-Based (LBDD), Structure-Based (SBDD) and Fragment-Based Drug Design (FBDD). EXPERT OPINION Expanding the scope of what can be effectively targeted in the development of treatments for diseases that are incurable or resistant to conventional therapies offers new therapeutic options. The treatment of microbial infections and neurodegenerative diseases is a major societal challenge, and the discovery of MGDs appears to be a promising avenue. Combining different approaches to discover and exploit a variety of innovative therapeutic agents will create opportunities to treat diseases that are still incurable.
Collapse
Affiliation(s)
| | - Marie Cornu
- Normandie University, UNICAEN, CERMN, Caen, France
| | - Florian Schwalen
- Normandie University, UNICAEN, CERMN, Caen, France
- Department of Pharmacy, Caen University Hospital, Caen, France
| | - Marc Since
- Normandie University, UNICAEN, CERMN, Caen, France
| | | | | |
Collapse
|
21
|
Yokoo H, Tsuji G, Inoue T, Naito M, Demizu Y, Ohoka N. Expansion of targeted degradation by Gilteritinib-Warheaded PROTACs to ALK fusion proteins. Bioorg Chem 2024; 145:107204. [PMID: 38377822 DOI: 10.1016/j.bioorg.2024.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) induce the ubiquitination and subsequent proteasomal degradation of targeted proteins. Numerous PROTACs have emerged as promising drug candidates for various disease-related proteins. This study investigates PROTACs targeted to degrade anaplastic lymphoma kinase (ALK) fusion proteins, which are implicated in diseases such as anaplastic large cell lymphoma and non-small cell lung cancer. We recently reported the development of a gilteritinib-warheaded PROTAC to target and degrade the Fms-like tyrosine kinase 3 (FLT3) protein. Gilteritinib is a tyrosine kinase inhibitor that targets FLT3, and recent studies have revealed that it also functions as an ALK inhibitor. We conducted a structure-activity relationship (SAR) study and expanded the range of target proteins for gilteritinib-warheaded PROTACs to include echinoderm microtubule-associated protein-like 4 (EML4)-ALK and nucleophosmin (NPM)-ALK, in addition to FLT3. Our SAR study utilized three types of ligands for E3 ligase- inhibitor of apoptosis protein (IAP), cereblon (CRBN), and von Hippel-Lindau (VHL)- in the PROTAC designs and we observed varied efficacy in the degradation of target proteins. The CRBN-based PROTAC effectively reduced the protein expression of FLT3, EML4-ALK, and NPM-ALK. The IAP-based PROTAC reduced expression of both FLT3 and EML4-ALK proteins but not that of NPM-ALK, while the VHL-based PROTAC was ineffective against all target proteins. Several ALK-targeted PROTACs have already been developed using CRBN or VHL as E3 ligase, but this is the first report of an IAP-based ALK degrader. The length of the linker structure utilized in PROTAC also had a significant effect on their efficacy and activity. PROTACs formed with shorter linkers demonstrated an enhanced degradation activity to target proteins compared with those formed with longer linkers. These findings provide valuable insight for the development of effective PROTACs to target and degrade ALK fusion proteins.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Genichiro Tsuji
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Takao Inoue
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 110-0033, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
| | - Nobumichi Ohoka
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| |
Collapse
|
22
|
Kodadek T. Catalytic Protein Inhibitors. Angew Chem Int Ed Engl 2024; 63:e202316726. [PMID: 38064411 DOI: 10.1002/anie.202316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 01/13/2024]
Abstract
Many of the highest priority targets in a wide range of disease states are difficult-to-drug proteins. The development of reversible small molecule inhibitors for the active sites of these proteins with sufficient affinity and residence time on-target is an enormous challenge. This has engendered interest in strategies to increase the potency of a given protein inhibitor by routes other than further improvement in gross affinity. Amongst these, the development of catalytic protein inhibitors has garnered the most attention and investment, particularly with respect to protein degraders, which catalyze the destruction of the target protein. This article discusses the genesis of the burgeoning field of catalytic inhibitors, the current state of the art, and exciting future directions.
Collapse
Affiliation(s)
- Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
23
|
Joshi M, Dey P, De A. Recent advancements in targeted protein knockdown technologies-emerging paradigms for targeted therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1227-1248. [PMID: 38213543 PMCID: PMC10776596 DOI: 10.37349/etat.2023.00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 01/13/2024] Open
Abstract
A generalized therapeutic strategy for various disease conditions, including cancer, is to deplete or inactivate harmful protein targets. Various forms of protein or gene silencing molecules, e.g., small molecule inhibitors, RNA interference (RNAi), and microRNAs (miRNAs) have been used against druggable targets. Over the past few years, targeted protein degradation (TPD) approaches have been developed for direct degradation of candidate proteins. Among the TPD approaches, proteolysis targeting chimeras (PROTACs) have emerged as one of the most promising approaches for the selective elimination of proteins via the ubiquitin-proteasome system. Other than PROTACs, TPD methods with potential therapeutic use include intrabody-mediated protein knockdown and tripartite motif-21 (TRIM-21) mediated TRIM-Away. In this review, protein knockdown approaches, their modes of action, and their advantages over conventional gene knockdown approaches are summarized. In cancers, disease-associated protein functions are often executed by specific post-translational modifications (PTMs). The role of TRIM-Away is highlighted in the direct knockdown of PTM forms of target proteins. Moreover, the application challenges and the prospective clinical use of TPD approaches in various diseases are also discussed.
Collapse
Affiliation(s)
- Mansi Joshi
- Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai 400094, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
24
|
VanDyke D, Xu L, Sargunas PR, Gilbreth RN, Baca M, Gao C, Hunt J, Spangler JB. Redirecting the specificity of tripartite motif containing-21 scaffolds using a novel discovery and design approach. J Biol Chem 2023; 299:105381. [PMID: 37866632 PMCID: PMC10694607 DOI: 10.1016/j.jbc.2023.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
Hijacking the ubiquitin proteasome system to elicit targeted protein degradation (TPD) has emerged as a promising therapeutic strategy to target and destroy intracellular proteins at the post-translational level. Small molecule-based TPD approaches, such as proteolysis-targeting chimeras (PROTACs) and molecular glues, have shown potential, with several agents currently in clinical trials. Biological PROTACs (bioPROTACs), which are engineered fusion proteins comprised of a target-binding domain and an E3 ubiquitin ligase, have emerged as a complementary approach for TPD. Here, we describe a new method for the evolution and design of bioPROTACs. Specifically, engineered binding scaffolds based on the third fibronectin type III domain of human tenascin-C (Tn3) were installed into the E3 ligase tripartite motif containing-21 (TRIM21) to redirect its degradation specificity. This was achieved via selection of naïve yeast-displayed Tn3 libraries against two different oncogenic proteins associated with B-cell lymphomas, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) and embryonic ectoderm development protein (EED), and replacing the native substrate-binding domain of TRIM21 with our evolved Tn3 domains. The resulting TRIM21-Tn3 fusion proteins retained the binding properties of the Tn3 as well as the E3 ligase activity of TRIM21. Moreover, we demonstrated that TRIM21-Tn3 fusion proteins efficiently degraded their respective target proteins through the ubiquitin proteasome system in cellular models. We explored the effects of binding domain avidity and E3 ligase utilization to gain insight into the requirements for effective bioPROTAC design. Overall, this study presents a versatile engineering approach that could be used to design and engineer TRIM21-based bioPROTACs against therapeutic targets.
Collapse
Affiliation(s)
- Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Linda Xu
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Paul R Sargunas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan N Gilbreth
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Manuel Baca
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Changshou Gao
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - James Hunt
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
25
|
Ahmed IMM, Beveridge R. Native mass spectrometry interrogation of complexes formed during targeted protein degradation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9604. [PMID: 37817340 PMCID: PMC10909470 DOI: 10.1002/rcm.9604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 10/12/2023]
Abstract
RATIONALE Protein degraders are small molecules that promote cellular degradation of a target protein. Degraders simultaneously bind to their target and an E3 ligase, bringing them into close spatial proximity, but the formation of this ternary complex is difficult to measure with many biophysical techniques. METHODS Native mass spectrometry (nMS) is an effective label-free technique to identify the complexes formed by proteolysis-targeting chimeras (PROTACs). It can monitor the formation of ternary E3-PROTAC-target complexes and detect intermediate binary species. Experiments are described using a Synapt G2Si (Waters) equipped with a nano-electrospray ionisation source. RESULTS The protocol describes nMS experiments for measuring the complexes formed by PROTAC molecules. It also describes how to investigate differences in the affinity of PROTAC complexes, whether a PROTAC shows specificity for a given target and whether a PROTAC shows cooperative behaviour. CONCLUSIONS Here, we provide step-by-step instructions for the sample preparation of PROTAC complexes and their nMS interrogation to obtain optimal information on their binding modes.
Collapse
Affiliation(s)
- Ikhlas M. M. Ahmed
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| |
Collapse
|
26
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
27
|
Yang Z, Pang Q, Zhou J, Xuan C, Xie S. Leveraging aptamers for targeted protein degradation. Trends Pharmacol Sci 2023; 44:776-785. [PMID: 37380531 DOI: 10.1016/j.tips.2023.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Targeted protein degradation (TPD) technologies, particularly proteolysis-targeting chimeras (PROTACs), have emerged as a significant advancement in drug discovery. However, several hurdles - such as the difficulty of identifying suitable ligands for traditionally undruggable proteins, poor solubility and impermeability, nonspecific biodistribution, and on-target off-tissue toxicity - present challenges to their clinical applications. Aptamers are promising ligands for broad-ranging molecular recognition. Utilizing aptamers in TPD has shown potential advantages in overcoming these challenges. Here, we provide an overview of recent developments in aptamer-based TPD, emphasizing their potential to achieve targeted delivery and their promise for the spatiotemporal degradation of undruggable proteins. We also discuss the challenges and future directions of aptamer-based TPD with the goal of facilitating their clinical applications.
Collapse
Affiliation(s)
- Zhihao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Qiuxiang Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China; Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenghao Xuan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China.
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China; Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
28
|
Abstract
Targeted protein degradation (TPD) has emerged as the most promising approach for the specific knockdown of disease-associated proteins and is achieved by exploiting the cellular quality control machinery. TPD technologies are highly advantageous in overcoming drug resistance as they degrade the whole target protein. Microtubules play important roles in many cellular processes and are among the oldest and most well-established targets for tumor chemotherapy. However, the development of drug resistance, risk of hypersensitivity reactions, and intolerable toxicities severely restrict the clinical applications of microtubule-targeting agents (MTAs). Microtubule degradation agents (MDgAs) operate via completely different mechanisms compared with traditional MTAs and are capable of overcoming drug resistance. The emergence of MDgAs has expanded the scope of TPD and provided new avenues for the discovery of tubulin-targeted drugs. Herein, we summarized the development of MDgAs, and discussed their degradation mechanisms, mechanisms of action on the binding sites, potential opportunities, and challenges.
Collapse
Affiliation(s)
- Chufeng Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
29
|
Takahashi D, Ora T, Sasaki S, Ishii N, Tanaka T, Matsuda T, Ikeda M, Moriyama J, Cho N, Nara H, Maezaki H, Kamaura M, Shimokawa K, Arimoto H. Second-Generation AUTACs for Targeted Autophagic Degradation. J Med Chem 2023; 66:12342-12372. [PMID: 37589438 DOI: 10.1021/acs.jmedchem.3c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Targeted protein degradation via the ubiquitin-proteasome system has emerged as one of the most promising drug discovery modalities. Autophagy, another intracellular degradation system, can target a wide range of nonproteinous substrates as well as proteins, but its application to targeted degradation is still in its infancy. Our previous work revealed a relationship between guanine modification of cysteine residues on intracellular proteins and selective autophagy, resulting in the first autophagy-based degraders, autophagy-targeted chimeras (AUTACs). Based on the research background, all the reported AUTACs compounds contain cysteine as a substructure. Here, we examine the importance of this substructure by conducting SAR studies and report significant improvements in the degrader's activity by replacing cysteine with other moieties. Several derivatives showed sub-μM range degrading activity, demonstrating the increased practical value of AUTACs.
Collapse
Affiliation(s)
- Daiki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Taiichi Ora
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigekazu Sasaki
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoki Ishii
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshio Tanaka
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Takumi Matsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mutsuki Ikeda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Jun Moriyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Nobuo Cho
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Nara
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironobu Maezaki
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kamaura
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | | | - Hirokazu Arimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
30
|
Li Z, Ma S, Zhang S, Ma Z, Du L, Li M. Degradation of extracellular and membrane proteins in targeted therapy: Status quo and quo vadis. Drug Discov Today 2023; 28:103716. [PMID: 37467880 DOI: 10.1016/j.drudis.2023.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Targeted protein degradation (TPD) strategies, such as proteolysis-targeting chimeras (PROTACs) only work for intracellular protein degradation because they involve the intracellular protein degradation machinery. Several new technologies have emerged in recent years for TPD of extracellular and membrane proteins. Even though some progress has been demonstrated in the extracellular and membrane protein degradation field, the application of these technologies is still in its infancy. In this review, we survey the therapeutic potential of existing technologies by summarizing and reviewing discoveries and hurdles in extracellular and membrane protein-of-interest (POI) degradation.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siyue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuxin Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
31
|
Shen F, Dassama LMK. Opportunities and challenges of protein-based targeted protein degradation. Chem Sci 2023; 14:8433-8447. [PMID: 37592990 PMCID: PMC10430753 DOI: 10.1039/d3sc02361c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 08/19/2023] Open
Abstract
In the 20 years since the first report of a proteolysis targeting chimeric (PROTAC) molecule, targeted protein degradation (TPD) technologies have attempted to revolutionize the fields of chemical biology and biomedicine by providing exciting research opportunities and potential therapeutics. However, they primarily focus on the use of small molecules to recruit the ubiquitin proteasome system to mediate target protein degradation. This then limits protein targets to cytosolic domains with accessible and suitable small molecule binding pockets. In recent years, biologics such as proteins and nucleic acids have instead been used as binders for targeting proteins, thereby expanding the scope of TPD platforms to include secreted proteins, transmembrane proteins, and soluble but highly disordered intracellular proteins. This perspective summarizes the recent TPD platforms that utilize nanobodies, antibodies, and other proteins as binding moieties to deplete challenging targets, either through the ubiquitin proteasome system or the lysosomal degradation pathway. Importantly, the perspective also highlights opportunities and remaining challenges of current protein-based TPD technologies.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
| | - Laura M K Dassama
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
- Department of Microbiology & Immunology, Stanford School of Medicine USA
| |
Collapse
|
32
|
Wang H, Zhou R, Xu F, Yang K, Zheng L, Zhao P, Shi G, Dai L, Xu C, Yu L, Li Z, Wang J, Wang J. Beyond canonical PROTAC: biological targeted protein degradation (bioTPD). Biomater Res 2023; 27:72. [PMID: 37480049 PMCID: PMC10362593 DOI: 10.1186/s40824-023-00385-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/21/2023] [Indexed: 07/23/2023] Open
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential to modulate disease-associated proteins that have previously been considered undruggable, by employing the host destruction machinery. The exploration and discovery of cellular degradation pathways, including but not limited to proteasomes and lysosome pathways as well as their degraders, is an area of active research. Since the concept of proteolysis-targeting chimeras (PROTACs) was introduced in 2001, the paradigm of TPD has been greatly expanded and moved from academia to industry for clinical translation, with small-molecule TPD being particularly represented. As an indispensable part of TPD, biological TPD (bioTPD) technologies including peptide-, fusion protein-, antibody-, nucleic acid-based bioTPD and others have also emerged and undergone significant advancement in recent years, demonstrating unique and promising activities beyond those of conventional small-molecule TPD. In this review, we provide an overview of recent advances in bioTPD technologies, summarize their compositional features and potential applications, and briefly discuss their drawbacks. Moreover, we present some strategies to improve the delivery efficacy of bioTPD, addressing their challenges in further clinical development.
Collapse
Affiliation(s)
- Huifang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Runhua Zhou
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fushan Xu
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Kongjun Yang
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Liuhai Zheng
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Pan Zhao
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Guangwei Shi
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Chengchao Xu
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Le Yu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Zhijie Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jianhong Wang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jigang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| |
Collapse
|
33
|
Donahue TC, Ou C, Yang Q, Flinko R, Zhang X, Zong G, Lewis GK, Wang LX. Synthetic Site-Specific Antibody-Ligand Conjugates Promote Asialoglycoprotein Receptor-Mediated Degradation of Extracellular Human PCSK9. ACS Chem Biol 2023; 18:1611-1623. [PMID: 37368876 PMCID: PMC10530246 DOI: 10.1021/acschembio.3c00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Targeted degradation using cell-specific lysosome targeting receptors is emerging as a new therapeutic strategy for the elimination of disease-associated proteins. The liver-specific human asialoglycoprotein receptor (ASGPR) is a particularly attractive lysosome targeting receptor leveraged for targeted protein degradation (TPD). However, the efficiency of different glycan ligands for ASGPR-mediated lysosomal delivery remains to be further characterized. In this study, we applied a chemoenzymatic Fc glycan remodeling method to construct an array of site-specific antibody-ligand conjugates carrying natural bi- and tri-antennary N-glycans as well as synthetic tri-GalNAc ligands. Alirocumab, an anti-PCSK9 (proprotein convertase subtilisin/kexin type 9) antibody, and cetuximab (an anti-EGFR antibody) were chosen to demonstrate the ASGPR-mediated degradation of extracellular and membrane-associated proteins, respectively. It was found that the nature of the glycan ligands and the length of the spacer in the conjugates are critical for the receptor binding and the receptor-mediated degradation of PCSK9, which blocks low-density lipoprotein receptor (LDLR) function and adversely affects clearance of low-density lipoprotein cholesterol. Interestingly, the antibody-tri-GalNAc conjugates showed a clear hook effect for its binding to ASGPR, while antibody conjugates carrying the natural N-glycans did not. Both the antibody-tri-antennary N-glycan conjugate and the antibody-tri-GalNAc conjugate could significantly decrease extracellular PCSK9, as shown in the cell-based assays. However, the tri-GalNAc conjugate showed a clear hook effect in the receptor-mediated degradation of PCSK9, while the antibody conjugate carrying the natural N-glycans did not. The cetuximab-tri-GalNAc conjugates also showed a similar hook effect on degradation of the membrane-associated protein, epidermal growth factor receptor (EGFR). These results suggest that the two types of ligands may involve a distinct mode of interactions in the receptor binding and target-degradation processes. Interestingly, the alirocumab-tri-GalNAc conjugate was also found to upregulate LDLR levels in comparison with the antibody alone. This study showcases the potential of the targeted degradation strategy against PCSK9 for reducing low-density lipoprotein cholesterol, a risk factor for heart disease and stroke.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
34
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
35
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
36
|
Mi D, Li Y, Gu H, Li Y, Chen Y. Current advances of small molecule E3 ligands for proteolysis-targeting chimeras design. Eur J Med Chem 2023; 256:115444. [PMID: 37178483 DOI: 10.1016/j.ejmech.2023.115444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) as an emerging drug discovery modality has been extensively concerned in recent years. Over 20 years development, accumulated studies have demonstrated that PROTACs show unique advantages over traditional therapy in operable target scope, efficacy, and overcoming drug resistance. However, only limited E3 ligases, the essential elements of PROTACs, have been harnessed for PROTACs design. The optimization of novel ligands for well-established E3 ligases and the employment of additional E3 ligases remain urgent challenges for investigators. Here, we systematically summarize the current status of E3 ligases and corresponding ligands for PROTACs design with a focus on their discovery history, design principles, application benefits, and potential defects. Meanwhile, the prospects and future directions for this field are briefly discussed.
Collapse
Affiliation(s)
- Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Haijun Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
37
|
Fang Y, Wang S, Han S, Zhao Y, Yu C, Liu H, Li N. Targeted protein degrader development for cancer: advances, challenges, and opportunities. Trends Pharmacol Sci 2023; 44:303-317. [PMID: 37059054 DOI: 10.1016/j.tips.2023.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 04/16/2023]
Abstract
Anticancer-targeted therapies inhibit various kinases implicated in cancer and have been used in clinical settings for decades. However, many cancer-related targets are proteins without catalytic activity and are difficult to target using traditional occupancy-driven inhibitors. Targeted protein degradation (TPD) is an emerging therapeutic modality that has expanded the druggable proteome for cancer treatment. With the entry of new-generation immunomodulatory drugs (IMiDs), selective estrogen receptor degraders (SERDs), and proteolysis-targeting chimera (PROTAC) drugs into clinical trials, the field of TPD has seen explosive growth in the past 10 years. Several challenges remain that need to be tackled to increase successful clinical translation of TPD drugs. We present an overview of the global landscape of clinical trials of TPD drugs over the past decade and summarize the clinical profiles of new-generation TPD drugs. In addition, we highlight the challenges and opportunities for the development of effective TPD drugs for future successful clinical translation.
Collapse
Affiliation(s)
- Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Songzhe Han
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Yizhou Zhao
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Cunjing Yu
- Translational Discovery, Research, and Medicine, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Huaqing Liu
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
38
|
Lin JY, Liu HJ, Wu Y, Jin JM, Zhou YD, Zhang H, Nagle DG, Chen HZ, Zhang WD, Luan X. Targeted Protein Degradation Technology and Nanomedicine: Powerful Allies against Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207778. [PMID: 36693784 DOI: 10.1002/smll.202207778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Indexed: 05/04/2023]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential of targeting undruggable pathogenic proteins. After the first proof-of-concept proteolysis-targeting chimeric (PROTAC) molecule was reported, the TPD field has entered a new era. In addition to PROTAC, numerous novel TPD strategies have emerged to expand the degradation landscape. However, their physicochemical properties and uncontrolled off-target side effects have limited their therapeutic efficacy, raising concerns regarding TPD delivery system. The combination of TPD and nanotechnology offers great promise in improving safety and therapeutic efficacy. This review provides an overview of novel TPD technologies, discusses their clinical applications, and highlights the trends and perspectives in TPD nanomedicine.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Dong Zhou
- Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University-1848, Boston, MA, 38677, USA
| | - Hong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dale G Nagle
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University-1848, Boston, MA, 38677, USA
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
39
|
Ng YL, Bricelj A, Jansen JA, Murgai A, Peter K, Donovan KA, Gütschow M, Krönke J, Steinebach C, Sosič I. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. J Med Chem 2023; 66:4703-4733. [PMID: 36996313 PMCID: PMC10108347 DOI: 10.1021/acs.jmedchem.2c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/01/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
Collapse
Affiliation(s)
- Yuen Lam
Dora Ng
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Jacqueline A. Jansen
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Arunima Murgai
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Kirsten Peter
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Katherine A. Donovan
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael Gütschow
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christian Steinebach
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Michaelides IN, Collie GW. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. J Med Chem 2023; 66:3173-3194. [PMID: 36821822 PMCID: PMC10009759 DOI: 10.1021/acs.jmedchem.2c01882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Ubiquitination is a key post-translational modification of proteins, affecting the regulation of multiple cellular processes. Cells are equipped with over 600 ubiquitin orchestrators, called E3 ubiquitin ligases, responsible for directing the covalent attachment of ubiquitin to substrate proteins. Due to their regulatory role in cells, significant efforts have been made to discover ligands for E3 ligases. The recent emergence of the proteolysis targeting chimera (PROTAC) and molecular glue degrader (MGD) modalities has further increased interest in E3 ligases as drug targets. This perspective focuses on how fragment based lead discovery (FBLD) methods have been used to discover new ligands for this important target class. In some cases these efforts have led to clinical candidates; in others, they have provided tools for deepening our understanding of E3 ligase biology. Recently, FBLD-derived ligands have inspired the design of PROTACs that are able to artificially modulate protein levels in cells.
Collapse
Affiliation(s)
- Iacovos N. Michaelides
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| | - Gavin W. Collie
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| |
Collapse
|
41
|
Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics 2023; 15:pharmaceutics15030765. [PMID: 36986626 PMCID: PMC10055846 DOI: 10.3390/pharmaceutics15030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Transcription factors (TFs) and RNA-binding proteins (RBPs) have long been considered undruggable, mainly because they lack ligand-binding sites and are equipped with flat and narrow protein surfaces. Protein-specific oligonucleotides have been harnessed to target these proteins with some satisfactory preclinical results. The emerging proteolysis-targeting chimera (PROTAC) technology is no exception, utilizing protein-specific oligonucleotides as warheads to target TFs and RBPs. In addition, proteolysis by proteases is another type of protein degradation. In this review article, we discuss the current status of oligonucleotide-based protein degraders that are dependent either on the ubiquitin–proteasome system or a protease, providing a reference for the future development of degraders.
Collapse
|
42
|
Pei J, Xiao Y, Liu X, Hu W, Sobh A, Yuan Y, Zhou S, Hua N, Mackintosh SG, Zhang X, Basso KB, Kamat M, Yang Q, Licht JD, Zheng G, Zhou D, Lv D. Piperlongumine conjugates induce targeted protein degradation. Cell Chem Biol 2023; 30:203-213.e17. [PMID: 36750097 PMCID: PMC10074544 DOI: 10.1016/j.chembiol.2023.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that degrade target proteins through recruiting E3 ligases. However, their application is limited in part because few E3 ligases can be recruited by known E3 ligase ligands. In this study, we identified piperlongumine (PL), a natural product, as a covalent E3 ligase recruiter, which induces CDK9 degradation when it is conjugated with SNS-032, a CDK9 inhibitor. The lead conjugate 955 can potently degrade CDK9 in a ubiquitin-proteasome-dependent manner and is much more potent than SNS-032 against various tumor cells in vitro. Mechanistically, we identified KEAP1 as the E3 ligase recruited by 955 to degrade CDK9 through a TurboID-based proteomics study, which was further confirmed by KEAP1 knockout and the nanoBRET ternary complex formation assay. In addition, PL-ceritinib conjugate can degrade EML4-ALK fusion oncoprotein, suggesting that PL may have a broader application as a covalent E3 ligase ligand in targeted protein degradation.
Collapse
Affiliation(s)
- Jing Pei
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Amin Sobh
- Division of Hematology/Oncology, University of Florida Health Cancer Center, 2033 Mowry Road, Suite 145, Gainesville, FL 32610, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Shuo Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Nan Hua
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 803, Little Rock, AR 72205, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Qingping Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA
| | - Jonathan D Licht
- Division of Hematology/Oncology, University of Florida Health Cancer Center, 2033 Mowry Road, Suite 145, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA; Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA; Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
43
|
Cho N, Naito M. Synthesis of SNIPERs against BCR-ABL with kinase inhibitors and a method to evaluate their growth inhibitory activity derived from BCR-ABL degradation. Methods Enzymol 2023; 681:41-60. [PMID: 36764763 DOI: 10.1016/bs.mie.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific and nongenetic IAP-dependent Protein Erasers (SNIPERs) are a kind of PROTACs recruiting IAP ubiquitin ligases to induce degradation of target proteins. We have developed a series of SNIPERs against BCR-ABL oncogenic kinases by employing kinase inhibitors as target ligands. Some of these SNIPERs show potent activities to degrade BCR-ABL protein and inhibit CML cell growth. However, since SNIPERs also inhibit kinase activity, it takes some ingenuity to show that degradation of BCR-ABL plays a significant role on growth inhibitory activity. Here we describe protocols for synthesizing SNIPERs against BCR-ABL oncogenic kinase that contain kinase inhibitors as target ligands, and methods for evaluating the growth inhibitory activity against cancer cells, especially focusing on a method to discriminate the significance of protein degradation from that of kinase inhibition.
Collapse
Affiliation(s)
- Nobuo Cho
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Mikihiko Naito
- Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
44
|
Ahmad H, Zia B, Husain H, Husain A. Recent Advances in PROTAC-Based Antiviral Strategies. Vaccines (Basel) 2023; 11:270. [PMID: 36851148 PMCID: PMC9958553 DOI: 10.3390/vaccines11020270] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Numerous mysteries of cell and molecular biology have been resolved through extensive research into intracellular processes, which has also resulted in the development of innovative technologies for the treatment of infectious and non-infectious diseases. Some of the deadliest diseases, accounting for a staggering number of deaths, have been caused by viruses. Conventional antiviral therapies have been unable to achieve a feat in combating viral infections. As a result, the healthcare system has come under tremendous pressure globally. Therefore, there is an urgent need to discover and develop newer therapeutic approaches against viruses. One such innovative approach that has recently garnered attention in the research world and can be exploited for developing antiviral therapeutic strategies is the PROteolysis TArgeting Chimeras (PROTAC) technology, in which heterobifunctional compounds are employed for the selective degradation of target proteins by the intracellular protein degradation machinery. This review covers the most recent advancements in PROTAC technology, its diversity and mode of action, and how it can be applied to open up new possibilities for creating cutting-edge antiviral treatments and vaccines.
Collapse
Affiliation(s)
- Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Bushra Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Hashir Husain
- Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
45
|
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022; 23:15440. [PMID: 36499765 PMCID: PMC9741350 DOI: 10.3390/ijms232315440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The field of targeted protein degradation (TPD) is a rapidly developing therapeutic modality with the promise to tame disease-relevant proteins in ways that are difficult or impossible to tackle with other strategies. While we move into the third decade of TPD, multiple degrader drugs have entered the stage of the clinic and many more are expected to follow. In this review, we provide an update on the most recent advances in the field of targeted degradation with insights into possible clinical implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
46
|
Lu D, Yu X, Lin H, Cheng R, Monroy EY, Qi X, Wang MC, Wang J. Applications of covalent chemistry in targeted protein degradation. Chem Soc Rev 2022; 51:9243-9261. [PMID: 36285735 PMCID: PMC9669245 DOI: 10.1039/d2cs00362g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) and targeted covalent inhibitors (TCIs) are currently two exciting strategies in the fields of chemical biology and drug discovery. Extensive research in these two fields has been conducted, and significant progress in these fields has resulted in many clinical candidates, some of which have been approved by FDA. Recently, a novel concept termed covalent PROTACs that combine these two strategies has emerged and gained an increasing interest in the past several years. Herein, we briefly review and highlight the mechanism and advantages of TCIs and PROTACs, respectively, and the recent development of covalent PROTACs using irreversible and reversible covalent chemistry.
Collapse
Affiliation(s)
- Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xin Yu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Hanfeng Lin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Ran Cheng
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Erika Y Monroy
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
47
|
Ohoka N, Suzuki M, Uchida T, Tsuji G, Tsukumo Y, Yoshida M, Inoue T, Demizu Y, Ohki H, Naito M. Development of Gilteritinib-Based Chimeric Small Molecules that Potently Induce Degradation of FLT3-ITD Protein. ACS Med Chem Lett 2022; 13:1885-1891. [DOI: 10.1021/acsmedchemlett.2c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Masanori Suzuki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Takuya Uchida
- Medicinal Chemistry Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501 Japan
| | - Yoshinori Tsukumo
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Masayuki Yoshida
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501 Japan
| | - Hitoshi Ohki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Kumar D, Md Ashraf G, Bilgrami AL, Imtaiyaz Hassan M. Emerging therapeutic developments in neurodegenerative diseases: A clinical investigation. Drug Discov Today 2022; 27:103305. [PMID: 35728774 DOI: 10.1016/j.drudis.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Despite a century of intensive research, there is still a lack of disease-modifying treatments for neurodegenerative diseases that pose a threat to human society. A well-documented knowledge and resource gap has impeded the translation of fundamental research into promising therapies. In addition, the analysis of extensive preclinical data to allow the improved selection of therapeutic technologies and clinical candidates for further development is challenging. To address this need, we describe technologies that have emerged over the past decade that have enabled the development of novel, high-quality, cost-effective treatments for major neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Moreover, we benchmark emerging technologies that have been adopted by top pharmaceutical companies looking to bridge the gap between drug discovery and drug development in neurodegenerative disease.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India.
| |
Collapse
|
49
|
Fang Y, Wang J, Zhao M, Zheng Q, Ren C, Wang Y, Zhang J. Progress and Challenges in Targeted Protein Degradation for Neurodegenerative Disease Therapy. J Med Chem 2022; 65:11454-11477. [PMID: 36006861 DOI: 10.1021/acs.jmedchem.2c00844] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are currently incurable diseases that cause progressive degeneration of nerve cells. Many of the disease-causing proteins of NDs are "undruggable" for traditional small-molecule inhibitors (SMIs). None of the compounds that attenuated the amyloid-β (Aβ) accumulation process have entered clinical practice, and many phase III clinical trials of SMIs for Alzheimer's disease (AD) have failed. In recent years, emerging targeted protein degradation (TPD) technologies such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimaeras (LYTACs), and autophagy-targeting chimeras (AUTACs) with TPD-assistive technologies such as click-formed proteolysis-targeting chimeras (CLIPTACs) and deubiquitinase-targeting chimera (DUBTAC) have developed rapidly. In vitro and in vivo experiments have also confirmed that TPD technology can target the degradation of ND pathogenic proteins, bringing hope for the treatment of NDs. Herein, we review the latest TPD technologies, introduce their targets and technical characteristics, and discuss the emerging TPD technologies with potential in ND research, with the hope of providing a new perspective for the development of TPD technology in the NDs field.
Collapse
Affiliation(s)
- Yingxu Fang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Min Zhao
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| | - Qinwen Zheng
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| |
Collapse
|
50
|
Wolska-Washer A, Smolewski P. Targeting Protein Degradation Pathways in Tumors: Focusing on their Role in Hematological Malignancies. Cancers (Basel) 2022; 14:3778. [PMID: 35954440 PMCID: PMC9367439 DOI: 10.3390/cancers14153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Cells must maintain their proteome homeostasis by balancing protein synthesis and degradation. This is facilitated by evolutionarily-conserved processes, including the unfolded protein response and the proteasome-based system of protein clearance, autophagy, and chaperone-mediated autophagy. In some hematological malignancies, including acute myeloid leukemia, misfolding or aggregation of the wild-type p53 tumor-suppressor renders cells unable to undergo apoptosis, even with an intact p53 DNA sequence. Moreover, blocking the proteasome pathway triggers lymphoma cell apoptosis. Extensive studies have led to the development of proteasome inhibitors, which have advanced into drugs (such as bortezomib) used in the treatment of certain hematological tumors, including multiple myeloma. New therapeutic options have been studied making use of the so-called proteolysis-targeting chimeras (PROTACs), that bind desired proteins with a linker that connects them to an E3 ubiquitin ligase, resulting in proteasomal-targeted degradation. This review examines the mechanisms of protein degradation in the cells of the hematopoietic system, explains the role of dysfunctional protein degradation in the pathogenesis of hematological malignancies, and discusses the current and future advances of therapies targeting these pathways, based on an extensive search of the articles and conference proceedings from 2005 to April 2022.
Collapse
Affiliation(s)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| |
Collapse
|