1
|
Monici Silva I, Barbosa CDB, Cena JAD, Ribeiro E, Garcia FCP, Stefani CM, Dame-Teixeira N. Effects of cross-linking agents on hydroxyproline release and root caries lesion size: Systematic review and network meta-analysis of in vitro studies. Eur J Oral Sci 2024; 132:e13028. [PMID: 39579122 DOI: 10.1111/eos.13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
A promising approach for managing root caries is the use of cross-linking agents to stabilize collagen. However, despite testing various natural and synthetic agents in vitro, their efficacy remains uncertain. The aim of this review was to examine which cross-linking agent performs better in reducing root caries lesion depth and the release of hydroxyproline, which is a marker of collagen degradation. Studies evaluating the impact of cross-linking agents on dentin were included, while studies performed on enamel surface/cell cultures and studies evaluating collagenase inhibitors were excluded, among others. A comprehensive search covered eight databases, and study quality was assessed using the QUINN Tool for in vitro dental studies. Synthesis of the results was done using a Bayesian network meta-analysis to compare agents. Fifty studies involving 31 cross-linking agents were included for qualitative synthesis. The network meta-analysis for lesion depth involved 284 samples across 36 comparisons and ranked cross-linking agents in terms of their caries lesion depth-reducing effect (from best to worst): naringin > quercetin > riboflavin > proanthocyanidins > hesperidin > glutaraldehyde > cranberry > grape seed extract > untreated controls. Only naringin, quercetin, proanthocyanidins, and glutaraldehyde showed statistically significant efficacy over untreated controls. Cranberry extract excelled in reducing hydroxyproline release, followed by proanthocyanidins. In conclusion, proanthocyanidins positively affected both outcomes, suggesting they are prime candidates for translational research. Clinical studies are now essential to evaluate their real-world effectiveness against root caries. PROSPERO-CRD42023404911.
Collapse
Affiliation(s)
- Isabela Monici Silva
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília (Federal District), Brazil
| | - Cecília de Brito Barbosa
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília (Federal District), Brazil
| | - Jéssica Alves de Cena
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília (Federal District), Brazil
| | - Erick Ribeiro
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília (Federal District), Brazil
| | | | - Cristine Miron Stefani
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília (Federal District), Brazil
| | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília (Federal District), Brazil
| |
Collapse
|
2
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
3
|
Assis HCD, Bertolini GR, Sousa-Neto MD, Lopes-Olhê FC. Analysis of the adhesive interface of dentine treated with carbodiimide and chitosan before cementation of fiberglass posts with different resin cements. J Biomed Mater Res B Appl Biomater 2023; 111:1840-1852. [PMID: 37287402 DOI: 10.1002/jbm.b.35289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/27/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
The objective of this study is to evaluate the effect of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and chitosan (CHI) on the adhesive interface of resin cements to root dentine. Forty-five upper canines were sectioned, endodontically treated, prepared and divided into three groups according to dentine treatment (distilled water-DW, CHI 0.2% and EDC 0.5) and in three subgroups according to resin cement: RelyX ARC, Panavia F 2.0 or RelyX U200. Slices were obtained, with five slices of each third submitted to the analysis of the adaptation of the adhesive interface through scores and the perimeter with gaps in confocal laser scanning microscopy and one slice of each third later evaluated qualitatively in scanning electron microscopy. The results were analyzed using with Kruskal-Wallis and Spearman correlation tests. There was no difference in adaptation for the different resin cements (p = .438). EDC presented better adaptation when compared to the groups treated with DW and CHI (p < .001), while the CHI and DW presented similar adaptation values (p = .365). No difference was observed in the perimeter referring to the gap areas for the different resin cements (p = .510). EDC showed a lower percentage of perimeters with gaps when compared to CHI (p < .001), with the percentage of perimeter with gaps of teeth treated with CHI being lower than DW (p < .001). A positive correlation coefficient equal to 0.763 was obtained between the perimeter with gaps and the adaptation data of the adhesive interface (p < .001). EDC resulted in better adaptation of the adhesive interface and a lower percentage of perimeters with gaps compared to chitosan.
Collapse
Affiliation(s)
- Helena Cristina de Assis
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Gunther Ricardo Bertolini
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fabiane Carneiro Lopes-Olhê
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Hardan L, Daood U, Bourgi R, Cuevas-Suárez CE, Devoto W, Zarow M, Jakubowicz N, Zamarripa-Calderón JE, Radwanski M, Orsini G, Lukomska-Szymanska M. Effect of Collagen Crosslinkers on Dentin Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis. Cells 2022; 11:cells11152417. [PMID: 35954261 PMCID: PMC9368291 DOI: 10.3390/cells11152417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to identify the role of crosslinking agents in the resin–dentin bond strength (BS) when used as modifiers in adhesives or pretreatments to the dentin surface through a systematic review and meta-analysis. This paper was conducted according to the directions of the PRISMA 2020 statement. The research question of this review was: “Would the use of crosslinkers agents improve the BS of resin-based materials to dentin?” The literature search was conducted in the following databases: Embase, PubMed, Scielo, Scopus, and Web of Science. Manuscripts that reported the effect on the BS after the use of crosslinking agents were included. The meta-analyses were performed using Review Manager v5.4.1. The comparisons were performed by comparing the standardized mean difference between the BS values obtained using the crosslinker agent or the control group. The subgroup comparisons were performed based on the adhesive strategy used (total-etch or self-etch). The immediate and long-term data were analyzed separately. A total of 50 articles were included in the qualitative analysis, while 45 articles were considered for the quantitative analysis. The meta-analysis suggested that pretreatment with epigallocatechin-3-gallate (EGCG), carbodiimide, ethylenediaminetetraacetic acid (EDTA), glutaraldehyde, and riboflavin crosslinking agents improved the long-term BS of resin composites to dentin (p ≤ 0.02). On the other hand, the use of proanthocyanidins as a pretreatment improved both the immediate and long-term BS values (p ≤ 0.02). When incorporated within the adhesive formulation, only glutaraldehyde, riboflavin, and EGCG improved the long-term BS to dentin. It could be concluded that the application of different crosslinking agents such as carbodiimide, EDTA, glutaraldehyde, riboflavin, and EGCG improved the long-term BS of adhesive systems to dentin. This effect was observed when these crosslinkers were used as a separate step and when incorporated within the formulation of the adhesive system.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur 57000, Malaysia
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| | | | - Maciej Zarow
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Natalia Jakubowicz
- “NZOZ SPS Dentist” Dental Clinic and Postgraduate Course Centre, pl. Inwalidow 7/5, 30-033 Cracow, Poland
| | - Juan Eliezer Zamarripa-Calderón
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca 42160, Mexico
| | - Mateusz Radwanski
- Department of Endodontics, Chair of Conservative Dentistry and Endodontics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Giovana Orsini
- Department of Clinical Sciences and Stomatology, School of Medicine, Polytechnic University of Marche, Via Tronto 10, 60126 Ancona, Italy
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
- Correspondence: (C.E.C.-S.); (M.L.-S.); Tel.: +52-(771)-72000 (C.E.C.-S.); +48-42-675-74-61 (M.L.-S.)
| |
Collapse
|
5
|
Chen W, Jin H, Zhang H, Wu L, Chen G, Shao H, Wang S, He X, Zheng S, Cao CY, Li QL. Synergistic effects of graphene quantum dots and carbodiimide in promoting resin-dentin bond durability. Dent Mater 2021; 37:1498-1510. [PMID: 34465445 DOI: 10.1016/j.dental.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/09/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Resin-based dental adhesion is mostly utilized in minimally invasive operative dentistry. However, improving the durability and stability of resin-dentin bond interfaces remain a challenge. Graphene quantum dots (GQDs) reinforced by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were introduced to modify the resin-dentin bond interfaces, thereby promoting their durability and stability. METHODS GQDs, EDC, and EDC+GQDs groups were designed to evaluate the effects of GQDs and EDC on collagenase activity, the interaction of GQDs with collagen, and the resin-dentin interface. First, the effects of GQDs and EDC on collagenase activity was evaluated by Collagenase (EC 3.4.24.3) reacting with its substrate. The interaction of GQDs and EDC with collagen were evaluated by cross-linking degree analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, attenuated total reflection Fourier transform infrared spectroscopy and enzymatic hydrolysis. Second, the acid-etched and rinse adhesive system was used to evaluate the resin-dentin bond on the basis of microtensile bond strength, in situ zymography and fluorescence confocal laser scanning microscopy. RESULTS GQDs could inhibit collagenase activity. GQDs with the aid of EDC could cross-link collagen via covalent bonds and improve the anti-enzymatic hydrolysis of collagen. In the resin-dentin adhesion model, the μTBS of the EDC+GQDs group was significantly higher than the other control groups after thermocycling. The addition of EDC to GQDs could inhibit matrix metalloproteinase activity and promote the integrity of the bonding interfaces after thermocycling. SIGNIFICANCE This study presents a novel strategy to modify the resin-dentin interface and provides a new application for GQDs. This strategy has the potential to improve the durability of resin-based restoration in dentistry.
Collapse
Affiliation(s)
- Wendy Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Huimin Jin
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Heng Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Guoqing Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Hui Shao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Shengrui Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| | - Quan-Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Daood U, Aati S, Akram Z, Yee J, Yong C, Parolia A, Lin Seow L, Fawzy AS. Characterization of multiscale interactions between high intensity focused ultrasound (HIFU) and tooth dentin: the effect on matrix-metalloproteinases, bacterial biofilms and biological properties. Biomater Sci 2021; 9:5344-5358. [PMID: 34190236 DOI: 10.1039/d1bm00555c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.
Collapse
Affiliation(s)
- Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Sultan Aati
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Zohaib Akram
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Joyce Yee
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Celine Yong
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Abhishek Parolia
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Liang Lin Seow
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Amr S Fawzy
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
7
|
Bourgi R, Daood U, Bijle MN, Fawzy A, Ghaleb M, Hardan L. Reinforced Universal Adhesive by Ribose Crosslinker: A Novel Strategy in Adhesive Dentistry. Polymers (Basel) 2021; 13:704. [PMID: 33652596 PMCID: PMC7956770 DOI: 10.3390/polym13050704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Enzymatic biodegradation of demineralized collagen fibrils could lead to the reduction of resin-dentin bond strength. Therefore, methods that provide protection to collagen fibrils appear to be a pragmatic solution to improve bond strength. Thus, the study's aim was to investigate the effect of ribose (RB) on demineralized resin-dentin specimens in a modified universal adhesive. Dentin specimens were obtained, standardized and then bonded in vitro with a commercial multi-mode adhesive modified with 0, 0.5%, 1%, and 2% RB, restored with resin composite, and tested for micro-tensile bond strength (µTBS) after storage for 24 h in artificial saliva. Scanning electron microscopy (SEM) was performed to analyze resin-dentin interface. Contact angles were analyzed using a contact angle analyzer. Depth of penetration of adhesives and nanoleakage were assessed using micro-Raman spectroscopy and silver tracing. Molecular docking studies were carried out using Schrodinger small-molecule drug discovery suite 2019-4. Matrix metalloproteinases-2 (MMP-2) and cathepsin-K activities in RB-treated specimens were quantified using enzyme-linked immunosorbent assay (ELISA). The significance level was set at α = 0.05 for all statistical analyses. Incorporation of RB at 1% or 2% is of significant potential (p < 0.05) as it can be associated with improved wettability on dentin surfaces (0.5% had the lowest contact angle) as well as appreciable hybrid layer quality, and higher resin penetration. Improvement of the adhesive bond strength was shown when adding RB at 1% concentration to universal adhesive (p < 0.05). Modified adhesive increased the resistance of collagen degradation by inhibiting MMP-2 and cathepsin-K. A higher RB concentration was associated with improved results (p < 0.01). D-ribose showed favorable negative binding to collagen. In conclusion, universal adhesive using 1% or 2% RB helped in maintaining dentin collagen scaffold and proved to be successful in improving wettability, protease inhibition, and stability of demineralized dentin substrates. A more favorable substrate is created which, in turn, leads to a more stable dentin-adhesive bond. This could lead to more advantageous outcomes in a clinical scenario where a stable bond may result in longevity of the dental restoration.
Collapse
Affiliation(s)
- Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (R.B.); (M.G.); (L.H.)
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur 57000, Malaysia
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China;
| | - Amr Fawzy
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia;
| | - Maroun Ghaleb
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (R.B.); (M.G.); (L.H.)
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon; (R.B.); (M.G.); (L.H.)
| |
Collapse
|
8
|
Zhao L, Sun J, Zhang C, Chen C, Chen Y, Zheng B, Pan H, Shao C, Jin B, Tang R, Gu X. Effect of aspartic acid on the crystallization kinetics of ACP and dentin remineralization. J Mech Behav Biomed Mater 2020; 115:104226. [PMID: 33302092 DOI: 10.1016/j.jmbbm.2020.104226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Type I collagen and non-collagen proteins are the main organic components of dentin. This study aimed to investigate the biomimetic remineralization of demineralized dentin by aspartic acid (Asp), which is abundant in non-collagenous proteins (NCPs). Asp was added to a mineralizing solution containing polyacrylic acid (PAA) to explore the mechanism of Asp regulating the pure amorphous calcium phosphate (ACP) phase transition process. The remineralization process and superstructure of the remineralized layer of demineralized dentin were evaluated and analyzed by transmission electron microscope (TEM) and scanning electron microscope (SEM), and the biological stability of the remineralized layer was investigated by collagenase degradation experiment. It demonstrated that Asp promoted the crystallization kinetics of PAA-stabilized amorphous calcium phosphate to hydroxyapatite (HAP), and shortened the remineralization time of demineralized dentin from 7 days to 2 days. The newly formed remineralized dentin had similar morphology and biological stability to the natural dentin layer. The presence of a large number of Asp residues in NCPs promoted the phase transformation of ACP, and further revealed the mechanism of action of NCPs in dentin biomineralization. This experiment also showed that Asp promoted the biomimetic remineralization of dentin; the morphology and hierarchical structure of remineralized layer was similar to that of natural teeth, and had good biological properties.
Collapse
Affiliation(s)
- Luyi Zhao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ce Zhang
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, PR China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yi Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Bo Zheng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Haihua Pan
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Changyu Shao
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Biao Jin
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Ruikang Tang
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|