1
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tebyaniyan H, Hussain A, Vivian M. Current antibacterial agents in dental bonding systems: a comprehensive overview. Future Microbiol 2023; 18:825-844. [PMID: 37668450 DOI: 10.2217/fmb-2022-0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Dental caries is mainly caused by oral biofilm acid, and the most common dental restoration treatment is composite dental restorations. The main cause of failure is secondary caries adjacent to the restoration. Long-term survival of dental materials is improved by the presence of antibacterial agents, which selectively inhibit bacterial growth or survival. Chemical, natural and biomaterials have been studied for their antimicrobial activities and antibacterial bonding agents have been improved. Their usage has been increased to inhibit the growth of invading and residual bacteria in the oral cavity, as biofilm accumulation increases the risk of treatment failure. In this article, the success and applications of antibacterial agents are discussed in dental bonding systems.
Collapse
Affiliation(s)
- Hamid Tebyaniyan
- Department of Science & Research, Islimic Azade University, Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, AB, T6G 1C9, Canada
| | - Mark Vivian
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E4, Canada
| |
Collapse
|
3
|
Gouveia Z, Finer Y, Santerre JP. Towards the development of biostable dental resin systems - design criteria and constraints beyond ester-free chemistries. Dent Mater 2022; 38:1827-1840. [DOI: 10.1016/j.dental.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/03/2022]
|
4
|
|
5
|
Bortolatto JF, Buzalaf MRA, Ebrahimi J, Floros MC, Ho M, Prakki A. Methacrylation of epigallocatechin-gallate for covalent attachment with a dental polymer. Dent Mater 2021; 37:1751-1760. [PMID: 34565584 DOI: 10.1016/j.dental.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/11/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Synthesize novel epigallocatechin-gallate (EGCG) methacrylate monomers with the ability to copolymerize with dental methacrylate resins. METHODS EGCG was reacted with 1/3 (E33), 2/3 (E67) and 1 (E100) molar equivalents of methacyloyl chloride introducing three degrees of polymerizablility. EGCG-methacrylates were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). E33, E67, E100 and neat EGCG were incorporated into TEGDMA at 0.5-20% ratios (m/m). Copolymers were tested for degree of conversion (%DC), EGCG release, gel content (%GC), degree of swelling (%DS), flexural properties and bacterial viability (Streptococcus mutans, baseline/30-days). Neat TEGDMA and TEGDMA passively loaded with EGCG (E0) were used as controls. Data were analysed by one-way ANOVA, Tukey, and Dunnett's method (α=5%). Two-way ANOVA and Bonferroni were used to investigate factor interaction. RESULTS FTIR/NMR confirmed synthesis of desired compounds. All of E100 incorporated ratios had %DC similar to TEGDMA. Remaining groups had reduction in %DC at 2% in E0, 10% in E33 and 20% in E67 ratios. EGCG was stable within ECGC-methacrylate copolymers. Release of EGCG from E0 significantly increased with higher EGCG ratios. Except for E100, higher EGCG or EGCG-methacrylate ratios led to decreased %CG and %DS. At baseline, E0 had the lowest bacterial survival rates (1-10% survival) at all ratios compared to E33, E67, E100, and neat TEGDMA. However, E33, E67 and E100 still had statistically lower survival rates (7-53%) compared with neat TEGDMA. After 30-days, all compounds had similar survival rates for all ratios, which were lower than that of neat TEGDMA. SIGNIFICANCE Demonstration of methacrylate functionalized EGCG- with inherited antibacterial activity for improved restoration longevity.
Collapse
Affiliation(s)
- Janaína Freitas Bortolatto
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, 17012-901, Brazil
| | | | - Jessica Ebrahimi
- Department of Clinical Sciences, Orthodontics Discipline, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G1G6, Canada; Dental Research Institute, Restorative Discipline, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G1G6, Canada
| | - Michael Christopher Floros
- Dental Research Institute, Restorative Discipline, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G1G6, Canada
| | - Mayhay Ho
- Dental Research Institute, Restorative Discipline, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G1G6, Canada
| | - Anuradha Prakki
- Dental Research Institute, Restorative Discipline, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G1G6, Canada.
| |
Collapse
|
6
|
Khan AS, Ur Rehman S, AlMaimouni YK, Ahmad S, Khan M, Ashiq M. Bibliometric Analysis of Literature Published on Antibacterial Dental Adhesive from 1996-2020. Polymers (Basel) 2020; 12:E2848. [PMID: 33260410 PMCID: PMC7761276 DOI: 10.3390/polym12122848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the current state of research on antibacterial dental adhesives. The interest in this field can be drawn from an increasing number of scholarly works in this area. However, there is still a lack of quantitative measurement of this topic. The main aim of this study was to consolidate the research published on the antibacterial adhesive from 1996 to 2020 in Web of Science indexed journals. The bibliometric method, a quantitative study of investigating publishing trends and patterns, was used for this study. The result has shown that a gradual increase in research was found, whereby a substantial increase was observed from 2013. A total of 248 documents were published in 84 journals with total citations of 5107. The highly cited articles were published mainly in Q1 category journals. Most of the published articles were from the USA, China, and other developed countries; however, some developing countries contributed as well. The authorship pattern showed an interdisciplinary and collaborative approach among researchers. The thematic evaluation of keywords along with a three-factor analysis showed that 'antibacterial adhesives' and 'quaternary ammonium' have been used commonly. This bibliometric analysis can provide direction not only to researchers but also to funding organizations and policymakers.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54000, Pakistan;
| | - Murtaza Ashiq
- Islamabad Model College for Boys, H-9, Islamabad 44000, Pakistan;
| |
Collapse
|
7
|
Porter G, Tompkins G, Schwass D, Li K, Waddell J, Meledandri C. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent Mater 2020; 36:1096-1107. [DOI: 10.1016/j.dental.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/29/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
|
8
|
Application of Antibiotics/Antimicrobial Agents on Dental Caries. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5658212. [PMID: 32076608 PMCID: PMC7013294 DOI: 10.1155/2020/5658212] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023]
Abstract
Dental caries is the most common oral disease. The bacteriological aetiology of dental caries promotes the use of antibiotics or antimicrobial agents to prevent this type of oral infectious disease. Antibiotics have been developed for more than 80 years since Fleming discovered penicillin in 1928, and systemic antibiotics have been used to treat dental caries for a long time. However, new types of antimicrobial agents have been developed to fight against dental caries. The purpose of this review is to focus on the application of systemic antibiotics and other antimicrobial agents with respect to their clinical use to date, including the history of their development, and their side effects, uses, structure types, and molecular mechanisms to promote a better understanding of the importance of microbial interactions in dental plaque and combinational treatments.
Collapse
|
9
|
Pratap B, Gupta RK, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:126-138. [PMID: 31687052 PMCID: PMC6819877 DOI: 10.1016/j.jdsr.2019.09.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
Abstract
This review article compiles the characteristics of resin based dental composites and an effort is made to point out their future perspectives. Recent research studies along with few earlier articles were studied to compile the synthesis schemes of commonly used monomers, their characteristics in terms of their physical, mechanical and polymerization process with selectivity towards the input parameters of polymerization process. This review covers surface modification processes of various filler particles using silanes, wear behaviour, antimicrobial behaviour along with its testing procedures to develop the fundamental knowledge of various characteristics of resin based composites. In the end of this review, possible areas of further interests are pointed out on the basis of literature review on resin based dental materials.
Collapse
Key Words
- 4-EDMAB, Ethyl-4-dimethyl amino benzoate
- Antimicrobial properties
- BPA, Bisphenol-A
- BPO, Benzoyl peroxide
- Bis-EMA, Ethoxylatedbisphenol-A-dimethacrylate
- Bis-GMA, Bisphenol A-glycidyl methacrylate
- CQ, Camphorquinone
- DC, Degree of conversion
- DHEPT, Dihydroxy ethyl-para-toluidine
- DMAEMA, Dimethyl amino ethyl methacrylate
- DMAP, Dimethyl amino pyridine
- Dental composites
- EGDMA, Ethylene glycol dimethacrylate
- HEMA, 2-Hydroxyethyl methacrylate
- LED, Light emitting diode
- PPD, 1-phenyl-1,2 propanedione
- PS, Polymerization Shrinkage
- RBCs, Resin based composites
- Self-healing
- Surface modification of filler particles
- TEG, Triethylene glycol
- TEGDMA, Triethylene glycol dimethacrylate
- TPO, Diphenyl phosphine oxide
- UDMA, Urethane dimethacrylate
- Wear
- γ-MPS, 3-(Trimethoxysilyl) Propyl Methacrylate
Collapse
Affiliation(s)
- Bhanu Pratap
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | - Ravi Kant Gupta
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Meetu Nag
- Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur, India
| |
Collapse
|