1
|
Zhang J, Yang Y, Chen Y, Chen X, Li A, Wang J, Shen D, Zheng S. A review of new generation of dental restorative resin composites with antibacterial, remineralizing and self-healing capabilities. DISCOVER NANO 2024; 19:189. [PMID: 39570468 PMCID: PMC11582236 DOI: 10.1186/s11671-024-04151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Dental restorative resin composites are widely used to repair tooth decay owing to attractive esthetics, adequate mechanical properties and minimally invasive tooth structure preparations. Nevertheless, dental restorative resin composites still face challenges because of their relatively high failure rate and short lifespan caused by secondary caries and bulk fracture. Thus, attempts have been carried out to explore a new generation of dental restorative resin composites with antibacterial, remineralizing, and self-healing capabilities to inhibit bacteria and lengthen the lifetime of the restorations. Such novel restorative composites can inhibit bacterial activity, reduce acid production, promote mineral regeneration and present a renewable advantage to achieve a higher performance, which are inspiring and provide support for further basic and clinical research. In this review, antibacterial dental restorative resin composites are first introduced, followed by remineralizing, self-healing, and multifunctional dental resin composites with two or more of the functions mentioned above. Meanwhile, we explain the mechanism of the corresponding dental restorative resin composites and describe their characteristics. Finally, we conclude and put forward prospects. This review will attract both researchers and clinicians in this field and help to provide innovative ideas to design new restorative resin composites for biomedical applications.
Collapse
Affiliation(s)
- Jinshuang Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yujin Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yaqing Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xu Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ang Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Juan Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Daojun Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Shunli Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
2
|
Obeid AT, Nascimento TRDL, Ramos CAS, Mondelli RFL, Rastelli ANDS, Alhotan A, Velo MMDAC, Bombonatti JFS. Physical-Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium-Fluoride Nanoparticles-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5378. [PMID: 39517652 PMCID: PMC11547953 DOI: 10.3390/ma17215378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study investigated the combined effects of adding niobium-fluoride (NbF5) nanoparticles to a pit-and-fissure sealant. One resin sealant was reinforced with varying amounts of nanoparticles (0.3, 0.6, and 0.9 wt%). The surface hardness (SH), energy-dispersive X-ray spectroscopy (EDX), surface roughness (Ra), color change (ΔE), and mineral deposition were assessed. Bovine enamel blocks were subjected to demineralization and pH-cycling for SH. The elemental composition and Ca/P ratio were evaluated using EDX, while the mineral deposition was measured using Fourier transform infrared spectroscopy (FTIR). Data were analyzed using ANOVA and Tukey's test for the SH and EDX, ΔE, and Kruskal-Wallis for the Ra. The NbF5 modification increased the SH, with the 0.9 wt% sealant exhibiting higher SH values, and the 0.3 wt% one exhibiting significant differences compared to the control and the 0.9 wt% (p = 0.00) samples, even after pH-cycling. For the EDX analysis, the 0.3 and 0.6 wt% samples exhibited higher Ca/P ratios, with the 0.3% one showing evidence of P-O crystal formation. There was no significant difference in the Ra (p = 0.458), and the 0.6 and 0.9 wt% ones showed lower ΔE values compared to the control. The 0.3 wt% NbF5 demonstrated improved overall properties, making these results particularly promising for preventing tooth decay, reducing demineralization through increased ions release and promoting remineralization in posterior teeth.
Collapse
Affiliation(s)
- Alyssa Teixeira Obeid
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
| | - Tatiana Rita de Lima Nascimento
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
- Leibniz Institute for Solid State and Materials Research, IFW-Dresden e.V., Helmholtzstraße 20, 01069 Dresden, Germany
| | | | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University—UNESP, 1680 Humaitá Street–3rd floor, Araraquara 14801-903, SP, Brazil;
| | - Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 12372, Saudi Arabia
| | - Marilia Mattar de Amoêdo Campos Velo
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University—UNESP, 1680 Humaitá Street–3rd floor, Araraquara 14801-903, SP, Brazil;
| | - Juliana Fraga Soares Bombonatti
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil; (A.T.O.); (T.R.d.L.N.); (R.F.L.M.); (J.F.S.B.)
| |
Collapse
|
3
|
Ai X, Liu Z, Wang T, Xie Q, Xie W. POSS hybrid bioactive glass dental composite resin materials: Synthesis and analysis. J Dent 2024; 142:104860. [PMID: 38281618 DOI: 10.1016/j.jdent.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION This study create a dental composite by hybirding polyhedral oligo-sesquioxide nano monomers and bioactive glass BG 45S5. METHODS Make an experimental composite resin material with a 60 % filler content overall by substituting 20 % of the filler with BG 45S5. The experimental resins are grouped and named P0, P2, P4, P6 and P8 based on the reactive nanomonomer methacrylic acid-based multifaceted oligomeric sesquisiloxane (POSS) added by 2 %-8 % in the resin matrix portion of each group. Utilize a universal testing machine to analyze and compare the mechanical properties of these, then perform Fourier infrared spectrum analysis, double bond conversion analysis, and scanning electron microscope analysis. Based on this, after soaking the experimental materials artificial saliva solution or lactic acid solution for a while, the pH changes of the solution, the release of Ca2+ and PO43- ions, and the precipitation of apatite on the resin material's surface were tested and analyzed. Cell viability tests were used to assess sample cell viability and quantify the cytotoxicity of biological cells. The independent sample t-test was used to examine the group comparisons, and a difference was considered statistically significant at P<0.05. RESULTS Outstanding mechanical and the double bond conversion are demonstrated by the nanocomposites when the POSS concentration hits 4 wt%. Agglomeration will cause the performance to deteriorate if the concentration beyond this threshold. In the P4 group, the double bond conversion, CS, and FS rose by a large margin, respectively, in comparison to the blank control group P0. Thankfully, the data demonstrate that adding POSS increases adhesive ability when compared to the blank group P0, however, there is no discernible difference between the other experimental groups. The acid neutralization capacity of the P4 group is essentially the same as that of the control group (P0). Ca2+ and PO43- ions are released in significant amounts following treatment with lactic acid solution, although this tendency is clearly less pronounced in artificial saliva. SEM and EDX data indicate that when the experimental resin is soaked in lactic acid solution and artificial saliva, apatite precipitation will happen on its surface. The results of the cell viability test indicated that there was no statistically significant difference between the experimental groups, and the viability of the cells increased after 24hours and 48 hours. CONCLUSIONS POSS was included into the composite resin along with 20% bioactive glass as a filler. When the proportion of POSS is less than 4%, the indices of composite resin materials rise in a dose-dependent way. When this value is surpassed, performance begins to deteriorate. The inclusion of POSS has no influence on the biological activity of the composites, which means that the hybrid composite resin is capable of acid neutralization, ion release, and apatite precipitation. CLINICAL SIGNIFICANCE The experimental composite resin can be used as an intelligent material in clinical treatment. It has the clinical application potential of preventing demineralization of tooth hard tissue, promoting remineralization, and improving edge sealing through apatite precipitation.
Collapse
Affiliation(s)
- XuanMei Ai
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - ZhaoNan Liu
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - TianQi Wang
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - Qi Xie
- Department of Stomatology, Harbin Medical University, Harbin 150001, China.
| | - WeiLi Xie
- The First Affiliated Hospital Of Harbin Medical Uhiversity, School of Stomatology, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
4
|
Shi Y, Zheng H, Wang W, Qian L, Zhao W, Xu J, Li M, Wu Z, Fu B. Dentin surface modification by MDP to improve dentin bonding stability: Topological enhancement and mineralization of collagen structure in hybrid layers. Colloids Surf B Biointerfaces 2024; 235:113776. [PMID: 38364520 DOI: 10.1016/j.colsurfb.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Decades of research have been conducted on 10-Methacryloyloxydecyl dihydrogen phosphate (MDP) through numerous studies. The mechanisms by which its residual calcium salts benefit dentin bonding remain undetermined. The objective of the research was to investigate the role and process of remaining calcium salts in the priming procedure and their capacity for remineralization. The investigation focused on the variations in topological structure, mechanical properties, and chemical interactions between the main agent and the dentin surface. Two adhesive modes including prime-and-rinse(P&R) and prime-and-nonrinse (P&NR) utilized to evaluate the bonding performance and remineralization ability. The findings indicated that both P&R and P&NR methods could eliminate the smear-layer, uncover dentinal-tubules, and generate a textured/rough surface on the dentin. Collagen fibrils exhibited a greater presence of inorganic minerals in the P&NR mode. Compared to control group, both P&R and P&NR groups improved immediate and aging bond strength significantly (P < 0.05). AFM and 3D-STORM revealed MDP and its residual calcium salts distributed in collagen fibrils and expanded collagen matrix. In the P&NR group, TEM revealed that the dentin collagen matrix experienced some remineralization, and there was also mineralization within the collagen fibrils embedded in the bonding interface. Thus, MDP priming improved dentin bonding stability. Residual calcium salts of P&NR process can enhance topological structure of the collagen matrix and induce intrafibrillar mineralization.
Collapse
Affiliation(s)
- Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wenting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Linna Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jingqiu Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
5
|
Shi Y, Tao W, Yang W, Wang L, Qiu Z, Qu X, Dang J, He J, Fan H. Calcium phosphate coating enhances osteointegration of melt electrowritten scaffold by regulating macrophage polarization. J Nanobiotechnology 2024; 22:47. [PMID: 38297240 PMCID: PMC10829397 DOI: 10.1186/s12951-024-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
The osteoimmune microenvironment induced by implants plays a significant role in bone regeneration. It is essential to efficiently and timely switch the macrophage phenotype from M1 to M2 for optimal bone healing. This study examined the impact of a calcium phosphate (CaP) coating on the physiochemical properties of highly ordered polycaprolactone (PCL) scaffolds fabricated using melt electrowritten (MEW). Additionally, it investigated the influence of these scaffolds on macrophage polarization and their immunomodulation on osteogenesis. The results revealed that the CaP coated PCL scaffold exhibited a rougher surface topography and higher hydrophilicity in comparison to the PCL scaffold without coating. Besides, the surface morphology of the coating and the release of Ca2+ from the CaP coating were crucial in regulating the transition of macrophages from M1 to M2 phenotypes. They might activate the PI3K/AKT and cAMP-PKA pathways, respectively, to facilitate M2 polarization. In addition, the osteoimmune microenvironment induced by CaP coated PCL could not only enhance the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro but also promote the bone regeneration in vivo. Taken together, the CaP coating can be employed to control the phenotypic switching of macrophages, thereby creating a beneficial immunomodulatory microenvironment that promotes bone regeneration.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weidong Tao
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjing Yang
- Xijing 986 Hospital Department, The Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Inchingolo F, Dipalma G, Azzollini D, Trilli I, Carpentiere V, Hazballa D, Bordea IR, Palermo A, Inchingolo AD, Inchingolo AM. Advances in Preventive and Therapeutic Approaches for Dental Erosion: A Systematic Review. Dent J (Basel) 2023; 11:274. [PMID: 38132412 PMCID: PMC10742734 DOI: 10.3390/dj11120274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
This review discusses both preventive measures and clinically implemented therapy procedures that have been developed recently for the prevention and treatment of tooth erosion. METHODS The databases PubMed, Scopus, and Web of Science were used for a thorough search. Studies on the prevention and treatment of dental erosion that were conducted in English and used in vitro were among the inclusion criteria. RESULTS The search turned up 391 papers in total, with 34 of those publications matching the requirements for inclusion. Varnishes, toothpastes, and solutions containing fluoride and other substances were used as preventive measures. CONCLUSIONS Dental erosion is a significant issue, and taking preventative steps is crucial to lessening the disease's spread and its effects. Interventions based on fluoride seem to be successful at halting erosion and encouraging remineralization. To effectively address severe tooth erosion, therapeutic methods, including composite restorations, prosthetic crowns, and veneers, are available. Dental erosion causes aesthetic and functional issues that are best addressed with less invasive treatments like direct composite restorations. To improve and broaden the range of available treatments for this common dental issue, additional research and development are required.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| | - Daniela Azzollini
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| | - Irma Trilli
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| | - Vincenzo Carpentiere
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| | - Denisa Hazballa
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrea Palermo
- College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine D.I.M., University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (D.A.); (I.T.); (V.C.); (D.H.); (A.D.I.); (A.M.I.)
| |
Collapse
|
7
|
Thanyasiri S, Naruphontjirakul P, Padunglappisit C, Mirchandani B, Young AM, Panpisut P. Assessment of physical/mechanical properties and cytotoxicity of dual-cured resin cements containing Sr-bioactive glass nanoparticles and calcium phosphate. Dent Mater J 2023; 42:806-817. [PMID: 37880134 DOI: 10.4012/dmj.2023-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The aim was to develop dual-cured resin cements containing Sr-bioactive glass nanoparticles (Sr-BGNPs; 5 or 10 wt%) and monocalcium phosphate monohydrate (MCPM; 3 or 6 wt%). Effects of additives on degree of monomer conversion (DC), biaxial flexural strength/modulus, shear bond strength (SBS), mass/volume change, color stability, ion release, and cytotoxicity were examined. Controls included material without reactive fillers and Panavia SA Plus (PV). Experimental cements showed higher DC than PV regardless of light activation (p<0.05). Mean SBS and color stability were comparable between experimental cements and PV. Cell viability upon the exposure to sample extracts of experimental cements was 80%-92%. High additive concentrations led to lower strength and modulus than PV (p<0.05). The additives increased mass change, reduced color stability, and promoted ion release. The experimental resin cements demonstrated acceptable mechanical/chemical properties and cytotoxicity. The additives reduced the strength but provided ion release, a desirable action to prevent recurrent caries.
Collapse
Affiliation(s)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi
| | | | - Bharat Mirchandani
- Faculty of Dentistry, Datta Meghe Institute of Higher Education & Research
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University
| |
Collapse
|
8
|
Xie Y, Chen R, Yao W, Ma L, Li B. Synergistic effect of ion-releasing fillers on the remineralization and mechanical properties of resin-dentin bonding interfaces. Biomed Phys Eng Express 2023; 9:062001. [PMID: 37832527 DOI: 10.1088/2057-1976/ad0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In modern restorative dentistry, adhesive resin materials are vital for achieving minimally invasive, esthetic, and tooth-preserving restorations. However, exposed collagen fibers are found in the hybrid layer of the resin-dentin bonding interface due to incomplete resin penetration. As a result, the hybrid layer is susceptible to attack by internal and external factors such as hydrolysis and enzymatic degradation, and the durability of dentin bonding remains limited. Therefore, efforts have been made to improve the stability of the resin-dentin interface and achieve long-term clinical success. New ion-releasing adhesive resin materials are synthesized by introducing remineralizing ions such as calcium and phosphorus, which continuously release mineral ions into the bonding interface in resin-bonded restorations to achieve dentin biomimetic remineralization and improve bond durability. As an adhesive resin material capable of biomimetic mineralization, maintaining excellent bond strength and restoring the mechanical properties of demineralized dentin is the key to its function. This paper reviews whether ion-releasing dental adhesive materials can maintain the mechanical properties of the resin-dentin bonding interface by supplementing the various active ingredients required for dentin remineralization from three aspects: phosphate, silicate, and bioactive glass.
Collapse
Affiliation(s)
- Yimeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Ruhua Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Wei Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Liang Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| |
Collapse
|
9
|
Hoshino T, Onodera S, Kimura M, Suematsu M, Ichinohe T, Azuma T. FGF4 and FGF9 have synergistic effects on odontoblast differentiation. Med Mol Morphol 2023; 56:159-176. [PMID: 37012505 DOI: 10.1007/s00795-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.
Collapse
Affiliation(s)
- Tatsuki Hoshino
- Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Motoyoshi Kimura
- Department of Pediatric Dentistry, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Dental Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
10
|
Trinca RB, Oliveira BA, Vilela HDS, Braga RR. Effect of calcium orthophosphate particle size and CaP:glass ratio on optical, mechanical and physicochemical characteristics of experimental composites. Dent Mater 2023; 39:770-778. [PMID: 37423880 DOI: 10.1016/j.dental.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE Evaluate light transmittance (%T), color change (ΔE), degree of conversion (DC), bottom-to-top Knoop microhardness (KHN), flexural strength (BFS) and modulus (FM), water sorption/solubility (WS/SL) and calcium release of resin composites containing different dicalcium phosphate dihydrate (DCPD)-to-barium glass ratios (DCPD:BG) and DCPD particle sizes. METHODS Ten resin-based composites (50 vol% inorganic fraction) were prepared using BG (0.4 µm) and DCPD particles (12 µm, 3 µm or mixture) with DCPD:BG of 1:3, 1:1 or 3:1. A composite without DCPD was used as a control. DC, KHN, %T and ΔE were determined in 2-mm thick specimens. BFS and FM were determined after 24 h. WS/SL was determined after 7 d. Calcium release was determined by coupled plasma optical emission spectroscopy. Data were analyzed by ANOVA/Tukey test (alpha: 0.05). RESULTS %T was significantly reduced in composites with milled, compared to pristine DCPD (p < 0.001). ΔE > 3.3 were observed with DCPD:BG of 1:1 and 3:1 formulated with milled DCPD (p < 0.001). DC increased at 1:1 and 3:1 DCPD:BG (p < 0.001). All composites presented bottom-to-top KHN of at least 0.8. BFS was not affected by DCPD size but was strongly dependent on DCPD:BG (p < 0.001). Reductions in FM were observed with milled DCPD (p < 0.001). WS/SL increased with DCPD:BG (p < 0.001). At 3DCPD: 1BG, using small DCPD particles led to a 35 % increase in calcium release (p < 0.001). SIGNIFICANCE A trade-off between strength and Ca2+ release was observed. In spite of its low strength, the formulation containing 3 DCPD: 1 glass and milled DCPD particles is preferred due to its superior Ca2+ release.
Collapse
Affiliation(s)
- Rafael Bergamo Trinca
- University of São Paulo, School of Dentistry, Department of Biomaterials and Oral Biology, Brazil
| | - Beatriz Almeida Oliveira
- University of São Paulo, School of Dentistry, Department of Biomaterials and Oral Biology, Brazil
| | | | - Roberto Ruggiero Braga
- University of São Paulo, School of Dentistry, Department of Biomaterials and Oral Biology, Brazil.
| |
Collapse
|
11
|
Ammar M, Ashraf S, Baltrusaitis J. Nutrient-Doped Hydroxyapatite: Structure, Synthesis and Properties. CERAMICS 2023; 6:1799-1825. [DOI: 10.3390/ceramics6030110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Complex inorganic powders based on calcium phosphates have found a plethora of practical applications. Of particular interest are the CaO-P2O5 system-based multi-component material powders and granules as the source of major- and micronutrients for the plants. The emerging strategy is to use nano fertilizers based on hydroxyapatite (HAP) for phosphorus and other nutrient delivery. The doping of micronutrients into HAP structure presents an interesting challenge in obtaining specific phase compositions of these calcium phosphates. Various techniques, including mechanochemical synthesis, have been employed to fabricate doped HAP. Mechanochemical synthesis is of particular interest in this review since it presents a relatively simple, scalable, and cost-effective method of calcium phosphate powder processing. The method involves the use of mechanical force to promote chemical reactions and create nanometric powders. This technique has been successfully applied to produce HAP nanoparticles alone, and HAP doped with other elements, such as zinc and magnesium. Nanofertilizers developed through mechanochemical synthesis can offer several advantages over conventional fertilizers. Their nanoscale size allows for rapid absorption and controlled release of nutrients, which leads to improved nutrient uptake efficiency by plants. Furthermore, the tailored properties of HAP-based nano fertilizers, such as controlled porosity and degradation levels, contribute to their effectiveness in providing plant nutrition.
Collapse
Affiliation(s)
- Mohamed Ammar
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sherif Ashraf
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
12
|
Conti G, Veneri F, Amadori F, Garzoni A, Majorana A, Bardellini E. Evaluation of Antibacterial Activity of a Bioactive Restorative Material Versus a Glass-Ionomer Cement on Streptococcus Mutans: In-Vitro Study. Dent J (Basel) 2023; 11:149. [PMID: 37366672 DOI: 10.3390/dj11060149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Dental caries management consists of both preventive and restorative approaches. Pediatric dentists can rely on many techniques and materials to restore decayed teeth, but a high failure rate is still observed, mainly due to secondary caries. New restorative bioactive materials combine the mechanical and aesthetic characteristics of resinous materials with the capability to remineralize and the antimicrobial properties of glass ionomers, thus counteracting the occurrence of secondary caries. The aim of this study was to assess the antimicrobial activity against Streptococcus mutans of a bioactive restorative material (ACTIVA™ BioActive-Restorative™-Pulpdent©) and a glass ionomer cement with silver particles added (Ketac™ Silver-3M©), using agar diffusion assay. METHODS Each material was formed into disks of 4 mm in diameter, and four discs of each material were placed on nine agar plates. The analysis was repeated seven times. RESULTS Both materials showed statistically significant growth inhibition properties against S. mutans (p < 0.05). The difference in the effectiveness of the two materials was not statistically significant. CONCLUSION Both ACTIVA™ and Ketac™ Silver can be recommended since both are similarly effective against S. mutans. However ACTIVA™, given its bioactivity and better aesthetics and mechanical properties compared to GICs, may provide better clinical performance.
Collapse
Affiliation(s)
- Giulio Conti
- Department of Medicine and Surgery, School of Dentistry, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Via del Pozzo, 41124 Modena, Italy
| | - Francesca Amadori
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alba Garzoni
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Elena Bardellini
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
13
|
Słota D, Piętak K, Florkiewicz W, Jampilek J, Tomala A, Urbaniak MM, Tomaszewska A, Rudnicka K, Sobczak-Kupiec A. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091469. [PMID: 37177013 PMCID: PMC10180150 DOI: 10.3390/nano13091469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity. These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium and phosphorus elements were in accordance with the literature. This confirmed the validity of the selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus. The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Wioletta Florkiewicz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Tomala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| |
Collapse
|
14
|
Xu Z, Qi X, Bao M, Zhou T, Shi J, Xu Z, Zhou M, Boccaccini AR, Zheng K, Jiang X. Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu. Bioact Mater 2023; 25:239-255. [PMID: 36817824 PMCID: PMC9929491 DOI: 10.1016/j.bioactmat.2023.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated biomineralization severely impairs bone regeneration efficiency. Aiming to "remodel" the pathologic diabetic micromilieu, we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA). Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr, Ca, and Si ions enhancing osteogenic, angiogenic, and immunomodulatory properties. In addition to angiogenic and anti-inflammatory outcomes, this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen, promoting cell focal adhesion, modulating osteoblast differentiation, and boosting the release of OCN, the noncollagenous proteins (intrafibrillar mineralization dependent), and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis. This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the "barren" diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM.
Collapse
Affiliation(s)
- Zeqian Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Xuanyu Qi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Minyue Bao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Tian Zhou
- National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, People's Republic of China
| | - Junfeng Shi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Zhiyan Xu
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, People's Republic of China,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, People's Republic of China,Corresponding author. Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Center for Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,National Clinical Research Center for Oral Diseases, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China,Corresponding author. Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
15
|
Campos AL, Fronza BM, Rodrigues MC, Souza Chiari MDE, Braga RR. Influence of the calcium orthophosphate:glass ratio and calcium orthophosphate functionalization on the degree of conversion and mechanical properties of resin-based composites. J Biomed Mater Res B Appl Biomater 2023; 111:95-102. [PMID: 35851987 DOI: 10.1002/jbm.b.35136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/07/2022]
Abstract
The study verified the influence of calcium orthophosphate (CaP):glass ratio on the degree of conversion and mechanical properties of resin-based composites containing either TEGDMA-functionalized dicalcium phosphate anhydrous (DCPA) or non-functionalized DCPA particles. The null hypotheses were that the evaluated variables are not affected by (1) CaP:glass ratio or (2) DCPA functionalization. DCPA particles were synthesized and half of them were functionalized with TEGDMA. Particle characterization included x-ray diffraction, elemental analysis, laser scattering, helium picnometry and scanning electron microscopy. Two series of composites were prepared containing either DCPA-NF (non-functionalized) or DCPA-F (functionalized), with total inorganic content of 50 vol % and DCPA:silanized barium glass (BG) ratios from 10:40 to 50:0. A composite containing 50 vol % BG was tested as control. DC was determined using FTIR spectroscopy. Biaxial flexural strength and modulus were tested after 24 h in water. Data were analyzed using Kruskal-Wallis/Dunn (flexural properties) or analysis of variance/Tukey tests (DC). Materials with similar actual DCPA contents were compared using Student's t test (alpha: 0.05). DC was higher for materials with DCPA-F, except for the 10:40 ratio. DCPA-F resulted in higher strength than DCPA-NF only at 40:10 ratio. Modulus was not affected by functionalization. Materials with similar actual DCPA contents showed differences in DC (F > NF), while no difference in flexural properties was observed between materials with 28%-30% DCPA. Both null hypotheses were rejected.
Collapse
Affiliation(s)
- Amanda Lopes Campos
- Department of Biomaterials and Oral Biology, University of São Paulo, School of Dentistry, São Paulo, Brazil
| | - Bruna Marin Fronza
- Department of Biomaterials and Oral Biology, University of São Paulo, School of Dentistry, São Paulo, Brazil
| | | | | | - Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of São Paulo, School of Dentistry, São Paulo, Brazil
| |
Collapse
|
16
|
Pinto LD, Balbinot GDS, Rucker VB, Ogliari FA, Collares FM, Leitune VCB. Orthodontic resins loaded with niobium silicate particles: Impact of filler concentration on the physicochemical and biological properties. Orthod Craniofac Res 2022. [PMID: 36533534 DOI: 10.1111/ocr.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES White spot lesions (WSL) are prevalent in patients using orthodontic appliances. The presence of ion-releasing compounds in the tooth-appliance interface may limit enamel demineralization to control WSL incidence. Thus, this study aims to evaluate the mineral formation on SiNb-containing experimental orthodontic resins and the influence of these fillers on the physicochemical and biological properties of developed materials. MATERIALS AND METHODS The SiNb particles were synthesized via the sol-gel route and characterized by their molecular structure and morphology. Photopolymerizable orthodontic resins were produced with a 75 wt% Bis-GMA/25 wt% TEGDMA and 10 wt%, 20 wt%, or 30 wt% addition of SiNb. A control group was formulated without SiNb. These resins were tested for their degree of conversion, softening in solvent, cytotoxicity in fibroblasts, flexural strength, shear bond strength (SBS), and mineral deposition. RESULTS The addition of 10 wt% of SiNb did not impair the conversion of monomers, cytotoxicity, and flexural strength. All groups with SiNb addition presented similar softening in solvent. The presence of these particles did not affect the bond strength between metallic brackets and enamel, with SBS values ranging from 16.41 to 18.66 MPa. The mineral deposition was observed for all groups. CONCLUSION The use of niobium silicate as filler particles in resins may be a strategy for the adhesion of orthodontic appliances. The 10 wt% SiNb concentration resulted in a material with suitable physicochemical and biological properties while maintaining the bond strength to tooth enamel and promoting mineral deposition.
Collapse
Affiliation(s)
- Lucas Dalcin Pinto
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela de Souza Balbinot
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Victória Britz Rucker
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Fabricio Mezzomo Collares
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
17
|
Buchwald Z, Sandomierski M, Smułek W, Ratajczak M, Patalas A, Kaczorek E, Voelkel A. Physical–chemical and biological properties of novel resin-based composites for dental applications. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
AbstractInsufficient mechanical properties of hydroxyapatite-based composites prompted the search for new and effective solutions for dental applications. To improve the mechanical properties without losing the remineralization potential, the use of hybrid fillers was proposed. The first of them was based on the formation of hydroxyapatite (HA) layer on the surface of SYLOID®244 silica. The second of the investigated fillers was created by simultaneous synthesis of nanoparticles from precursors of HA and silica. The obtained fillers were extensively characterized by spectral methods including X-ray Diffractometry (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), and X-ray fluorescence (XRF), as well as by Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS). Tests using probiotic microorganisms were an important part of the analysis, indicating that there was no potential interaction of the materials with microflora. The tests of degree of conversion, depth of cure, opacity, sorption, solubility, flexural and compressive strength, and the remineralizing potential also showed that the composites with nano-sized silica/HA showed better mechanical properties than the composites with HA alone or commercial silica and at the same time the remineralization remained at the desired level. Thus, the proposed composite has a high application potential in the creation of implants and dental materials.
Graphical abstract
Collapse
|
18
|
Par M, Plančak L, Ratkovski L, Tauböck TT, Marovic D, Attin T, Tarle Z. Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass. Polymers (Basel) 2022; 14:4289. [PMID: 36297866 PMCID: PMC9607205 DOI: 10.3390/polym14204289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the flexural properties of an experimental composite series functionalized with 5-40 wt% of a low-Na F-containing bioactive glass (F-series) and compared it to another experimental composite series containing the same amounts of the conventional bioactive glass 45S5 (C-series). Flexural strength and modulus were evaluated using a three-point bending test. Degree of conversion was measured using Fourier-transform infrared spectroscopy. Weibull analysis was performed to evaluate material reliability. The control material with 0 wt% of bioactive glass demonstrated flexural strength values of 105.1-126.8 MPa). In the C-series, flexural strength ranged between 17.1 and 121.5 MPa and was considerably more diminished by the increasing amounts of bioactive glass than flexural strength in the F-series (83.8-130.2 MPa). Analogously, flexural modulus in the C-series (0.56-6.66 GPa) was more reduced by the increase in bioactive glass amount than in the F-series (5.24-7.56 GPa). The ISO-recommended "minimum acceptable" flexural strength for restorative resin composites of 80 MPa was achieved for all materials in the F-series, while in the C-series, the materials with higher bioactive glass amounts (20 and 40 wt%) failed to meet the requirement of 80 MPa. The degree of conversion in the F-series was statistically similar or higher compared to that of the control composite with no bioactive glass, while the C-series showed a declining degree of conversion with increasing bioactive glass amounts. In summary, the negative effect of the addition of bioactive glass on mechanical properties was notably less pronounced for the customized bioactive glass than for the bioactive glass 45S5; additionally, mechanical properties of the composites functionalized with the customized bioactive glass were significantly less diminished by artificial aging. Hence, the customized bioactive glass investigated in the present study represents a promising candidate for functionalizing ion-releasing resin composites.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Laura Plančak
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Lucija Ratkovski
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Abstract
Bioactive materials for dental resin restorations are a rising field of investigation exploring treatment strategies for reducing the recurrence of carious lesions. The current effort has been directed toward developing dental materials that can inhibit biofilms and prevent tooth mineral loss. Bioactive resin materials have shown the potential to interfere with polymicrobial consortia in vivo and help maintain the lifespan of restorations.
Collapse
Affiliation(s)
- Mary Anne S Melo
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, 650 West Baltimore Street, Baltimore, MD 21201, USA; Division of Operative Dentistry, Department of General Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Lamia Mokeem
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, 650 West Baltimore Street, Baltimore, MD 21201, USA
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Tang Y, Lei L, Yang D, Zheng J, Zeng Q, Xiao H, Zhou Z. Calcium release-mediated adsorption and lubrication of salivary proteins on resin-based dental composites. J Mech Behav Biomed Mater 2022; 135:105437. [DOI: 10.1016/j.jmbbm.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
|
21
|
Filemban H, Bhadila G, Wang X, Melo MAS, Oates TW, Hack GD, Lynch CD, Weir MD, Sun J, Xu HHK. Effects of thermal cycling on mechanical and antibacterial durability of bioactive low-shrinkage-stress nanocomposite. J Dent 2022; 124:104218. [PMID: 35817225 DOI: 10.1016/j.jdent.2022.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES Recent studies developed low-shrinkage-stress composite with remineralizing and antibacterial properties to combat secondary caries and increase restoration longevity. However, their long-term durability in thermal cycling is unclear. The objectives of this study were to develop an antibacterial, remineralizing and low-shrinkage-stress composite, and to investigate its durability in thermal cycling for 20,000 cycles, equivalent to two years of clinical life. METHODS The resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE). Composites were made with 5% dimethylaminohexadecyl methacrylate (DMAHDM) and 20% of nanoparticles of amorphous calcium phosphate (NACP). Composites were thermal cycled at 5°C and 55°C for 20,000 cycles. A human salivary biofilm model was used to evaluate antibiofilm activity before and after thermal cycling. RESULTS After 20,000 cycles, the flexural strength of bioactive low-shrinkage-stress composite matched commercial control with no antibacterial activity (p > 0.05). Surface roughness was clinically acceptable at less than 0.2 μm. UV+NACP+DMAHDM composite reduced the total microorganisms, total streptococci, and mutans streptococci by 2-5 logs, compared to commercial composite. Biofilm lactic acid production was reduced by 11 folds. The antibacterial performance was maintained after thermal cycling, with no decrease after 20,000 cycles. CONCLUSIONS Bioactive low-shrinkage-stress composite possessed good mechanical properties that matched commercial composite both before and after thermal cycling. The new composite had potent antibacterial activity, which was maintained and did not decrease after thermal cycling. CLINICAL SIGNIFICANCE The new bioactive low-shrinkage-stress composite could reduce polymerization shrinkage stress and release calcium and phosphate ions, with good mechanical properties and strong antibacterial function that were durable after thermal cycling. These properties indicate great potential for inhibiting recurrent caries and increasing the restoration longevity.
Collapse
Affiliation(s)
- Hanan Filemban
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Operative Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Ghalia Bhadila
- Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Xiaohong Wang
- American Dental Association Science and Research Institute, Gaithersburg, MD 20899, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Gary D Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork, Wilton, Cork, Ireland
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Jirun Sun
- The Forsyth Institute, Cambridge, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Mai S, Zhang Q, Liao M, Ma X, Zhong Y. Recent Advances in Direct Adhesive Restoration Resin-Based Dental Materials With Remineralizing Agents. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.868651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resin-based dental materials are popular restorative materials especially in direct adhesive restoration because of the excellent mechanical and esthetic properties. Toward the realization of minimally invasive dental procedures, direct composite resin adhesive restoration has become the main treatment for dental defects. In addition, for caries-affected dentin close to the pulp, conservation remineralization has been advocated to save the living pulp. However, the resin–dentin interface can be destabilized by various factors, especially the enzymatic degradation of collagen fibrils within the hybrid layer and polymer hydrolysis. Furthermore, for resin-based restorative materials, the marginal gap remains a major problem that can lead to the occurrence of secondary caries. To address these issues, research efforts have focused on the remineralization of mineral-depleted dental hard tissues using remineralizing bioactive substances. In this review, we first described various bioactive agents with remineralizing properties. Furthermore, we discussed recent advances in resin-based dental materials for enamel or dentin remineralization. Finally, we examined the current challenges and prospects of these emerging materials. This work aims to provide a theoretical foundation for the future development of resin-based dental materials in direct adhesive restoration with remineralizing agents.
Collapse
|
23
|
Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dent Mater 2022; 38:725-747. [PMID: 35300871 DOI: 10.1016/j.dental.2022.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Bioactive glasses (BAGs) have been researched extensively for dentistry due to their favourable biocompatibility and hard tissue bonding ability. However, the specific application of BAGs produced through sol-gel synthesis in restorative dentistry has not been reviewed previously. This review provides a comprehensive account of the principles behind sol-gel derived BAGs and their investigation for dental tissue restoration materials. METHODS A search for in vitro and in vivo studies was performed using the databases Web of Science®, Medline®, Scopus® and Google Scholar®. Articles published over the past 20 years were selected and data on the BAG composition and morphology was extracted. Analysis of the effect of specific BAG additives on the properties of experimental dental materials was also performed. RESULTS A majority of BAG particles investigated were spheres ranging in size from 5 nm to ~650 µm. Sol-gel BAGs are mainly applied in the treatment of hypersensitive dentine and for pulp-dentine tissue engineering, while a handful have been used in target drug delivery. BAG fillers are promising additives that result in improved biological properties, antibacterial effects, hardness, acid buffering and remineralization. Unfortunately, some detrimental effects on optical properties have been observed with BAG addition. Additionally, in vivo data, investigations into radiopacity and standardization of test protocols are identified as areas for improvement and further studies. SIGNIFICANCE Future work should consider the pertinent issues raised in order to improve the quality of available data and expand knowledge in this area of dental biomaterials research and development.
Collapse
|
24
|
Melo MA, Mei ML, Li KC, Hamama HH. Editorial: The Use of Bioactive Materials in Caries Management. FRONTIERS IN ORAL HEALTH 2022; 3:832285. [PMID: 35350841 PMCID: PMC8958017 DOI: 10.3389/froh.2022.832285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Mary Anne Melo
- University of Maryland School of Dentistry, Baltimore, MD, United States
- *Correspondence: Mary Anne Melo
| | - May Lei Mei
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai Chun Li
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Hamdi Hosni Hamama
- Department of Operative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Kong H, Bai X, Li H, Lin C, Yao X, Wang Y. Preparation of Ca doped wrinkled porous silica (Ca-WPS) for the improvement of apatite formation and mechanical properties of dental resins. J Mech Behav Biomed Mater 2022; 129:105159. [PMID: 35247860 DOI: 10.1016/j.jmbbm.2022.105159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
The purpose of this work was to fabricate and characterize Ca doped wrinkled porous silica (Ca-WPS), and evaluate their effect on the mineralization and mechanical properties of resin composites as functional fillers. Ca-WPS were prepared by sol-gel method and characterized by scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurements. The mineralization properties of the prepared Ca-WPS particles and the resin composites with different amount of Ca-WPS were evaluated by simulated body fluid (SBF) immersion method. The mechanical properties (flexural strength, flexural modulus, compressive strength and microhardness) of the dental resins containing unimodal Ca-WPS fillers and bimodal Ca-WPS fillers with nonporous silica were evaluated by a universal testing machine. Results showed that after immersing in SBF for 5 d, apatite formed on the surface of Ca-WPS and composites containing Ca-WPS fillers, indicating the excellent mineralization property of the prepared Ca-WPS. The mechanical properties of the dental resins increase with the increase of the proportion of unimodal Ca-WPS fillers. The dental resins with bimodal Ca-WPS fillers showed better mechanical properties than the group with only nonporous fillers at the same filler loading (60 wt%). Among all the samples, the dental composites filled with bimodal fillers (mass ratio of Ca-WPS: nonporous silica = 10:50, total filler loading 60 wt%) exhibited the best mechanical performance. The flexural strength, flexural modulus, compressive strength and microhardness of these samples were 26.96%, 42.75%, 16.04% and 54.1% higher than the composites with solid silica particles alone, respectively. Thus, the prepared Ca-WPS could effectively improve the apatite formation and mechanical properties of resin composites.
Collapse
Affiliation(s)
- Hongxing Kong
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Xingxing Bai
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Huaizhu Li
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Chucheng Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Yueyue Wang
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China.
| |
Collapse
|
26
|
Effects of hybrid inorganic-organic nanofibers on the properties of enamel resin infiltrants - An in vitro study. J Mech Behav Biomed Mater 2022; 126:105067. [PMID: 35026564 DOI: 10.1016/j.jmbbm.2021.105067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022]
Abstract
This in vitro study aimed to evaluate the overall mechanical properties of resin infiltrants doped with bioactive nanofibers and their ability in inhibiting enamel demineralization or achieving remineralization of the adjacent enamel to white spots. A commercial resin infiltrant (ICON, DMG) was doped with hybrid inorganic-organic nanofibers and analyzed for degree of conversion (DC, n = 3) and surface hardness (SH, n = 6). Subsequently, enamel specimens (6 × 4 × 2 mm3) were prepared and submitted to a demineralizing/remineralizing process to produce a subsurface caries-like lesion. The specimens were treated with one of the following materials: ICON infiltrant, DMG (control); ICON + nanofibers of poly-lactic acid (PLA)-filled with silica (PLA-SiO2); ICON + nanofibers of (PLA)-filled with calcium incorporated into a silica network (SiO2-CaP). Then, the specimens were subjected to a pH-cycling demineralizing/remineralizing model for 7 days at 37 °C. The %ΔSH change (after treatment), %SH loss and %SH recovery (after pH-cycling regimen) were calculated after SH evaluation (n = 9/group). The Ca/P weight ratio before and after pH-cycling regimen was evaluated through SEM/EDX. The results of DC were analyzed through the T-test (p < 0.05). ANOVA followed by Tukey's test (p < 0.05) was performed for hardness and EDX. A significant SH increase was observed in the ICON/SiO2CaP group (p < 0.05). The ICON/PLA-SiO2 presented higher DC values than the control group (p = 0.043). All groups presented significant difference in %ΔSH (p < 0.05), although the specimens treated with ICON/SiO2CaP presented greater values. Regarding the %SHL and %SHR, the ICON/SiO2CaP and ICON/PLA-SiO2 were significantly different compared to the control group (p < 0.001). However, no difference was observed between the ICON/SiO2CaP and ICON/PLA-SiO2. The Ca/P ratio showed that the ICON/SiO2CaP and ICON/PLA-SiO2 after the pH-cycling regimen differed from sound enamel and modified infiltrants before pH-cycling. In conclusion, tailored hybrid nanofibers may be incorporated into enamel resin infiltrants without compromise the mechanical properties of such experimental materials. These latter can inhibit the demineralization of enamel and increase its hardness during pH-clycling challange.
Collapse
|
27
|
Garcia IM, Balhaddad AA, Aljuboori N, Ibrahim MS, Mokeem L, Ogubunka A, Collares FM, de Melo MAS. Wear Behavior and Surface Quality of Dental Bioactive Ions-Releasing Resins Under Simulated Chewing Conditions. FRONTIERS IN ORAL HEALTH 2022; 2:628026. [PMID: 35047992 PMCID: PMC8757893 DOI: 10.3389/froh.2021.628026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive materials can reduce caries lesions on the marginal sealed teeth by providing the release of ions, such as calcium, phosphate, fluoride, zinc, magnesium, and strontium. The presence of such ions affects the dissolution balance of hydroxyapatite, nucleation, and epitaxial growth of its crystals. Previous studies mostly focused on the ion-releasing behavior of bioactive materials. Little is known about their wear behavior sealed tooth under mastication. This study aimed to evaluate the wear behavior and surface quality of dental bioactive resins under a simulated chewing model and compare them with a resin without bioactive agents. Three bioactive resins (Activa, BioCoat, and Beautifil Flow-Plus) were investigated. A resin composite without bioactive agents was used as a control group. Each resin was applied to the occlusal surface of extracted molars and subjected to in vitro chewing simulation model. We have assessed the average surface roughness (Ra), maximum high of the profile (Rt), and maximum valley depth (Rv) before and after the chewing simulation model. Vickers hardness and scanning electron microscopy (SEM) also analyzed the final material surface quality). Overall, all groups had increased surface roughness after chewing simulation. SEM analysis revealed a similar pattern among the materials. However, the resin with polymeric microcapsules doped with bioactive agents (BioCoat) showed increased surface roughness parameters. The material with Surface Pre-reacted Glass Ionomer (Beautifil Flow-Plus) showed no differences compared to the control group and improved microhardness. The addition of bioactive agents may influence surface properties, impairing resin composites' functional and biological properties. Future studies are encouraged to analyze bioactive resin composites under high chemical and biological challenges in vitro with pH cycles or in situ models.
Collapse
Affiliation(s)
- Isadora Martini Garcia
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Abdulrahman A Balhaddad
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noorhan Aljuboori
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Maria Salem Ibrahim
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lamia Mokeem
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Akudo Ogubunka
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Fabrício Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mary Anne Sampaio de Melo
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States
| |
Collapse
|
28
|
Ion release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. J Dent 2022; 118:103950. [PMID: 35026355 DOI: 10.1016/j.jdent.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To prepare experimental composites with bioactive glass (BG) and investigate their release of calcium (Ca), phosphate (PO4), and fluoride (F), as well as pH changes and apatite precipitation after immersion. METHODS Experimental composites were prepared with 0, 10, or 20 wt% of either BG 45S5 or a customized low-Na F-containing BG. Three commercial ion-releasing materials were used for reference. Material specimens were immersed in lactic acid (pH = 4.0) and artificial saliva (pH = 6.4). Ion concentrations (atomic absorption spectrometry for Ca, UV-vis spectrometry for PO4, and ion-selective electrode for F) and pH were measured after 4, 8, 12, 16, 20, 24, 28, and 32 days. After immersion, composite specimens were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. RESULTS Material-dependent concentrations of Ca, PO4, and F were measured in the lactic acid solution, while a decrease of Ca and PO4 concentrations was observed in artificial saliva. The uptake of ions from artificial saliva indicates their precipitation on specimen surfaces, which was supported by the results of SEM and FTIR investigations. In experimental composites functionalized with both bioactive glass types and a commercial "alkasite" material, apatite was precipitated not only in artificial saliva but also in the lactic acid solution. CONCLUSIONS Experimental BG-containing composites and selected commercial restorative materials demonstrated the potential for releasing multiple ion types and increasing pH. CLINICAL SIGNIFICANCE The observed effects can be beneficial for preventing demineralization and promoting remineralization of dental hard tissues, while apatite precipitation can additionally help in sealing marginal discontinuities.
Collapse
|
29
|
Ferreira PVC, Abuna GF, Oliveira BEC, Consani S, Sinhoreti M, Carvalho CN, Bauer J. Development and characterization of experimental ZnO cement containing niobophosphate bioactive glass as filling temporary material. Saudi Dent J 2021; 33:1111-1118. [PMID: 34938056 PMCID: PMC8665171 DOI: 10.1016/j.sdentj.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Aims The aim of this study was to develop and characterize a temporary restorative material based on a zinc oxide matrix containing niobophosphate bioactive glass (NbG) for the caries-affected dentin treatment. Material and methods NbG was added to a ZnO2 matrix in different concentrations (wt%). EDS-SEM, ATR-FTIR and XRD analyses were performed to characterize the cement. Calcium release was evaluated in TRIS solution after 1, 7 and 14 days by colorimetric method (A650). Compressive strengths and setting times were performed to analyze mechanical properties. Results EDS spectra confirmed the presence of Ca, P and Nb in the groups containing NbG. EDS mapping exhibit the ZnO2 homogeneous distribution, and NbG immersed in this matrix. Peaks suggesting interaction between matrix and NbG were not detected in Ftir spectra. Calcium releasing showed to be time-dependent for experimental groups containing 10, 20, 30 and 40%. The NbG incorporation progressively increased the compressive strength values in the experimental groups. NbG incorporation seemed to influence the ZnO2 matrix early setting reaction. No statistical difference was observed in the final setting time. Conclusion The addition of NbG particles into zinc oxide matrix could work as a mechanical reinforcement. It is suggested that the calcium released by the cement containing at least 10% NbG could induce apatite formation.
Collapse
Affiliation(s)
- Paulo Vitor Campos Ferreira
- Piracicaba Dental School, Department of Restorative Dentistry, University of Campinas (UNICAMP), Limeira Av. 901, Piracicaba, São Paulo, Brazil
| | - Gabriel Flores Abuna
- General Dentistry Department, Division of Biomedical Materials, East Carolina University School of Dental Medicine, Greenville, NC, USA
| | - Bárbara Emanoele Costa Oliveira
- Department of Restorative Dentistry, School of Dentistry, University Ceuma (UNICEUMA), Josué Montello, 01, Renascença II, 65075120 São Luis, Maranhão, Brazil
| | - Simonides Consani
- Piracicaba Dental School, Department of Restorative Dentistry, University of Campinas (UNICAMP), Limeira Av. 901, Piracicaba, São Paulo, Brazil
| | - Mário Sinhoreti
- Piracicaba Dental School, Department of Restorative Dentistry, University of Campinas (UNICAMP), Limeira Av. 901, Piracicaba, São Paulo, Brazil
| | - Ceci Nunes Carvalho
- Department of Restorative Dentistry, School of Dentistry, University Ceuma (UNICEUMA), Josué Montello, 01, Renascença II, 65075120 São Luis, Maranhão, Brazil
| | - José Bauer
- School of Dentistry, Discipline of Dental Materials, University Federal of Maranhão (UFMA), Campus Universitário do Bacanga, Av. dos Portugueses, 65085680 São Luis, MA, Brazil
- Corresponding author at: University Federal of Maranhão (UFMA), Av. dos Portugueses, 1966, 65085-680 São Luís, MA, Brazil.
| |
Collapse
|
30
|
Chanachai S, Chaichana W, Insee K, Benjakul S, Aupaphong V, Panpisut P. Physical/Mechanical and Antibacterial Properties of Orthodontic Adhesives Containing Calcium Phosphate and Nisin. J Funct Biomater 2021; 12:jfb12040073. [PMID: 34940552 PMCID: PMC8706961 DOI: 10.3390/jfb12040073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Enamel demineralization around orthodontic adhesive is a common esthetic concern during orthodontic treatment. The aim of this study was to prepare orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM) and nisin to enable mineralizing and antibacterial actions. The physicomechanical properties and the inhibition of S. mutans growth of the adhesives with added MCPM (5, 10 wt %) and nisin (5, 10 wt %) were examined. Transbond XT (Trans) was used as the commercial comparison. The adhesive containing a low level of MCPM showed significantly higher monomer conversion (42–62%) than Trans (38%) (p < 0.05). Materials with additives showed lower monomer conversion (p < 0.05), biaxial flexural strength (p < 0.05), and shear bond strength to enamel than those of a control. Additives increased water sorption and solubility of the experimental materials. The addition of MCPM encouraged Ca and P ion release, and the precipitation of calcium phosphate at the bonding interface. The growth of S. mutans in all the groups was comparable (p > 0.05). In conclusion, experimental orthodontic adhesives with additives showed comparable conversion but lesser mechanical properties than the commercial material. The materials showed no antibacterial action, but exhibited ion release and calcium phosphate precipitation. These properties may promote remineralization of the demineralized enamel.
Collapse
Affiliation(s)
- Supachai Chanachai
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Wirinrat Chaichana
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Kanlaya Insee
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Sutiwa Benjakul
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Visakha Aupaphong
- Division of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyaphong Panpisut
- Division of Restorative Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
31
|
Dai Z, Xie X, Zhang N, Li S, Yang K, Zhu M, Weir MD, Xu HHK, Zhang K, Zhao Z, Bai Y. Novel nanostructured resin infiltrant containing calcium phosphate nanoparticles to prevent enamel white spot lesions. J Mech Behav Biomed Mater 2021; 126:104990. [PMID: 34871957 DOI: 10.1016/j.jmbbm.2021.104990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The objective of this study was to develop a novel nanostructured resin infiltrant containing nanoparticles of amorphous calcium phosphate (NACP) to treat enamel white spot lesions (WSLs). Physical properties and the therapeutic effect of the new resin infiltrant were investigated for the first time. METHODS NACP was incorporated into ICON (Icon caries infiltrant, DMG, Germany) with different mass fractions. Cytotoxicity, degree of conversion, surface hardness, calcium (Ca) and phosphorus (P) ions release concentrations were tested. After application to the demineralized enamel samples, the color changes were determined. Surface and cross-sectional hardness were measured, scanning electron microscopy (SEM) images were taken on the cross-section of samples to observe microstructure changes after 14-day pH cycling. RESULTS Incorporating 10%-30% of NACP did not compromise the biocompatibility and physical properties of the resin infiltrant. ICON + 30% NACP group had long-lasting and high level of Ca and P ion release. After 14-day pH cycling, enamel surface hardness of ICON + 30% NACP group was 1.83 ± 0.21 GPa, significantly higher than the control group (1.32 ± 0.18 GPa) (p < 0.05). ICON + 30NACP group had the highest cross-sectional enamel hardness among all groups (p < 0.05), especially at 50 μm and 100 μm depth. SEM images showed that apparent enamel prism and inter-prism gaps in negative control were masked by mineral deposition in ICON + 30% NACP group. SIGNIFICANCE The novel ICON+30% NACP infiltrant is promising to inhibit enamel WSLs, protect the enamel and increase its hardness.
Collapse
Affiliation(s)
- Zixiang Dai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Minjia Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
32
|
Non-thermal plasma for surface treatment of inorganic fillers added to resin-based cements. Clin Oral Investig 2021; 26:2983-2991. [PMID: 34791551 DOI: 10.1007/s00784-021-04280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aims to evaluate the effect of non-thermal plasma (NTP) surface treatment in two composite inorganic fillers and evaluate their impact on the chemical-mechanical properties and bond strength ability of experimental resin cements. MATERIALS AND METHODS Ytterbium fluoride (YF) and barium silicate glass (BS) were characterized and submitted to different surface treatments: non-thermal plasma (NTP); non-thermal plasma and 3-(trimethoxysilyl) propyl methacrylate silanization; and 3-(trimethoxysilyl) propyl methacrylate silanization. Untreated fillers were used as a control. The fillers were incorporated at 65wt% concentration into light-cured experimental resin cements (50wt% BisGMA; 25wt% UDMA; 25wt% TEGDMA; 1mol% CQ). The degree of conversion, the flexural strength, and the microshear bond strength (μSBS) were evaluated to characterize developed composites. RESULTS YF and BS were successfully cleaned with NTP treatment. Nor NTP neither the silanization affected the degree of conversion of resin cements. The NTP predicted an increase in YF-containing resin cements flexural strength, reducing the storage impact in these materials. NTP treatment did not affect the μSBS when applied to YF, while silanization was effective for BS-containing materials. CONCLUSION NTP treatment of inorganic particles was possible and was shown to reduce the amount of organic contamination of the particle surface. YF surface treatment with NTP can be an alternative to improve the organic/inorganic interaction in resin composites to obtain materials with better mechanical properties. CLINICAL RELEVANCE Surface cleaning with NTP may be an alternative for particle surface cleaning to enhance organic-inorganic interaction in dental composites resulting in improved mechanical strength of experimental resin cements.
Collapse
|
33
|
Lin GSS, Cher CY, Cheah KK, Noorani TY, Ismail NH, Ghani NRNA. Novel dental composite resin derived from rice husk natural biowaste: A systematic review and recommendation for future advancement. J ESTHET RESTOR DENT 2021; 34:503-511. [PMID: 34716755 DOI: 10.1111/jerd.12831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This review aimed to summarize contemporary evidence related to dental composite resin derived from rice husk biowaste and its potential future advancement. This review paper included the techniques for synthesis, characterization, and preparation of rice husk composite resin. Focus was also given to the flexural strength and modulus, compressive strength, wear rate, hardness, surface roughness, color stability, polymerization shrinkage, degree of conversion, and their application onto root canal treated teeth. MATERIAL AND METHODS A search of English peer-reviewed literature (January 1960-February 2021) was conducted from electronic databases (PubMed Central, Cochrane, LILACS, Science Direct, Web of Science, SIGLE, EMBASE, EBSCO, Medline, and Google Scholar). RESULTS 11 articles and a book section were finally selected for qualitative analysis. Studies concluded that the physicomechanical properties and the color stability of rice husk dental composites showed comparable results to conventional dental composites. Incorporation of zirconia nanopowder into rice husk dental composite increased the compressive strength and hardness values, associated with lower shrinkage, a high degree of conversion, and improved fracture strength when applied on root canal treated teeth. CONCLUSIONS Due to its low cost, eco-friendliness, and acceptable clinical performances, rice husk dental composite resin can be considered as an alternative to conventional composites. CLINICAL SIGNIFICANCE Dental composite resin derived from rice husk silica demonstrated excellent performance, which could potentially substitute currently available composite resins. This review will give new insight to clinicians and researchers on the usage of natural biowaste mass in the field of dental restorative materials.
Collapse
Affiliation(s)
- Galvin Sim Siang Lin
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Chia Yee Cher
- Department of Restorative Dentistry, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Kedah, Malaysia
| | - Kah Kei Cheah
- Department of Restorative Dentistry, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Kedah, Malaysia
| | - Tahir Yusuf Noorani
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Noor Huda Ismail
- Prosthodontics Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Nik Rozainah Nik Abdul Ghani
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
34
|
Vilela HS, Rodrigues MC, Fronza BM, Trinca RB, Vichi FM, Braga RR. Effect of Temperature and pH on Calcium Phosphate Precipitation. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Handially Santos Vilela
- Department of Biomaterials and Oral Biology, School of Dentistry University of São Paulo Av. Prof. Lineu Prestes, 2227 São Paulo São Paulo 05508‐000 Brazil
| | - Marcela Charantola Rodrigues
- Municipal University of São Caetano do Sul (USCS) Rua Santo Antônio, 50 São Caetano do Sul São Paulo 09521‐160 Brazil
| | - Bruna Marin Fronza
- Department of Biomaterials and Oral Biology, School of Dentistry University of São Paulo Av. Prof. Lineu Prestes, 2227 São Paulo São Paulo 05508‐000 Brazil
| | - Rafael Bergamo Trinca
- Department of Biomaterials and Oral Biology, School of Dentistry University of São Paulo Av. Prof. Lineu Prestes, 2227 São Paulo São Paulo 05508‐000 Brazil
| | - Flávio Maron Vichi
- Department of Fundamental Chemistry, Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 São Paulo São Paulo 05508‐900 Brazil
| | - Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, School of Dentistry University of São Paulo Av. Prof. Lineu Prestes, 2227 São Paulo São Paulo 05508‐000 Brazil
| |
Collapse
|
35
|
ToF-SIMS Analysis of Demineralized Dentin Biomodified with Calcium Phosphate and Collagen Crosslinking: Effect on Marginal Adaptation of Class V Adhesive Restorations. MATERIALS 2021; 14:ma14164535. [PMID: 34443059 PMCID: PMC8398264 DOI: 10.3390/ma14164535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/05/2022]
Abstract
This study aimed to assess the effect of biomodification before adhesive procedures on the tooth-restoration interface of class V restorations located in caries-simulated vs. sound dentin, and the quality of dentin surface by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Class V cavities located on cervical dentin were prepared on the buccal surfaces of extracted human molars under the simulation of intratubular fluid flow. Two dentin types, i.e., sound and demineralized by formic-acid, were biomodified with 1% riboflavin and calcium phosphate (CaP) prior to the application of a universal adhesive (Clearfil Universal Bond) in etch and rinse or self-etch mode, and a conventional micro hybrid composite (Clearfil APX). Restorations were subjected to thermo mechanical fatigue test and percentages of continuous margins (% CM) before/after fatigue were compared. Bio modification of dentin surfaces at the molecular level was analyzed by Time-of-Flight Secondary Mass Spectometry (ToF-SIMS). % CM were still significantly higher in tooth-restoration interfaces on sound dentin. Meanwhile, biomodification with riboflavin and CaP had no detrimental effect on adhesion and in carious dentin, it improved the % CM both before and after loading. Etching carious dentin with phosphoric acid provided with the lowest results, leading even to restoration loss. The presence of molecule fragments of riboflavin and CaP were detected by ToF-SIMS, evidencing dentin biomodification. The adhesive interface involving carious dentin could be improved by the use of a collagen crosslinker and CaP prior to adhesive procedures.
Collapse
|
36
|
Reconfigurable Dual Peptide Tethered Polymer System Offers a Synergistic Solution for Next Generation Dental Adhesives. Int J Mol Sci 2021; 22:ijms22126552. [PMID: 34207218 PMCID: PMC8235192 DOI: 10.3390/ijms22126552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023] Open
Abstract
Resin-based composite materials have been widely used in restorative dental materials due to their aesthetic, mechanical, and physical properties. However, they still encounter clinical shortcomings mainly due to recurrent decay that develops at the composite-tooth interface. The low-viscosity adhesive that bonds the composite to the tooth is intended to seal this interface, but the adhesive seal is inherently defective and readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite-tooth interface and bacterial by-products demineralize the tooth and erode the adhesive. These activities lead to wider and deeper gaps that provide an ideal environment for bacteria to proliferate. This complex degradation process mediated by several biological and environmental factors damages the tooth, destroys the adhesive seal, and ultimately, leads to failure of the composite restoration. This paper describes a co-tethered dual peptide-polymer system to address composite-tooth interface vulnerability. The adhesive system incorporates an antimicrobial peptide to inhibit bacterial attack and a hydroxyapatite-binding peptide to promote remineralization of damaged tooth structure. A designer spacer sequence was incorporated into each peptide sequence to not only provide a conjugation site for methacrylate (MA) monomer but also to retain active peptide conformations and enhance the display of the peptides in the material. The resulting MA-antimicrobial peptides and MA-remineralization peptides were copolymerized into dental adhesives formulations. The results on the adhesive system composed of co-tethered peptides demonstrated both strong metabolic inhibition of S. mutans and localized calcium phosphate remineralization. Overall, the result offers a reconfigurable and tunable peptide-polymer hybrid system as next-generation adhesives to address composite-tooth interface vulnerability.
Collapse
|
37
|
Delgado AHS, Owji N, Ashley P, Young AM. Varying 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) level improves polymerisation kinetics and flexural strength in self-adhesive, remineralising composites. Dent Mater 2021; 37:1366-1376. [PMID: 34144796 DOI: 10.1016/j.dental.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To assess the influence of systematically varying concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) versus 3% 4-META on the polymerisation kinetics and shrinkage, biaxial flexural strength (BFS) and modulus of remineralising composites. METHODS Composites were prepared by adding poly(propylene glycol) dimethacrylate (24 wt%), camphorquinone (1 wt%) and MDP (0%, 5%, 10%, 15% and 20 wt%) or 4-META (3%) to urethane dimethacrylate. These were mixed with glass fillers containing 8 wt% monocalcium phosphate and 4 wt% polylysine (powder-liquid ratio of 3:1). Continuous spectral changes, following 20 s light exposure (37 °C), were assessed with an ATR-FTIR to monitor polymerisation kinetics (n = 3). Final extrapolated conversions (DC,max) were employed to calculate polymerisation shrinkage. BFS and modulus of 24-h dry stored disc specimens (10 × 1 mm; n = 10) were determined using a ball-on-ring jig setup. RESULTS Maximum rate of polymerisation and DC,max increased linearly from 2.5 to 3.5% s-1 and 67 to 83%, respectively, upon increasing MDP from 0 to 20 wt%. Values with 3% 4-META were 2.6% s-1 and 78%. Shrinkage was 3.8 ± 0.3% for all formulations. Raising 4-META or MDP from 0 to 3 versus 5%, respectively, increased strength from 106 to 145 versus 136 MPa. A decreasing trend with higher MDP concentrations was noted. Elastic modulus showed no specific trend upon MDP increase. SIGNIFICANCE Whilst final conversion levels were enhanced by 3% 4-META or >5% MDP, trends did not correlate with strength. Peak strengths with 3% 4-META or 5% MDP may therefore be due to acidic monomers providing linkage between the hydrophilic, non-silane treated particles and the polymer matrix.
Collapse
Affiliation(s)
- António H S Delgado
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, Almada, Portugal.
| | - Nazanin Owji
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Paul Ashley
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK; Unit of Paediatric Dentistry, Department of Craniofacial Growth and Development, UCL Eastman Dental Institute, London, UK
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| |
Collapse
|
38
|
Effect of the incorporation of hydroxyapatite on the diametral tensile strength of conventional and hybrid glass ionomer cements. Odontology 2021; 109:904-911. [PMID: 34114136 DOI: 10.1007/s10266-021-00624-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
The objective was to evaluate the effect of the incorporation of calcium hydroxyapatite particles (HAp) in the diametral tensile strength of a conventional type II glass ionomer (GC Gold Label 2) and a resin-modified glass ionomer cement (GC Gold Label 2 LC R). Two experimental HAp (E1HAp or E2HAp) were synthesized and characterized using X-ray diffraction and Confocal Raman spectroscopy. Both HAp were added into the powder of a conventional or resin-modified glass ionomer cement at 5 or 10 wt.%. A commercial HAp (CHAp) was used as reference material. For each glass ionomer cement, a group without the incorporation of HAp was used as a control. A universal testing machine was used for the mechanical test. The results were analyzed through a two-way ANOVA test followed by a complementary Tukey test. For all analyzes, the level of significance was set at α = 0.05. The average particle size for E1Hap was 15 µm, E2HAp was 35 μm and for CHAp was 1 µm. For conventional GIC, the addition of 10% E1HAp and 5% CHAp significantly increased the diametral tensile strength values (p ≤ 0.005). On the other hand, for the resin-modified GIC, except for the 5% E2HAp group, all experimental groups significantly reduced the values of diametral tensile strength (p ≤ 0.007). The addition of HAp improved the mechanical properties only for the conventional glass ionomer cement.
Collapse
|
39
|
Second-Generation Phosphorus: Recovery from Wastes towards the Sustainability of Production Chains. SUSTAINABILITY 2021. [DOI: 10.3390/su13115919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorus (P) is essential for life and has a fundamental role in industry and the world food production system. The present work describes different technologies adopted for what is called the second-generation P recovery framework, that encompass the P obtained from residues and wastes. The second-generation P has a high potential to substitute the first-generation P comprising that originally mined from rock phosphates for agricultural production. Several physical, chemical, and biological processes are available for use in second-generation P recovery. They include both concentrating and recovery technologies: (1) chemical extraction using magnesium and calcium precipitating compounds yielding struvite, newberyite and calcium phosphates; (2) thermal treatments like combustion, hydrothermal carbonization, and pyrolysis; (3) nanofiltration and ion exchange methods; (4) electrochemical processes; and (5) biological processes such as composting, algae uptake, and phosphate accumulating microorganisms (PAOs). However, the best technology to use depends on the characteristic of the waste, the purpose of the process, the cost, and the availability of land. The exhaustion of deposits (economic problem) and the accumulation of P (environmental problem) are the main drivers to incentivize the P’s recovery from various wastes. Besides promoting the resource’s safety, the recovery of P introduces the residues as raw materials, closing the productive systems loop and reducing their environmental damage.
Collapse
|
40
|
Phosphate Ion Release and Alkalizing Potential of Three Bioactive Dental Materials in Comparison with Composite Resin. Int J Dent 2021; 2021:5572569. [PMID: 34040643 PMCID: PMC8121605 DOI: 10.1155/2021/5572569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 01/23/2023] Open
Abstract
Aim Several new bioactive compounds were recently introduced to the market with favorable ion release, tooth remineralization, and alkalizing potential. This study sought to compare the phosphate ion release and alkalizing potential of three bioactive materials in comparison with composite resin. Methods Thirty-six discs (2 × 6 mm) were fabricated from Fuji II LC resin modified glass ionomer (RMGI), Activa BioActive, Cention N, and Z250 composite in plastic molds. The specimens were stored in distilled water for 24 and 48 h and 6 months. Half of the specimens were used to assess the phosphate ion release while the other half were used to assess the alkalizing potential 1 h after pH drop from 6.8 to 4. Phosphate ion release was quantified by a spectrophotometer while the pH value was measured by a pH meter. Data were analyzed using two-way ANOVA, one-way ANOVA, and Tukey's HSD test (for pairwise comparisons) at 0.05 level of significance. Results At 24 h, the maximum phosphate ion release in distilled water occurred in the Fuji II LC group followed by Cention N, Activa BioActive, and Z250. At 6 months, Cention N followed by Activa BioActive showed higher phosphate ion release than Fuji II LC and Z250. No significant difference was noted between Activa BioActive and Cention N at any time point. All materials, except for Z250, increased the pH of the environment. Fuji II LC had maximum alkalizing effect at all time points followed by Cention N and Activa BioActive. Conclusion Use of bioactive compounds is a promising method to ensure phosphate ion release, and can have a positive effect on tooth remineralization over time. Also, bioactive compounds can alkalize an acidic environment.
Collapse
|
41
|
Carvalho EM, Ferreira PVC, Gutiérrez MF, Sampaio RF, Carvalho CN, Menezes ASD, Loguercio AD, Bauer J. Development and characterization of self-etching adhesives doped with 45S5 and niobophosphate bioactive glasses: Physicochemical, mechanical, bioactivity and interface properties. Dent Mater 2021; 37:1030-1045. [PMID: 33846019 DOI: 10.1016/j.dental.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of study was to develop and characterize experimental bioactive glasses (45S5 and niobophosphate bioactive glass (NbG)) and evaluate the effects of their addition in self-etching adhesive systems on physicochemical, mechanical, and bioactive properties, microtensile bond strength (μTBS), and nanoleakage (NL). METHODS Two-step self-etching adhesive systems containing 5, 10, and 20 wt.% of 45S5 and NbG bioactive glasses were developed. An experimental adhesive without microparticles and a commercial adhesive (Clearfil SE Bond) were used as control groups. The materials were evaluated for their degree of conversion (DC%), ultimate tensile strength (UTS), softening in solvent, radiopacity, sorption and solubility, alkalizing activity (pH), ionic release, and bioactivity. μTBS and NL were evaluated after 24 h and 1 year of storage. The data were subjected to analysis of variance and post-Holm-Sidak tests (α = 0.05). RESULTS The addition of the two bioactive glasses did not change the values of the degree of conversion, ultimate tensile strength, and softening in solvent. The adhesive system containing 20% NbG showed the highest radiopacity. The incorporation of 45S5 increased water sorption and solubility, raised the pH, and allowed the release of large amounts of calcium. After 28 days of immersion in simulated body fluid, the 45S5 adhesive precipitated hydroxyapatite and calcium carbonate (SEM/EDX, ATR/FTIR, and XDR). The addition of 45S5 and NbG to the adhesives improved the stability of the resin-dentin interface after 1 year. SIGNIFICANCE The incorporation of microparticles from 45S5 bioactive glass in self-etching adhesive systems is considered an excellent alternative for the development of a bioactive adhesive that improves the integrity of the hybrid layer on sound dentin.
Collapse
Affiliation(s)
- Edilausson Moreno Carvalho
- University Ceuma (UNICEUMA), School of Dentistry, R. Josué Montello, 1, Renascença II, 65075-120 São Luis, Maranhão, Brazil.
| | - Paulo Vitor Campos Ferreira
- Department of Restorative Dentistry, Dental Materials Division, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901, 13414-903 Piracicaba, São Paulo, Brazil.
| | - Mario Felipe Gutiérrez
- Department of Biomaterials, School of Dentistry, Universidad de los Andes, Av. Monseñor Álvaro del Portillo 12455, 7550000 Las Condes, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Av. Olivos 943, 8380544 Independencia, Santiago, Chile.
| | - Ruan Ferreira Sampaio
- University Ceuma (UNICEUMA), School of Dentistry, R. Josué Montello, 1, Renascença II, 65075-120 São Luis, Maranhão, Brazil.
| | - Ceci Nunes Carvalho
- University Ceuma (UNICEUMA), School of Dentistry, R. Josué Montello, 1, Renascença II, 65075-120 São Luis, Maranhão, Brazil.
| | - Alan Silva de Menezes
- Department of Physics, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, 65080-805 São Luís, Maranhão, Brazil.
| | - Alessandro Dourado Loguercio
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa (UEPG), Rua Carlos Cavalcanti, 4748, Campus Uvaranas, 84030-900 Ponta Grossa, Paraná, Brazil.
| | - José Bauer
- Discipline of Dental Materials, School of Dentistry, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, 65080-805 São Luís, Maranhão, Brazil.
| |
Collapse
|
42
|
Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater 2021; 122:50-65. [PMID: 33290913 DOI: 10.1016/j.actbio.2020.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Dental resin composites (DRCs) are popular materials to repair caries. Although various types of DRCs with different characteristics have been developed, restoration failures still exist. Bulk fracture and secondary caries have been considered as main causes for the failure of composites restoration. To address these problems, various fillers with specific functions have been introduced and studied. Some fillers with specific morphologies such as whisker, fiber, and nanotube, have been used to increase the mechanical properties of DRCs, and other fillers releasing ions such as Ag+, Ca2+, and F-, have been used to inhibit the secondary caries. These functional fillers are helpful to improve the performances and lifespan of DRCs. In this article, we firstly introduce the composition and development of DRCs, then review and discuss the functional fillers classified according to their roles in the DRCs, finally give a summary on the current research and predict the trend of future development.
Collapse
Affiliation(s)
- Yazi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
43
|
Belmar da Costa M, Delgado AHS, Pinheiro de Melo T, Amorim T, Mano Azul A. Analysis of laboratory adhesion studies in eroded enamel and dentin: a scoping review. Biomater Investig Dent 2021; 8:24-38. [PMID: 33629074 PMCID: PMC7889235 DOI: 10.1080/26415275.2021.1884558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
AIM To summarize and report laboratory studies of adhesion in eroded substrates, which used bond strength as an outcome measure. To determine the strategies available to overcome bonding difficulties, the quality and consistency of the methodology and to find evidence gaps. MATERIALS AND METHODS The present review followed PRISMA-ScR guidelines. A search was conducted on PubMed/Medline, Scopus and EMBASE (Ovid) databases to identify published peer-reviewed papers (2010-2020). For final qualitative synthesis, 29 articles were selected which respected the inclusion criteria. Data charting was carried out, independently, by two reviewers and quality assessment of the articles was performed. RESULTS The primary studies included fall into four major categories: comparison of restorative materials and application modes, enzymatic inhibitors, surface pretreatments or remineralization strategies. Most studies found evaluated dentin (76%), while 17% evaluated enamel, and 7% evaluated both substrates. The majority of the studies reported an effective intervention (83%). Bond strength to eroded dentin is significantly reduced, while in enamel erosion is beneficial. The bond strength to eroded dentin is material-dependent and favored in systems containing 10-MDP. Great disparities among the erosion models used were found, with citric acid in different concentrations being the preferred method, although standardization is lacking. CONCLUSIONS Adhesives containing 10-MDP show beneficial results in eroded dentin, and surface preparation methods should be considered. Studies which evaluated adhesion to eroded enamel/dentin show high heterogeneity in what concerns aims and methodology. Strategies that focus on remineralizing dentin and strategies to protect bond longevity in this substrate require further research.
Collapse
Affiliation(s)
| | - António H. S. Delgado
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Almada, Portugal
| | - Teresa Pinheiro de Melo
- Instituto Universitário Egas Moniz (IUEM), Almada, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Almada, Portugal
| | - Tomás Amorim
- Instituto Universitário Egas Moniz (IUEM), Almada, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Almada, Portugal
| | - Ana Mano Azul
- Instituto Universitário Egas Moniz (IUEM), Almada, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Almada, Portugal
| |
Collapse
|
44
|
Kirillova A, Nillissen O, Liu S, Kelly C, Gall K. Reinforcement and Fatigue of a Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2021; 10:e2001058. [PMID: 33111508 DOI: 10.1002/adhm.202001058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Bioresorbable bone adhesives may provide remarkable clinical solutions in areas ranging from fixation and osseointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Mechanical properties of bone adhesives are critical for their successful application in vivo. Reinforcement of a tetracalcium phosphate-phosphoserine bone adhesive is investigated using three degradable reinforcement strategies: poly(lactic-co-glycolic) (PLGA) fibers, PLGA sutures, and chitosan lactate. All three approaches lead to higher compressive strengths of the material and better fatigue performance. Reinforcement with PLGA fibers and chitosan lactate results in a 100% probability of survival of samples at 20 MPa maximum compressive stress level, which is almost ten times higher compared to compressive loads observed in the intervertebral discs of the spine in vivo. High adhesive shear strength of 5.1 MPa is achieved for fiber-reinforced bone adhesive by tuning the surface architecture of titanium samples. Finally, biological and biomechanical performance of the fiber-reinforced adhesive is evaluated in a rabbit distal femur osteotomy model, showing the potential of the bone adhesive for clinical use.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Olivia Nillissen
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Samuel Liu
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Cambre Kelly
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
45
|
Memarpour M, Afzali Baghdadabadi N, Rafiee A, Vossoughi M. Ion release and recharge from a fissure sealant containing amorphous calcium phosphate. PLoS One 2020; 15:e0241272. [PMID: 33151995 PMCID: PMC7643944 DOI: 10.1371/journal.pone.0241272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
To assess- the release of calcium and phosphate ions from a fissure sealant containing amorphous calcium phosphate (ACP), and to determine the re-release capacity of these ions when charged with a solution containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). Nine blocks of ACP resin-based sealant were prepared and immersed in three solutions at different pH (4.0, 5.5, 7.0), and calcium and phosphate ion release was measured with ion chromatography at 1, 3, 5, 7, 14, 21 and 28 days after immersion. Sixty days after immersion, each block was charged with CPP-ACP solution in three 7-day cycles to investigate the re-release of these ions, which was measured on days 1, 3, and 7. No difference was observed in initial calcium ion release at pH 4.0 and pH 5.5. At both values, ion release was significantly higher than at pH 7.0 (p<0.001). Initial phosphate release was significantly different among the three pH values (p<0.001). After re-charging the specimens, calcium ion re-release was greater than phosphate ion release. Initial ion release from ACP resin-based sealant was greatest at the lowest pH. Ion release decreased with time. As the number of recharge cycles increased, ion re-release also improved. Phosphate ion re-release required more recharge cycles than calcium ion re-release.
Collapse
Affiliation(s)
- Mahtab Memarpour
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Afzali Baghdadabadi
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azade Rafiee
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Vossoughi
- Oral and Dental Disease Research Center, Department of Dental Public Health, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
47
|
Vilela MS, Bernal VL, Chagas LLC, Vichi FM, Aranha ACC, Arana-Chavez VE, Braga RR, Rodrigues MC. Mechanical properties and surface roughness of polymer-based materials containing DCPD particles. Braz Oral Res 2020; 34:e095. [PMID: 32901725 DOI: 10.1590/1807-3107bor-2020.vol34.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/17/2020] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to synthesize dicalcium phosphate dihydrate (DCPD) particles functionalized with triethylene glycol dimethacrylate (TEGDMA) through different routes by varying the receptor solution: ammonium phosphate (AP groups) or calcium nitrate (CN groups) and the moment in which TEGDMA was incorporated: ab initio (ab) or at the end of dripping the solution (ap). Two syntheses were performed without adding TEGDMA (nf). The particles were characterized by X-ray diffractometry, true density (using a helium pycnometer), surface area, and scanning electron microscopy. A 20 vol% of DCPD particles from the D, E, and F groups was added to the resin matrix to determine the degree of conversion (DC), biaxial flexural strength (BFS), the flexural modulus (FM), and surface roughness after an abrasive challenge (RA). A group with silanized barium glass particles was tested as a control. The data were submitted to ANOVA/Tukey's test (DC, BFS, and RA), and the Kruskal-Wallis test (FM) (alpha = 0.05). BFS values varied between 83 and 142 MPa, and the CN_ab group presented a similar value (123 MPa) to the control group. FM values varied between 3.6 and 8.7 GPa (CN_ab and CN_nf groups, respectively), with a significant difference found only between these groups. RA did not result in significant differences. The use of calcium nitrate solution as a receptor, together with ab initio functionalization formed particles with larger surface areas. Higher BFS values were observed for the material containing DCPD particles with a higher surface area. In general, the DC, FM, and RA values were not affected by the variables studied.
Collapse
Affiliation(s)
- Mateus Silva Vilela
- Universidade Cruzeiro do Sul, Graduate Program in Dentistry, São Paulo, SP, Brazil
| | - Vitória Leão Bernal
- Universidade Cruzeiro do Sul, Graduate Program in Dentistry, São Paulo, SP, Brazil
| | | | - Flávio Maron Vichi
- Universidade de São Paulo - USP, Institute of Chemistry, Department of Fundamental Chemistry, São Paulo, SP, Brazil
| | - Ana Cecília Corrêa Aranha
- Universidade de São Paulo - USP, School of Dentistry, Department of Operative Dentistry, São Paulo, SP, Brazil
| | - Victor Elias Arana-Chavez
- Universidade de São Paulo - USP, School of Dentistry, Department of Biometarials and Oral Biology, São Paulo, SP, Brazil
| | - Roberto Ruggiero Braga
- Universidade de São Paulo - USP, School of Dentistry, Department of Biometarials and Oral Biology, São Paulo, SP, Brazil
| | | |
Collapse
|
48
|
Par M, Spanovic N, Mohn D, Attin T, Tauböck TT, Tarle Z. Curing potential of experimental resin composites filled with bioactive glass: A comparison between Bis-EMA and UDMA based resin systems. Dent Mater 2020; 36:711-723. [DOI: 10.1016/j.dental.2020.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
|
49
|
Yang SY, Choi JW, Kim KM, Kwon JS. Prevention of Secondary Caries Using Resin-Based Pit and Fissure Sealants Containing Hydrated Calcium Silicate. Polymers (Basel) 2020; 12:polym12051200. [PMID: 32466181 PMCID: PMC7284760 DOI: 10.3390/polym12051200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the effects of hydrated calcium silicate filler (hCS) on resin-based pit and fissure sealants' acid neutralization, calcium ion release, and mechanical and physical properties. To produce the hCS filler, Portland cement (CS) was mixed with distilled water and ground into fine particles. The particles were then mixed with silanized glass filler and added to a photo-activated resin matrix. To evaluate the acid neutralization and calcium ion release properties, the specimens were immersed in a pH 4.0 lactic acid solution and distilled water for 28 days. Also, the flexural strength, depth of cure, water sorption, and solubility were tested. All of the groups containing hCS and CS required less than one minute to increase the pH from 4.0 to 5.5. With 50% hCS, the calcium ion release was higher than 50% CS in the distilled water at the initial time. The flexural strength and depth of cure decreased according to the increasing proportion of hCS added. The water sorption and solubility had an increasing trend as increasing proportions of hCS were added. These findings showed that pit and fissure sealant containing hCS exhibit superior acid neutralization and calcium release properties, and may be promising for caries-inhibiting dental material.
Collapse
Affiliation(s)
- Song-Yi Yang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.Y.); (J.-W.C.); (K.-M.K.)
| | - Ji-Won Choi
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.Y.); (J.-W.C.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.Y.); (J.-W.C.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.Y.); (J.-W.C.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-3081; Fax: +82-2-364-9961
| |
Collapse
|
50
|
Dressano D, Salvador MV, Oliveira MT, Marchi GM, Fronza BM, Hadis M, Palin WM, Lima AF. Chemistry of novel and contemporary resin-based dental adhesives. J Mech Behav Biomed Mater 2020; 110:103875. [PMID: 32957185 DOI: 10.1016/j.jmbbm.2020.103875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
The chemistry of resin-based dental adhesives is critical for its interaction with dental tissues and long-term bonding stability. Changes in dental adhesives composition influences the materials' key physical-chemical properties, such as rate and degree of conversion, water sorption, solubility, flexural strength and modulus, and cohesive strength and improves the biocompatibility to dental tissues. Maintaining a suitable reactivity between photoinitiators and monomers is important for optimal properties of adhesive systems, in order to enable adequate polymerisation and improved chemical, physical and biological properties. The aim of this article is to review the current state-of-the-art of dental adhesives, and their chemical composition and characteristics that influences the polymerisation reaction and subsequent materials properties and performance.
Collapse
Affiliation(s)
- Diogo Dressano
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av Limeira, 901 Mail Box 52, Piracicaba, Sao Paulo, 13414-903, Brazil.
| | - Marcos V Salvador
- Dental Research Division, Paulista University, Sao Paulo, Rua Doutor Bacelar, 1212, CEP: 04026-002, Brazil.
| | | | - Giselle Maria Marchi
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av Limeira, 901 Mail Box 52, Piracicaba, Sao Paulo, 13414-903, Brazil.
| | - Bruna M Fronza
- Department of Biomaterials and Oral Biology, University of São Paulo, 2227 Prof. Lineu Prestes Ave, 05508-000, São Paulo, SP, Brazil.
| | - Mohammed Hadis
- Dental Materials Science, Birmingham Dental School and Hospital, College of Medical and Dental Science, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| | - William M Palin
- Dental Materials Science, Birmingham Dental School and Hospital, College of Medical and Dental Science, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| | - Adriano Fonseca Lima
- Dental Research Division, Paulista University, Sao Paulo, Rua Doutor Bacelar, 1212, CEP: 04026-002, Brazil.
| |
Collapse
|