1
|
Diken Türksayar AA, Petersmann S, Spintzyk S. The effect of thermomechanical aging on the fracture resistance of additively and subtractively manufactured polyetheretherketone abutments. J Dent 2024; 149:105225. [PMID: 38969266 DOI: 10.1016/j.jdent.2024.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
OBJECTIVES To evaluate the fracture resistance (FR) of polyetheretherketone (PEEK) abutments produced by additive and subtractive methods compared to milled zirconia abutments. METHODS Custom abutments were designed on Ti-base abutments and produced from three different materials, namely additively manufactured PEEK (PEEK-AM), subtractively manufactured PEEK (PEEK-SM), and zirconia (N = 60). PEEK-AM abutments were printed using PEEK filaments (VESTAKEEP®i4 3DF-T, Evonik Industries AG) on a M150 Medical 3D Printer (ORION AM) by fused filament fabrication (FFF). All surface treatments were carried out according to the manufacturer's instructions. All abutments were cemented on Ti-bases with hybrid abutment cement and then restored with milled zirconia crowns. Each subgroup was divided into non-aged and aged subgroups (n = 10). The aged groups were subjected to thermomechanical aging (49 N, 5-55 °C, 1.2 million cycles). FR tests were performed by using an universal testing machine. Data were statistically analyzed with one-way and two-way ANOVA and t-test. RESULTS The survival rate of the specimens after aging was determined as 100%. It was found that both the material and aging had a significant effect on the FR (p<.001). There was a statistical difference among the fracture values of the groups (p<.001). In both the aged and non-aged groups, PEEK-AM showed the statistically lowest FR, while the highest FR was seen in the zirconia group, which was significantly higher than the PEEK-SM (p<.001). CONCLUSION Hybrid abutments were successfully manufactured, and extrusion-based processed PEEK seems to be a good alternative to subtractive processed PEEK. However, since subtractive manufacturing still appears to be superior, further developments in additive manufacturing are needed to further improve the quality of 3D-printed PEEK parts, especially in terms of accuracy and bonding between adjacent layers. CLINICAL SIGNIFICANCE Additively manufactured PEEK abutments have the potential to be an alternative for implant-supported restorations in the posterior region.
Collapse
Affiliation(s)
- Almira Ada Diken Türksayar
- Department of Prosthodontics, Faculty of Dentistry, Biruni University, İstanbul, Turkey; ADMiRE Research Center, Carinthia University of Applied Sciences, Europastrasse 3a, Villach 9524, Austria.
| | - Sandra Petersmann
- ADMiRE Research Center, Carinthia University of Applied Sciences, Europastrasse 3a, Villach 9524, Austria
| | - Sebastian Spintzyk
- ADMiRE Research Center, Carinthia University of Applied Sciences, Europastrasse 3a, Villach 9524, Austria
| |
Collapse
|
2
|
Karakaya K, Mutluay Ünal S. Evaluation of stress distribution of different marginal designs on PEEK and PEKK substructure materials, cortical and cancellous Bone:A finite element analysis. Comput Biol Med 2024; 178:108708. [PMID: 38861895 DOI: 10.1016/j.compbiomed.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND High-performance polymers are used in different fixed prosthesis treatments due to their many advantages such as biocompatibility, shock absorption ability, high fracture resistance. The effects of marginal design on the forces on high-performance polymers are unknown. This study aimed was to investigate the stress distribution of different marginal designs on Polyetheretherketone (PEEK) and Polyetherketoneketone (PEKK) substructure materials, cortical bone and cancellous bone by finite element analysis. METHODS A first maxillary molar tooth was modeled in 3D using the "3D Complex Render" method. Considering the ideal preparation conditions (Taper angle was 6°, step depth was 1 mm, occlusal reduction was 2 mm), four different configurations were modeled by changing the marginal design (chamfer, deep chamfer, shoulder 90°, shoulder 135°). PEEK, PEKK substructure, and composite superstructure were designed on created models. A total of 150 N oblique force from two points and a total of 300 N vertical force from three points were applied from occlusall. and the maximum principal stress, minimum principal stress, von Mises stress findings in the cortical bone, spongiose bone, and substructure were examined. The study was carried out by static linear analysis with a three-dimensional finite element stress analysis method. RESULTS The highest maximum principal stress value in the cortical bone was observed when the PEEK + Shoulder 135° step at vertical force. The highest minimum principal stress value in the cortical bone was observed when the PEEK + Shoulder 90° step, and PEEK + deep chamfer step at oblique force. The highest maximum principal stress value in spongiose bone was observed when the PEEK + Shoulder 90° step. The highest minimum principal stress value in spongiose bone was observed when the PEEK + deep chamfer step at vertical force. The highest von Mises stress value in the substructure was observed when the PEKK + Deep chamfer step at oblique force. The lowest maximum principal stress value in the cortical bone was observed when the PEKK + Shoulder 135° step at oblique force. The lowest minimum principal stress value in the cortical bone was observed when the PEEK + Shoulder 135° step, and PEKK + shoulder 135° step at vertical force. The lowest maximum principal stress value in spongiose bone was observed when the PEEK + Shoulder 90° step. The lowest minimum principal stress value in spongiose bone was observed when the PEEK + Shoulder 135° step and PEKK + Shoulder 135° step at vertical force. The lowest von Mises stress value in the substructure was observed when the PEEK + Deep chamfer step at vertical force. CONCLUSION When cortical and spongiose bone stress were evaluated, no destructive stress was observed. Considering the stresses occurring in the substructure the highest stress was observed in the chamfer step.
Collapse
Affiliation(s)
- Kevser Karakaya
- Afyonkarahisar Health Sciences University, Faculty of Dentistry, Department of Prosthodontics, Afyonkarahisar, Turkey.
| | - Server Mutluay Ünal
- Afyonkarahisar Health Sciences University, Faculty of Dentistry, Department of Prosthodontics, Afyonkarahisar, Turkey.
| |
Collapse
|
3
|
Kaya N, Sasany R, Yanıkoglu N, Tosun B. Investigation of color and physicomechanical properties of peek and pekk after storage in a different medium. Sci Rep 2024; 14:5357. [PMID: 38438417 PMCID: PMC10912655 DOI: 10.1038/s41598-024-54695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
The aim of this study is to assess color stability, solubility, and water sorption on polyether ether ketone (PEEK) and polyether ketone ketone (PEKK) after immersion in different storage conditions. Material and Methods Ninety disc-shaped specimens (8 × 2) were obtained from CAD/CAM blocks [PEEK (n = 45) and PEKK (n = 45)]. Before immersion, baseline color value data were recorded with a spectrophotometer. The specimens were soaked in three solutions red wine, coffee, and distilled water at 37 °C for 28 days. Following immersion, color values were remeasured, and color-change values (ΔE) were calculated. Water sorption and solubility were assessed by mass gain or loss after storage in water for 28 days. The Kruskal-Wallis and the Mann-Whitney U test were used for analysis (P = 0.05). Results ΔE00 between PEEK and PEKK was significantly different statistically (P < 0.001). PEEK presented higher water sorption than PEKK (P = 0.005). The difference in solubility between PEEK and PEKK was not statistically significant (P = 0.163). The materials and storage medium types had a statistically significant impact (P = 0.100). In terms of staining potential, the solutions tested in this experiment were ranked as: coffee > red wine > distilled water. The results of this study demonstrated that PEKK was more successful in polymer-containing CAD/CAM materials as it exhibited less color change and water absorption.
Collapse
Affiliation(s)
- Nihan Kaya
- Department of Prosthodontics, Faculty of Dentistry, University of Giresun, Giresun, Turkey
| | - Rafat Sasany
- Department of Prosthodontics, Faculty of Dentistry, University of Biruni, İstanbul, Turkey.
| | - Nuran Yanıkoglu
- Department of Prosthodontics, Faculty of Dentistry, University of Ataturk, Erzurum, Turkey
| | - Busra Tosun
- Department of Prosthodontics, Faculty of Dentistry, University of Abant İzzet Baysal, Bolu, Turkey
| |
Collapse
|
4
|
El-Farag SAA, Elerian FA, Elsherbiny AA, Abbas MH. Impact of different CAD/CAM materials on internal and marginal adaptations and fracture resistance of endocrown restorations with: 3D finite element analysis. BMC Oral Health 2023; 23:421. [PMID: 37357307 DOI: 10.1186/s12903-023-03114-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
PURPOSE To assess and compare the impact of various computers aided design/manufacturing (CAD/CAM) materials on internal and marginal discrepancies, fracture resistance and failure probability of Endocrown restorations with 3D Finite Element analysis. MATERIAL AND METHODS Forty devitalized human maxillary first molars were collected. After endodontic treatment, they classified into 4 groups (n = 10) based on the materials used for endocrown fabrication. Group V (Vita-Enamic), Group N (Nacera Hybrid), Group T (Translucent Prettau Zirconia) and Group P (Pekkton ivory). All samples were exposed to artificial aging method simulating one year of clinical service. Silicone replica technique and stereomicroscope (25X) utilized to evaluate the marginal and internal gaps of endocrowns at different areas. Fracture resistance test used for cemented specimens followed by qualitative investigation utilizing Stereomicroscopy. Four models representing four endocrown systems used for restoration of severely-damaged endodontically treated upper first molar were generated for finite element analysis (FEA). Axially and centrally static occlusal compressive load was applied. Modified Von Mises and maximum principal stress values on the remaining tooth structure, cement lines and restorative materials were assessed independently. Resulted data were statistically analyzed at P-value ≤ 0.05. RESULTS In the current study, the highest mean values of internal and marginal discrepancies (μm) among studied groups were reported for Zirconia group (100.300 and 102.650) respectively, while the lowest mean value of internal discrepancy (μm) was observed for Nacera group (69.275) and the lowest mean value of marginal discrepancy (μm) was observed for PEKK group (78.4750). Regarding internal discrepancy, Vita-Enamic and PEKK groups did not exhibit any statistically significant differences (P = 0.293), however zirconia and the other tested groups exhibited statistically significant differences in the mean values of the marginal gap region (p 0.05).On the other hand, PEKK group showed the highest mean value of fracture resistance (1845.20 N) and the lowest value was observed for Vita-Enamic group (946.50 N). Regarding to stress distributions through 3D FEA, and according to modified von Mises (mvM) analysis, the greatest possible stress values were noticed in PEKK model in relation to tooth structure, cement line, and flowable composite as the following: (93.1, 64.5, 58.4 MPa) respectively, while Zirconia revealed lower maximum stress values (11.4, 13.6, 11.6 MPa) respectively. CONCLUSIONS Statistically excellent marginal and internal fit was observed for PEKK in relation to other used endocrown materials. Also, PEKK material explained fracture resistance comparable to zirconia value while the lowest value was detected for Vita Enamic material.
Collapse
Affiliation(s)
- Shaimaa Ahmed Abo El-Farag
- Fixed Prosthodontics Department, Faculty of Dentistry, Mansoura University and Horus University (HUE), Mansoura, Egypt
| | - Fatma Abdallah Elerian
- Production and Mechanical Design Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Abdallah Ahmed Elsherbiny
- Production and Mechanical Design Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mahy Hassouna Abbas
- Fixed Prosthodontics Department, Faculty of Dentistry, Mansoura University and Delta University for Science and Technology, Mansoura, Egypt.
| |
Collapse
|
5
|
Zol SM, Alauddin MS, Said Z, Mohd Ghazali MI, Hao-Ern L, Mohd Farid DA, Zahari NAH, Al-Khadim AHA, Abdul Aziz AH. Description of Poly(aryl-ether-ketone) Materials (PAEKs), Polyetheretherketone (PEEK) and Polyetherketoneketone (PEKK) for Application as a Dental Material: A Materials Science Review. Polymers (Basel) 2023; 15:polym15092170. [PMID: 37177316 PMCID: PMC10180673 DOI: 10.3390/polym15092170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Poly(aryl-ether-ketone) materials (PAEKs), a class of high-performance polymers comprised of polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), have attracted interest in standard dental procedures due to their inherent characteristics in terms of mechanical and biological properties. Polyetheretherketone (PEEK) is a restorative dental material widely used for prosthetic frameworks due to its superior physical, mechanical, aesthetic, and handling features. Meanwhile, polyetherketoneketone (PEKK) is a semi-crystalline thermoplastic embraced in the additive manufacturing market. In the present review study, a new way to fabricate high-performance polymers, particularly PEEK and PEKK, is demonstrated using additive manufacturing digital dental technology, or 3-dimensional (3D) printing. The focus in this literature review will encompass an investigation of the chemical, mechanical, and biological properties of HPPs, particularly PEEK and PEKK, along with their application particularly in dentistry. High-performance polymers have gained popularity in denture prosthesis in advance dentistry due to their flexibility in terms of manufacturing and the growing interest in utilizing additive manufacturing in denture fabrication. Further, this review also explores the literature regarding the properties of high-performance polymers (HPP) compared to previous reported polymers in terms of the dental material along with the current advancement of the digital designing and manufacturing.
Collapse
Affiliation(s)
- Syazwani Mohamad Zol
- Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Muhammad Syafiq Alauddin
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Zulfahmi Said
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Mohd Ifwat Mohd Ghazali
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Lee Hao-Ern
- Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | | | | | - Aws Hashim Ali Al-Khadim
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| | - Azrul Hafiz Abdul Aziz
- Department of Paediatrics Dentistry and Orthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), Kuala Lumpur 55100, Malaysia
| |
Collapse
|
6
|
Krüger S, Wille S, Kern M. The Correlation of Surface Roughness Parameters of Zirconia and Lithium Disilicate with Steatite Wear. J Prosthodont 2023; 32:e52-e63. [PMID: 35771977 DOI: 10.1111/jopr.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Various surface roughness parameters are utilized to describe the surface in the tooth to ceramics abrasion and to assess the resulting wear. The use of three-dimensional parameters may offer a better estimation for wear and an improved deduced clinical surface treatment. The aim of this study was to determine the influence of various surface roughness parameters of zirconia and lithium disilicate ceramics on the wear of steatite antagonists. MATERIAL AND METHODS Forty zirconia specimens with a diameter of 7 mm and a thickness of 3 mm and 40 lithium disilicate specimens with the dimensions 10×10×4 mm were each divided into five subgroups. Two subgroups were treated with different clinically established diamond burs; a third subgroup was treated with a silicone polishing set. Two additional subgroups were produced by glazing the surfaces after treatment. Surface roughness parameters were determined by laser scanning microscopy. All specimens underwent 1.2 million loading cycles using steatite antagonists. After regular intervals of cycles, precision impressions were made to assess the wear. The correlation between wear and different roughness parameters was evaluated using the Spearman correlation test. RESULTS For the glazed zirconia, unglazed zirconia, and glazed lithium disilicate specimens no significant correlations (p > 0.05) between the investigated roughness parameters and antagonist wear could be found. In the unglazed lithium disilicate groups, significant (p ≤ 0.05) correlations with steatite substance loss could be found for several roughness parameters after 1.2 million cycles. CONCLUSIONS For lithium disilicate, it seems not sufficient to use only one roughness parameter to indicate the wear behavior of the surface. There was no correlation between wear and the tested roughness parameters of zirconia surfaces.
Collapse
Affiliation(s)
- Stephan Krüger
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University, Kiel, Germany
| | - Sebastian Wille
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
7
|
Liu Y, Fang M, Zhao R, Liu H, Li K, Tian M, Niu L, Xie R, Bai S. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers (Basel) 2022; 14:polym14214615. [PMID: 36365609 PMCID: PMC9654455 DOI: 10.3390/polym14214615] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The high-performance thermoplastic polyetheretherketone (PEEK) has excellent mechanical properties, biocompatibility, chemical stability, and radiolucency. The present article comprehensively reviews various applications of PEEK in removable dental prostheses, including in removable partial dentures (RPDs) (frameworks and clasps), double-crown RPDs, and obturators. The clinical performance of PEEK in removable dental prostheses is shown to be satisfactory and promising based on the short-term clinical evidence and technical complications are scarce. Moreover, the accuracy of RPDs is a vital factor for their long-term success rate. PEEK in removable dental prostheses is fabricated using the conventional lost-wax technique and CAD/CAM milling, which produces a good fit. Furthermore, fused deposition modeling is considered to be one of the most practical additive techniques. PEEK in removable prostheses produced by this technique exhibits good results in terms of the framework fit. However, in light of the paucity of evidence regarding other additive techniques, these manufacturers cannot yet be endorsed. Surface roughness, bacterial retention, color stability, and wear resistance should also be considered when attempting to increase the survival rates of PEEK removable prostheses. In addition, pastes represent an effective method for PEEK polishing to obtain a reduced surface roughness, which facilitates lower bacterial retention. As compared to other composite materials, PEEK is less likely to become discolored or deteriorate due to wear abrasion.
Collapse
Affiliation(s)
- Yuchen Liu
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ming Fang
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (M.F.); (S.B.)
| | - Ruifeng Zhao
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Hengyan Liu
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Kangjie Li
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Min Tian
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Lina Niu
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Rui Xie
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (M.F.); (S.B.)
| |
Collapse
|
8
|
Gouveia D, Yilmaz B, Cevik P, Johnston WM. Using Kubelka-Munk reflectance theory to predict optimal pink composite thickness and shade with an opaqued PEEK background for a final gingival color: An in vitro study. Dent Mater 2022; 38:1452-1458. [DOI: 10.1016/j.dental.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
|
9
|
New generation CAD-CAM materials for implant-supported definitive frameworks fabricated by using subtractive technologies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3074182. [PMID: 35281596 PMCID: PMC8906986 DOI: 10.1155/2022/3074182] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
Innovations in digital manufacturing enabled the fabrication of implant-supported fixed dental prostheses (ISFDPs) in a wide variety of recently introduced materials. Computer-aided design and computer-aided manufacturing (CAD-CAM) milling allows the fabrication of ISFDPs with high accuracy by reducing the fabrication steps of large-span frameworks. The longevity of ISFDPs depends on the overall mechanical properties of the framework material including its fit, and the physical properties of the veneering material and its bond with the framework. This comprehensive review summarizes the recent information on millable CAD-CAM framework materials such as pre-sintered soft alloys, fiber-reinforced composite resins, PEEK, and PEKK in high-performance polymer family, and 4Y-TZP. Even though promising results have been obtained with the use of new generation millable CAD-CAM materials for ISFDPs, clinical studies are lacking and future research should focus on the overall performance of these millable materials in both static and dynamic conditions.
Collapse
|
10
|
Tosun B, Yanıkoğlu N. Evaluation of the effects of different surface modification methods on the bond strength of high-performance polymers and resin matrix ceramics. Clin Oral Investig 2022; 26:3781-3790. [DOI: 10.1007/s00784-021-04348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
|
11
|
Rehabilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: Biomechanical behavior assessment through 3D finite element and in vitro analyses. J Mech Behav Biomed Mater 2021; 126:105031. [PMID: 34922296 DOI: 10.1016/j.jmbbm.2021.105031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Rehabilitation of endodontically treated premolars with extensive coronal destruction through endocrown approach remains a controversial topic in reconstructive dentistry. There is no clear consensus in the literature which endocrown design with which material is the most effective restoration option for severely-destructed endodontically treated premolars. The aim of this study was to assess the biomechanical behavior of endodontically treated maxillary first premolars restored with a novel endocrown system compared to the conventional one varying the applied load type through finite element and in vitro analyses. MATERIALS AND METHODS For finite element analysis, two models representing two endocrown systems used for restoration of severely-destructed endodontically treated maxillary first premolar tooth were generated: Model C for the conventional monolithic IPS e.max CAD endocrown and Model P for the novel bi-layered endocrown (PEKKTON ivory coping veneered with cemented IPS e.max CAD). Modified von Mises stress values on the remaining tooth structure, cement lines and restorative materials were evaluated separately under axial and oblique loading of 450 N. For in vitro analysis, forty sound human bifurcated maxillary first premolars were collected, endodontically-treated, and divided into 2 main groups (n = 20) according to the system used for endocrown fabrication; Group C: the conventional monolithic endocrowns and Group P: the novel bi-layered endocrowns. All specimens were subjected to an artificial thermomechanical aging protocol. Each main group was subdivided into two subgroups (n = 10) according to the loading type (axial and oblique) applied during the fracture resistance test. Qualitative analysis using Stereomicroscopy and Scanning Electron Microscopy was performed. Data were statistically analyzed at p-value ≤ 0.05. RESULTS Regarding stress distribution pattern of remaining tooth structure (enamel and dentin), both endocrown systems and cement lines under both axial and oblique load application, Model P resulted in lower stresses than Model C. The oblique stress values of all analyzed structures were higher than corresponding values resulted axially. Considering failure load, a significantly higher load was recorded for Group P when axial or oblique loading was applied (p = 0.00). A significantly higher failure load was recorded with axial loading for both main groups. With regard to failure mode, a statistically significant difference was observed between main groups (p = 0.033), with more favorable failures detected for Group P axially. CONCLUSIONS Compared to the conventional endocrown system, the studied novel system improved the biomechanical behavior within tooth/restoration complex of the restored severely-destructed endodontically treated maxillary first premolar teeth, whatever the applied load type. CLINICAL SIGNIFICANCE The novel endocrown system using a PEKK coping veneered with cemented IPS e.max CAD can be considered a favorable promising option for restoration of severely-destructed endodontically treated premolar teeth, with more protection for residual tooth structure. It can be considered as a conservative alternative option to the conventional treatment modalities not only for normal clinical conditions, but also for parafunctional cases.
Collapse
|
12
|
Biomechanical behavior of endodontically treated premolar teeth restored with novel endocrown system: 3D Finite Element and Weibull analyses. J Mech Behav Biomed Mater 2021; 124:104853. [PMID: 34600429 DOI: 10.1016/j.jmbbm.2021.104853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To date, there is no clear consensus in the literature which endocrown design with which material is the most effective treatment option to restore endodontically treated maxillary premolars with extensive loss of tooth structure. The aim of this study was to evaluate the stress distribution pattern and failure probability of maxillary first premolars restored with a novel endocrown system compared to the conventional one by means of Finite Element and Weibull analyses. MATERIALS AND METHODS Two finite element (FE) models representing two endocrown systems used for restoration of severely-destructed endodontically treated maxillary first premolar tooth were generated: model C for the conventional monolithic IPS e.max CAD endocrown and model P for the novel bi-layered endocrown (PEKKTON ivory coping veneered with cemented IPS e.max CAD). A static occlusal compressive load was axially and centrally-applied. Modified von Mises and maximum principal stress values on the remaining tooth structure, cement lines and restorative materials were evaluated separately. Weibull function was incorporated with FE analysis to calculate the long term failure probability. RESULTS Regarding stresses occurred in the remaining tooth structure (enamel and dentin), model P transmitted less stresses than model C. The individual enamel of model C showed about 5% and 40% risk of failure at normal and maximum occlusal load values, respectively, while for model P, it had no failure risk at both values. For dentin, model C showed about 13% failure risk at the normal masticatory force, while model P showed only 2%. At clenching value, model C dentin showed about 44% failure risk, while only 9% was resulted for model P. CONCLUSIONS Compared to the conventional endocrown system, the positive impact of the studied novel endocrown system on the stress distribution pattern and also on the survival/failure probability of the restored severely-destructed endodontically treated maxillary first premolar teeth was reflected (more tooth-friendly), not only at normal masticatory forces but also at the maximum functional loads. CLINICAL SIGNIFICANCE The novel endocrown system using a PEKK coping veneered with cemented IPS e.max CAD can be considered a favorable option for restoration of severely-destructed endodontically treated premolar teeth, with more protection for residual tooth structure. Despite the conventional endocrown system may benefit the durability of tooth bonding, it should not be selected for restoration of clenching cases because of the too high overall failure risk.
Collapse
|
13
|
Trueness and marginal fit of implant-supported complete-arch fixed prosthesis frameworks made of high-performance polymers and titanium: An explorative in-vitro study. J Dent 2021; 113:103784. [PMID: 34419479 DOI: 10.1016/j.jdent.2021.103784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To investigate the trueness and marginal fit of computer-aided design-computer-aided manufactured (CAD-CAM) complete-arch implant-supported screw-retained fixed prosthesis (CAISFP) made of polyetheretherketone (PEEK), polyetherketoneketone (PEKK) and titanium (Ti) MATERIAL AND METHODS: A typodont model with four implants, their multiunit abutments (MUAs), and MUA scanbodies were digitized by using a laboratory scanner. The generated CAD was used to mill CAISFP frameworks in Ti, PEEK, or PEKK (each n = 10). The frameworks were digitized with an industrial light scanner to superimpose resulting standard tessellation language (STL) file with the CAD file. Deviations at five points at the abutment-framework interface of each of the four abutment sites (1:left first molar, 2:left canine, 3:right canine, 4:right first molar sites) were calculated (trueness). Marginal gaps were measured using the triple scan technique. A nonparametric repeated measures ANOVA by Brunner and Puri with factors being abutment location and material was performed to assess the mean deviations for trueness and mean marginal gaps, followed by Mann-Whitney or exact Wilcoxon Signed-Rank tests (alpha=.05). RESULTS Material type significantly affected the trueness (p<0.0001). PEEK had the lowest deviations (0.039 +/-0.01mm) followed by PEKK (0,049 +/-0.009mm), and Ti (0.074 +/-0.011mm). For marginal gaps, only abutment location's effect was significant (p = 0.003). Within PEKK, gaps at abutment 4 were significantly larger, compared with abutments 2 (p = 0.04) and 3 (p = 0.02). CONCLUSIONS The trueness of PEEK, PEKK, and Ti frameworks was different after milled. PEEK had the highest trueness. However, the marginal fit of the frameworks was similar and smaller than 90 µm in average. CLINICAL RELEVANCE PEEK, PEKK, and Ti complete-arch frameworks had clinically acceptable gaps and may therefore be recommended when their fit is considered. Higher trueness after milling did not result in better marginal fit.
Collapse
|
14
|
Dayan SC, Geckili O. The influence of framework material on stress distribution in maxillary complete-arch fixed prostheses supported by four dental implants: a three-dimensional finite element analysis. Comput Methods Biomech Biomed Engin 2021; 24:1606-1617. [PMID: 33798003 DOI: 10.1080/10255842.2021.1903450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of the present study was to compare the stress distribution patterns of four materials used for the framework of All-on-4 prostheses. Following framework materials were evaluated: PEKK, PEEK, titanium, and monolithic zirconia. Bilateral 150 N axial and oblique loads were applied in the first molar region and analyzed using FEA. The highest maximum principal stress and minimum principal stress values in cortical bone were found to appear with PEKK and PEEK frameworks around the posterior dental implants upon oblique loading. The fabrication of frameworks from rigid materials in All-on-4 prostheses reduces stress in dental implants and peri-implant bone when the distal implants are tilted 30°.
Collapse
Affiliation(s)
| | - Onur Geckili
- Department of Prosthodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
15
|
Alqurashi H, Khurshid Z, Syed AUY, Rashid Habib S, Rokaya D, Zafar MS. Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses. J Adv Res 2020; 28:87-95. [PMID: 33384878 PMCID: PMC7770505 DOI: 10.1016/j.jare.2020.09.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Polyetherketoneketone (PEKK) is a new evolving polymeric material. The present article comprehensively reviewed an overview of various applications of PEKK in prosthodontics and oral implantology, highlighting its prospects for clinical applications. PEKK biomaterials is an elastic material with good shock absorbance and fracture resistance and present ultra-high performance among all thermoplastic composites for excellent mechanical strength, chemical resistance, and high thermal stability. Available articles on PEKK for dental applications were reviewed from January 1957 to August 2020) using MEDLINE/PubMed, Web of Science, and ScienceDirect resources. PEKK presents suitable physical, mechanical, and chemical properties for applications in prosthodontics and oral implantology. PEKK has good potential for a wide range of dental applications, including tooth restorations, crowns, bridge, endoposts, denture framework, implant-supported fixed prosthesis, and dental implants. PEKK dental implants have shown lesser stress shielding compared to titanium for dental implant applications. Further modifications and improving material properties can result in broader applications in the field of dentistry. Long term evaluations are needed as PEKK is recently applied in dentistry, and there are limited studies published on PEKK.
Collapse
Affiliation(s)
- Hatim Alqurashi
- School of Clinical Dentistry, University of Sheffield, United Kingdom.,Department of Preventive Dental Sciences, School of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Azeem Ul Yaqin Syed
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Syed Rashid Habib
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Bangkok 10400, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwarah, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
16
|
Characterisation of machinable structural polymers in restorative dentistry. Dent Mater 2018; 34:1509-1517. [DOI: 10.1016/j.dental.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/15/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022]
|