1
|
Liu W, Wang D, He G, Li T, Zhang X. A novel porous titanium with engineered surface for bone defect repair in load-bearing position. J Biomed Mater Res A 2024; 112:1083-1092. [PMID: 38411355 DOI: 10.1002/jbm.a.37689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
Porous titanium exhibits low elastic modulus and porous structure is thought to be a promising implant in bone defect repair. However, the bioinert and low mechanical strength of porous titanium have limited its clinical application, especially in load-bearing bone defect repair. Our previous study has reported an infiltration casting and acid corrosion (IC-AC) method to fabricate a novel porous titanium (pTi) with 40% porosity and 0.4 mm pore diameter, which exerts mechanical property matching with cortical bone and interconnected channels. In this study, we introduced a nanoporous coating and incorporated an osteogenic element strontium (Sr) on the surface of porous titanium (named as Sr-micro arch oxidation [MAO]) to improve the osteogenic ability of the pTi by MAO. Better biocompatibility of Sr-MAO was verified by cell adhesion experiment and cell counting kit-8 (CCK-8) test. The in vitro osteogenic-related tests such as immunofluorescence staining, alkaline phosphatase staining and real-time polymerase chain reaction (RT-PCR) demonstrated better osteogenic ability of Sr-MAO. Femoral bone defect repair model was employed to evaluate the osseointegration of samples in vivo. Results of micro-CT scanning, sequential fluorochrome labeling and Van Gieson staining suggested that Sr-MAO showed better in vivo osteogenic ability than other groups. Taking results of both in vitro and in vivo experiment together, this study indicated the Sr-MAO porous titanium could be a promising implant load-bearing bone defect.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, China
| | - Guo He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Li
- Department of Infection Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang X, Mu M, Yan J, Han B, Ye R, Guo G. 3D printing materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness. Regen Biomater 2024; 11:rbae066. [PMID: 39169972 PMCID: PMC11338467 DOI: 10.1093/rb/rbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 08/23/2024] Open
Abstract
Oral and maxillofacial surgery is a specialized surgical field devoted to diagnosing and managing conditions affecting the oral cavity, jaws, face and related structures. In recent years, the integration of 3D printing technology has revolutionized this field, offering a range of innovative surgical devices such as patient-specific implants, surgical guides, splints, bone models and regenerative scaffolds. In this comprehensive review, we primarily focus on examining the utility of 3D-printed surgical devices in the context of oral and maxillofacial surgery and evaluating their efficiency. Initially, we provide an insightful overview of commonly utilized 3D-printed surgical devices, discussing their innovations and clinical applications. Recognizing the pivotal role of materials, we give consideration to suitable biomaterials and printing technology of each device, while also introducing the emerging fields of regenerative scaffolds and bioprinting. Furthermore, we delve into the transformative impact of 3D-printed surgical devices within specific subdivisions of oral and maxillofacial surgery, placing particular emphasis on their rejuvenating effects in bone reconstruction, orthognathic surgery, temporomandibular joint treatment and other applications. Additionally, we elucidate how the integration of 3D printing technology has reshaped clinical workflows and influenced treatment outcomes in oral and maxillofacial surgery, providing updates on advancements in ensuring accuracy and cost-effectiveness in 3D printing-based procedures.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China, Shihezi 832002, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Han Z, Xiong J, Jin X, Dai Q, Han M, Wu H, Yang J, Tang H, He L. Advances in reparative materials for infectious bone defects and their applications in maxillofacial regions. J Mater Chem B 2024; 12:842-871. [PMID: 38173410 DOI: 10.1039/d3tb02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Infectious bone defects are characterized by the partial loss or destruction of bone tissue resulting from bacterial contaminations subsequent to diseases or external injuries. Traditional bone transplantation and clinical methods are insufficient in meeting the treatment demands for such diseases. As a result, researchers have increasingly focused on the development of more sophisticated biomaterials for improved therapeutic outcomes in recent years. This review endeavors to investigate specific reparative materials utilized for the treatment of infectious bone defects, particularly those present in the maxillofacial region, with a focus on biomaterials capable of releasing therapeutic substances, functional contact biomaterials, and novel physical therapy materials. These biomaterials operate via heightened antibacterial or osteogenic properties in order to eliminate bacteria and/or stimulate bone cells regeneration in the defect, ultimately fostering the reconstitution of maxillofacial bone tissue. Based upon some successful applications of new concept materials in bone repair of other parts, we also explore their future prospects and potential uses in maxillofacial bone repair later in this review. We highlight that the exploration of advanced biomaterials holds promise in establishing a solid foundation for the development of more biocompatible, effective, and personalized treatments for reconstructing infectious maxillofacial defects.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jingdi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaohan Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qinyue Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Haiqin Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Iezzi G, Zavan B, Petrini M, Ferroni L, Pierfelice TV, D'Amora U, Ronca A, D'Amico E, Mangano C. 3D printed dental implants with a porous structure: The in vitro response of osteoblasts, fibroblasts, mesenchymal stem cells, and monocytes. J Dent 2024; 140:104778. [PMID: 37951493 DOI: 10.1016/j.jdent.2023.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
AIMS The first aim of this study was to characterize the surface topography of a novel 3D-printed dental implant at the micro- and macro-level. Its second aim was to evaluate the osteogenic, angiogenic, and immunogenic responses of human oral osteoblasts (hOBs), gingival fibroblasts (hGFs), mesenchymal stem cells (hAD-MSCs), and monocytes to this novel implant surface. METHODS A 3D-printed Ti-6Al-4 V implant was produced by selective laser melting and subjected to organic acid etching (TEST). It was then compared to a machined surface (CTRL). Its biological properties were evaluated via cell proliferation assays, morphological observations, gene expression analyses, mineralization assessments, and collagen quantifications. RESULTS Scanning electron microscopy analysis showed that the TEST group was characterized by a highly interconnected porous architecture and a roughed surface. The morphological observations showed good adhesion of cells cultured on the TEST surface, with a significant increase in hOB growth. Similarly, the gene expression analysis showed significantly higher levels of osseointegration biomarkers. Picrosirius staining showed a slight increase in collagen production in the TEST group compared to the CTRL group. hAD-MSCs showed an increase in endothelial and osteogenic commitment-related markers. Monocytes showed increased mRNA synthesis related to the M2 (anti-inflammatory) macrophagic phenotype. CONCLUSIONS Considering the higher interaction with hOBs, hGFs, hAD-MSCs, and monocytes, the prepared 3D-printed implant could be used for future clinical applications. CLINICAL RELEVANCE This study demonstrated the excellent biological response of various cells to the porous surface of the novel 3D-printed implant.
Collapse
Affiliation(s)
- Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara 44121, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna 48033, Italy
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy.
| | | |
Collapse
|
5
|
Marin E. Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater Today Bio 2023; 23:100777. [PMID: 37727867 PMCID: PMC10506110 DOI: 10.1016/j.mtbio.2023.100777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Metallic cellular solids, made of biocompatible alloys like titanium, stainless steel, or cobalt-chromium, have gained attention for their mechanical strength, reliability, and biocompatibility. These three-dimensional structures provide support and aid tissue regeneration in orthopedic implants, cardiovascular stents, and other tissue engineering cellular solids. The design and material chemistry of metallic cellular solids play crucial roles in their performance: factors such as porosity, pore size, and surface roughness influence nutrient transport, cell attachment, and mechanical stability, while their microstructure imparts strength, durability and flexibility. Various techniques, including additive manufacturing and conventional fabrication methods, are utilized for producing metallic biomedical cellular solids, each offering distinct advantages and drawbacks that must be considered for optimal design and manufacturing. The combination of mechanical properties and biocompatibility makes metallic cellular solids superior to their ceramic and polymeric counterparts in most load bearing applications, in particular under cyclic fatigue conditions, and more in general in application that require long term reliability. Although challenges remain, such as reducing the production times and the associated costs or increasing the array of available materials, metallic cellular solids showed excellent long-term reliability, with high survival rates even in long term follow-ups.
Collapse
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| |
Collapse
|
6
|
Lv Z, Li Z, Yang Q, Li J. A 3D-printed patient-specific modular implants for pelvic reconstruction of bone tumors involving the sacroiliac joint. Front Bioeng Biotechnol 2023; 11:1233960. [PMID: 37691901 PMCID: PMC10484402 DOI: 10.3389/fbioe.2023.1233960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Background: Current reconstruction methods of the pelvic ring after extensive resection of tumors involving the sacroiliac joint have a high incidence of failure. We aimed to study the effect of 3D-printed patient-specific implant reconstruction to show that this method is stable and has a low risk of failure. Methods: Between February 2017 and November 2021, six patients with bone tumors involving the sacroiliac joint (Enneking I + IV) who received 3D-printed patient-specific implants for pelvic reconstructive surgery were retrospectively analyzed. Two female and four male patients with a mean age of 41.83 years (range 25-65 years) were included. Two were osteosarcomas, two chondrosarcomas, one malignant fibrous histiocytoma, and one giant cell tumor of bone. For each patient, preoperative osteotomy guides were designed to ensure accurate tumor resection and individualized prostheses were designed to ensure a perfect fit of the bone defect. General, oncologic, and functional outcomes, implant status, and complications were retrospectively analyzed. The Visual Analog Scale (VAS) was used to assess pain and the Musculoskeletal Tumor Society (MSTS) score was used to assess hip function. Osseointegration was assessed by CT. Results: According to the preoperative design, complete resection of the entire tumor and reconstruction with a custom 3D-printed sacroiliac joint implant was completed without perioperative severe complications or deaths. Relatively satisfactory surgical margins were achieved. The mean operative time and intraoperative blood loss were 495 min (420-600 min) and 2533.33 mL (range, 1,200-3,500 mL), respectively. The mean follow-up was 49.83 months (range, 18-75 months). At the last follow-up, all four patients were disease-free, and the two patients who developed lung metastases were alive with tumors. All patients could walk unassisted. The mean VAS was 1.33 (range, 0-2). The mean MSTS score was 25.33 (range, 24-27). CT showed complete osseointegration of the implant to the ilium and sacrum. Conclusion: The 3D-printed custom prosthesis can effectively reconstruct pelvic stability after total sacroiliac joint resection with satisfactory clinical results.
Collapse
Affiliation(s)
| | | | | | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Woodbury SM, Swanson WB, Mishina Y. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate. Front Physiol 2023; 14:1220555. [PMID: 37520820 PMCID: PMC10373313 DOI: 10.3389/fphys.2023.1220555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system. In this context, the present review first highlights important biomolecules involved with the mechanobiology of how SSPCs sense and transduce these physical signals. The review then shifts focus towards how the static and dynamic physical properties of microenvironments direct the biological fates of SSPCs, specifically within biomaterial and tissue engineering systems. Biomaterial constructs possess designable, quantifiable physical properties that enable the growth of cells in controlled physical environments both in-vitro and in-vivo. The utilization of biomaterials in tissue engineering systems provides a valuable platform for controllably directing the fates of SSPCs with physical signals as a tool for mechanobiology investigations and as a template for guiding skeletal tissue regeneration. It is paramount to study this mechanobiology and account for these mechanics-mediated behaviors to develop next-generation tissue engineering therapies that synergistically combine physical and chemical signals to direct cell fate. Ultimately, taking advantage of the evolved mechanobiology of SSPCs with customizable biomaterial constructs presents a powerful method to predictably guide bone and skeletal organ regeneration.
Collapse
Affiliation(s)
- Seth M. Woodbury
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Chemistry, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Physics, Ann Arbor, MI, United States
| | - W. Benton Swanson
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| | - Yuji Mishina
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Li Z, Zhang Q, Yang S, Li Y, Atrens A, Kanwar JR, Zhong W, Lin B, Wen C, Zhou Y, Xiao Y. An Optimized Method for Microcomputed Tomography Analysis of Trabecular Parameters of Metal Scaffolds for Bone Ingrowth. Tissue Eng Part C Methods 2023; 29:276-283. [PMID: 37233718 DOI: 10.1089/ten.tec.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Owing to its superior mechanical and biological properties, titanium metal is widely used in dental implants, orthopedic devices, and bone regenerative materials. Advances in 3D printing technology have led to more and more metal-based scaffolds being used in orthopedic applications. Microcomputed tomography (μCT) is commonly applied to evaluate the newly formed bone tissues and scaffold integration in animal studies. However, the presence of metal artifacts dramatically hinders the accuracy of μCT analysis of new bone formation. To acquire reliable and accurate μCT results that reflect new bone formation in vivo, it is crucial to lessen the impact of metal artifacts. Herein, an optimized procedure for calibrating μCT parameters using histological data was developed. In this study, the porous titanium scaffolds were fabricated by powder bed fusion based on computer-aided design. These scaffolds were implanted in femur defects created in New Zealand rabbits. After 8 weeks, tissue samples were collected to assess new bone formation using μCT analysis. Resin-embedded tissue sections were then used for further histological analysis. A series of deartifact two-dimensional (2D) μCT images were obtained by setting the erosion radius and the dilation radius in the μCT analysis software (CTan) separately. To get the μCT results closer to the real value, the 2D μCT images and corresponding parameters were subsequently selected by matching the histological images in the particular region. After applying the optimized parameters, more accurate 3D images and more realistic statistical data were obtained. The results demonstrate that the newly established method of adjusting μCT parameters can effectively reduce the influence of metal artifacts on data analysis to some extent. For further validation, other metal materials should be analyzed using the process established in this study.
Collapse
Affiliation(s)
- Zhengmao Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Jagat Rakesh Kanwar
- Faculty of Health, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Wen Zhong
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bingpeng Lin
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Yinghong Zhou
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|