1
|
Nama K, Su B, Marquez J, Khokha MK, Habas R. The dishevelled associated activator of morphogenesis protein 2 (Daam2) regulates neural tube closure. Dev Dyn 2024; 253:1130-1146. [PMID: 38877839 PMCID: PMC11611695 DOI: 10.1002/dvdy.720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 12/05/2024] Open
Abstract
BACKGROUND The Wnt signaling pathway is highly conserved in metazoans and regulates a large array of cellular processes including motility, polarity and fate determination, and stem cell homeostasis. Modulation of the actin cytoskeleton via the non-canonical Wnt pathway regulate cell polarity and cell migration that are required for proper vertebrate gastrulation and subsequent neurulation. However, the mechanism(s) of how the non-canonical pathway mediates actin cytoskeleton modulation is not fully understood. RESULTS Herein, we characterize the role of the Formin-homology protein; dishevelled associated activator of morphogenesis 2 (Daam2) protein in the Wnt signaling pathway. Co-immunoprecipitation assays confirm the binding of Daam2 to dishevelled2 (Dvl2) as well as the domains within these proteins required for interaction; additionally, the interaction between Daam2 and Dvl2 was Wnt-regulated. Sub-cellular localization studies reveal Daam2 is cytoplasmic and regulates the cellular actin cytoskeleton by modulating actin filament formation. During Xenopus development, a knockdown or loss of Daam2 specifically produces neural tube closure defects indicative of a role in non-canonical signaling. Additionally, our studies did not identify any role for Daam2 in canonical Wnt signaling in mammalian culture cells or the Xenopus embryo. CONCLUSIONS Our studies together identify Daam2 as a component of the non-canonical Wnt pathway and Daam2 is a regulator of neural tube morphogenesis during vertebrate development.
Collapse
Affiliation(s)
- Kaushik Nama
- Department of Biology, Temple University, Philadelphia, PA 19122
| | - Baihao Su
- Department of Biology, Temple University, Philadelphia, PA 19122
| | - Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mustapha K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA 19122
| |
Collapse
|
2
|
Zeni C, Komiya Y, Habas R. Formin Binding Protein 1 (FNBP1) regulates non-canonical Wnt signaling and vertebrate gastrulation. Dev Biol 2024; 515:18-29. [PMID: 38945423 PMCID: PMC11317212 DOI: 10.1016/j.ydbio.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The Formin protein Daam1 is required for Wnt-induced cytoskeletal changes during gastrulation, though how it accomplishes this remains unresolved. Here we report the characterization of Formin Binding Protein 1 (FNBP1) as a binding partner of Daam1. The interaction of Daam1 with FNBP1 and its domains required for this interaction were delineated. Immunofluorescence studies showed FNBP1 co-localizes with Daam1, and is an integral component of the actin cytoskeletal complex that is responsive to Wnt stimulation. Specifically, FNBP1 can induce intracellular tubule-like structures and localize to focal adhesions suggesting a role for FNBP1 in cell migration. Functional FNBP1 studies in Xenopus embryos uncover a critical role for FNBP1 in regulating vertebrate gastrulation. Additionally, suboptimal doses of Daam1 and FNBP1 synergize to produce severe gastrulation defects, indicating FNBP1 and Daam1 may function within the same signaling pathway. These results together show FNBP1 is an integral component of Daam1-regulated non-canonical Wnt signaling required for vertebrate gastrulation.
Collapse
Affiliation(s)
- Courtney Zeni
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Yuko Komiya
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
3
|
Xu J, Sang M, Cheng J, Luo C, Shi J, Sun F. Knockdown of disheveled-associated activator of morphogenesis 2 disrupts cytoskeletal organization and phagocytosis in rat Sertoli cells. Mol Cell Endocrinol 2023; 563:111867. [PMID: 36681175 DOI: 10.1016/j.mce.2023.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Disheveled-associated activator of morphogenesis 2 (DAAM2) regulates actin polymerization and cell motility. In this study, we investigated the role of DAAM2 in the cytoskeleton and phagocytosis of rat Sertoli cells in vitro and in vivo through siRNA transfection and intratesticular injection. We found that knockdown of DAAM2 significantly attenuated cytoskeletal and tight junction marker expression and reduced the integrity of the Sertoli cell monolayer. In rats, loss of DAAM2 induced disarrangement and deformation of sperms and promoted accumulation of apoptotic sperms in the testis, accompanied by morphological abnormalities in the blood-testis barrier. DAAM2 silencing also reduced the ability of Sertoli cells to engulf apoptotic spermatogenic cells and green fluorescence-labeled beads. RNA sequencing and bioinformatics analysis revealed that phagocytosis and cytoskeleton-related genes and pathways were significantly associated with DAAM2. Our study suggests that DAAM2 may be involved in spermatogenesis possibly by regulating cytoskeleton organization and phagocytosis of Sertoli cells.
Collapse
Affiliation(s)
- Junjie Xu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China; Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Jinmei Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Chunhai Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Qi C, Alsomali F, Zhong J, Harris RC, Kon V, Yang H, Fogo AB. Increased dishevelled associated activator of morphogenesis 2, a new podocyte-associated protein, in diabetic nephropathy. Nephrol Dial Transplant 2021; 36:1006-1016. [PMID: 33544843 DOI: 10.1093/ndt/gfab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previously, by using proteomic analysis and RNA sequencing in isolated glomeruli, we identified several novel differentially expressed proteins in human and mouse diabetic nephropathy (DN) versus controls, including dishevelled associated activator of morphogenesis 2 (DAAM2). DAAM2 binds the Wnt effector Dvl. We aimed to study possible contributions of DAAM2 to DN. METHODS We assessed DAAM2 by immunostaining in non-cancer regions of human nephrectomy (Nx), DN and normal donor kidney tissues. We also examined DAAM2 in DN mice (db/db eNOS-/-) and Nx mice. DN mice treated with angiotensin-converting enzyme inhibitor (ACEI), dipeptidyl peptidase 4 inhibitor (DPP4I) or vehicle were compared. DAAM2 was knocked down in primary cultured podocytes by small interfering RNA to study its effects on cell function. RESULTS In normal human glomeruli, DAAM2 was expressed only on podocytes. DAAM2 expression was increased in both Nx and DN versus normal donors. Podocyte DAAM2 expression was increased in DN and Nx mouse models. Glomerular DAAM2 expression correlated with glomerular size and was decreased significantly by ACEI while DPP4I only numerically reduced DAAM2. In primary cultured podocytes, knockdown of DAAM2 enhanced adhesion, slowed migration, activated Wnt-β-catenin signaling and downregulated mammalian target of rapamycin complex 1 (mTORC1) and Rho activity. CONCLUSIONS Podocyte DAAM2 is upregulated in both Nx and DN, which could be contributed to by glomerular hypertrophy. We hypothesize that DAAM2 regulates podocyte function through the mTORC1, Wnt/β-catenin and Rho signaling pathways.
Collapse
Affiliation(s)
- Chenyang Qi
- Department of Pathology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Faten Alsomali
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Jinyong Zhong
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valentina Kon
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
van der Lee SJ, Knol MJ, Chauhan G, Satizabal CL, Smith AV, Hofer E, Bis JC, Hibar DP, Hilal S, van den Akker EB, Arfanakis K, Bernard M, Yanek LR, Amin N, Crivello F, Cheung JW, Harris TB, Saba Y, Lopez OL, Li S, van der Grond J, Yu L, Paus T, Roshchupkin GV, Amouyel P, Jahanshad N, Taylor KD, Yang Q, Mathias RA, Boehringer S, Mazoyer B, Rice K, Cheng CY, Maillard P, van Heemst D, Wong TY, Niessen WJ, Beiser AS, Beekman M, Zhao W, Nyquist PA, Chen C, Launer LJ, Psaty BM, Ikram MK, Vernooij MW, Schmidt H, Pausova Z, Becker DM, De Jager PL, Thompson PM, van Duijn CM, Bennett DA, Slagboom PE, Schmidt R, Longstreth WT, Ikram MA, Seshadri S, Debette S, Gudnason V, Adams HHH, DeCarli C. A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Commun Biol 2019; 2:285. [PMID: 31396565 PMCID: PMC6677735 DOI: 10.1038/s42003-019-0537-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Brain lobar volumes are heritable but genetic studies are limited. We performed genome-wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016 individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci associated with specific lobar volumes independent of intracranial volume. Two loci, associated with occipital (6q22.32) and temporal lobe volume (12q14.3), were previously reported to associate with intracranial and hippocampal volume, respectively. We identified four loci previously unknown to affect brain volumes: 3q24 for parietal lobe volume, and 1q22, 4p16.3 and 14q23.1 for occipital lobe volume. The associated variants were located in regions enriched for histone modifications (DAAM1 and THBS3), or close to genes causing Mendelian brain-related diseases (ZIC4 and FGFRL1). No genetic overlap between lobar volumes and neurological or psychiatric diseases was observed. Our findings reveal part of the complex genetics underlying brain development and suggest a role for regulatory regions in determining brain volumes.
Collapse
Affiliation(s)
- Sven J. van der Lee
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Maria J. Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Ganesh Chauhan
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012 India
| | - Claudia L. Satizabal
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Albert Vernon Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036 Austria
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Saima Hilal
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Erik B. van den Akker
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, 2628XE the Netherlands
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Manon Bernard
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Fabrice Crivello
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Josh W. Cheung
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yasaman Saba
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M4G 1R8 Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, M5S 1A1 Canada
| | - Gennady V. Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Philippe Amouyel
- Univ. Lille, Inserm, Centre Hosp. Univ Lille, Institut Pasteur de Lille, LabEx DISTALZ-UMR1167 - RID-AGE - Risk factors and molecular determinants of aging-related, 59000 Lille, France
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics at LABioMed-Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Stefan Boehringer
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Bernard Mazoyer
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195 USA
| | - Ching Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, University of California-Davis, Davis, CA 95817 USA
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Wiro J. Niessen
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, 2629HZ the Netherlands
| | - Alexa S. Beiser
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Paul A. Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Health Services, University of Washington, Seattle, WA 98195 USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - M. Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
- Departments of Physiology and Nutritional Sciences, The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 Canada
| | - Diane M. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032 USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - P. Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
| | - W. T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Neurology, University of Washington, Seattle, WA 98195 USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Stéphanie Debette
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Department of Neurology, University Hospital of Bordeaux, Bordeaux, 33000 France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Hieab H. H. Adams
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA 95817 USA
| |
Collapse
|
7
|
The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure. Nat Neurosci 2019; 22:809-819. [PMID: 30988526 DOI: 10.1038/s41593-019-0379-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
Microscopic features (that is, microstructure) of axons affect neural circuit activity through characteristics such as conduction speed. To what extent axonal microstructure in white matter relates to functional connectivity (synchrony) between brain regions is largely unknown. Using MRI data in 11,354 subjects, we constructed multivariate models that predict functional connectivity of pairs of brain regions from the microstructural signature of white matter pathways that connect them. Microstructure-derived models provided predictions of functional connectivity that explained 3.5% of cross-subject variance on average (ranging from 1-13%, or r = 0.1-0.36) and reached statistical significance in 90% of the brain regions considered. The microstructure-function relationships were associated with genetic variants, co-located with genes DAAM1 and LPAR1, that have previously been linked to neural development. Our results demonstrate that variation in white matter microstructure predicts a fraction of functional connectivity across individuals, and that this relationship is underpinned by genetic variability in certain brain areas.
Collapse
|
8
|
Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neurosci Res 2019; 138:59-69. [DOI: 10.1016/j.neures.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
|
9
|
Sulistomo HW, Nemoto T, Yanagita T, Takeya R. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction. J Biol Chem 2018; 294:2924-2934. [PMID: 30573686 DOI: 10.1074/jbc.ra118.005471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
Neural tube closure requires apical constriction during which contraction of the apical F-actin network forces the cell into a wedged shape, facilitating the folding of the neural plate into a tube. However, how F-actin assembly at the apical surface is regulated in mammalian neurulation remains largely unknown. We report here that formin homology 2 domain-containing 3 (Fhod3), a formin protein that mediates F-actin assembly, is essential for cranial neural tube closure in mouse embryos. We found that Fhod3 is expressed in the lateral neural plate but not in the floor region of the closing neural plate at the hindbrain. Consistently, in Fhod3-null embryos, neural plate bending at the midline occurred normally, but lateral plates seemed floppy and failed to flex dorsomedially. Because the apical accumulation of F-actin and constriction were impaired specifically at the lateral plates in Fhod3-null embryos, we concluded that Fhod3-mediated actin assembly contributes to lateral plate-specific apical constriction to advance closure. Intriguingly, Fhod3 expression at the hindbrain was restricted to neuromeric segments called rhombomeres. The rhombomere-specific accumulation of apical F-actin induced by the rhombomere-restricted expression of Fhod3 was responsible for the outward bulging of rhombomeres involving apical constriction along the anteroposterior axis, as rhombomeric bulging was less prominent in Fhod3-null embryos than in the wild type. Fhod3 thus plays a crucial role in the morphological changes associated with neural tube closure at the hindbrain by mediating apical constriction not only in the mediolateral but also in the anteroposterior direction, thereby contributing to tube closure and rhombomere segmentation, respectively.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Takayuki Nemoto
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Toshihiko Yanagita
- the Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Ryu Takeya
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| |
Collapse
|
10
|
Zhu W, Krishna S, Garcia C, Lin CCJ, Mitchell BD, Scott KL, Mohila CA, Creighton CJ, Yoo SH, Lee HK, Deneen B. Daam2 driven degradation of VHL promotes gliomagenesis. eLife 2017; 6. [PMID: 29053101 PMCID: PMC5650470 DOI: 10.7554/elife.31926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Von Hippel-Landau (VHL) protein is a potent tumor suppressor regulating numerous pathways that drive cancer, but mutations in VHL are restricted to limited subsets of malignancies. Here we identified a novel mechanism for VHL suppression in tumors that do not have inactivating mutations. Using developmental processes to uncover new pathways contributing to tumorigenesis, we found that Daam2 promotes glioma formation. Protein expression screening identified an inverse correlation between Daam2 and VHL expression across a host of cancers, including glioma. These in silico insights guided corroborating functional studies, which revealed that Daam2 promotes tumorigenesis by suppressing VHL expression. Furthermore, biochemical analyses demonstrate that Daam2 associates with VHL and facilitates its ubiquitination and degradation. Together, these studies are the first to define an upstream mechanism regulating VHL suppression in cancer and describe the role of Daam2 in tumorigenesis. Glioblastoma is the deadliest form of brain cancer, and the rate of patient survival has not significantly improved over the past 70 years. This cancer arises when glial cells, which provide support and insulation to nerve cells, develop mutations that alter the activity of certain genes or alter the role they play in cells. However, there are also several key genes linked to glioblastomas that don’t exhibit mutations, such as the gene that encodes the Von Hippel Landau protein (or VHL for short). This protein normally helps to protect us from developing cancer, but it is not clear how this protein is prevented from performing this role in glioblastomas. One possibility is that proteins that regulate how cells grow and develop may control VHL. For example, a protein called Daam2 plays a critical role in a signaling pathway that is required for glial cell development. Zhu et al. used biochemical techniques to study Daam2 and VHL in both human cells and mouse models of glioblastoma. The experiments show that glioblastoma cells have lower levels of VHL compared to normal cells. This decrease is caused by Daam 2, which interacts with VHL and promotes its degradation. Further experiments found that in several different types of cancer, higher levels of Daam2 are linked with the presence of lower levels of VHL. These findings indicate that the interaction between Daam2 and VHL could be a new target for drugs to treat glioblastoma and possibly other forms of cancer. Daam2 and VHL have also been linked to multiple sclerosis, cerebral palsy and other diseases that affect the nervous system. Therefore, understanding how these proteins interact may also help to develop new treatments for these conditions.
Collapse
Affiliation(s)
- Wenyi Zhu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, United States
| | - Saritha Krishna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Cristina Garcia
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Chia-Ching John Lin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Bartley D Mitchell
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Kenneth L Scott
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, United States
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, United States
| | - Chad J Creighton
- Dan L Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, United States.,Department of Medicine, Baylor College of Medicine, Houston, United States
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Heath Science Center at Houston, Houston, United States
| | - Hyun Kyoung Lee
- Department of Pediatrics, Division of Neurology, Baylor College of Medicine, Houston, United States.,Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, United States.,Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
11
|
Lu Y, Zhang Y, Pan MH, Kim NH, Sun SC, Cui XS. Daam1 regulates fascin for actin assembly in mouse oocyte meiosis. Cell Cycle 2017; 16:1350-1356. [PMID: 28682694 DOI: 10.1080/15384101.2017.1325045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As a formin protein, Daam1 (Dishevelled-associated activator of morphogenesis 1) is reported to regulate series of cell processes like endocytosis, cell morphology and migration via its effects on actin assembly in mitosis. However, whether Daam1 plays roles in female meiosis remains uncertain. In this study, we investigated the expression and functions of Daam1 during mouse oocyte meiosis. Our results indicated that Daam1 localized at the cortex of oocytes, which was similar with actin filaments. After Daam1 morpholino (MO) microinjection, the expression of Daam1 significantly decreased, which resulted in the failure of oocyte polar body extrusion. These results might be due to the defects of actin assembly, since the decreased fluorescence intensity of actin filaments in oocyte cortex and cytoplasm were observed. However, Daam1 knockdown seemed not to affect the meiotic spindle movement. In addition, we found that fascin might be the down effector of Daam1, since the protein expression of fascin decreased after Daam1 knockdown. Thus, our data suggested that Daam1 affected actin assembly during oocyte meiotic division via the regulation of fascin expression.
Collapse
Affiliation(s)
- Yujie Lu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yu Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Hao Pan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Nam-Hyung Kim
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Xiang-Shun Cui
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| |
Collapse
|
12
|
Luo W, Lieu ZZ, Manser E, Bershadsky AD, Sheetz MP. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network. PLoS One 2016; 11:e0163915. [PMID: 27760153 PMCID: PMC5070803 DOI: 10.1371/journal.pone.0163915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/17/2016] [Indexed: 01/13/2023] Open
Abstract
A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization.
Collapse
Affiliation(s)
- Weiwei Luo
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Zi Zhao Lieu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Ed Manser
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Alexander D. Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, New York, 10027, United States of America
- * E-mail:
| |
Collapse
|
13
|
Prokop A, Sánchez-Soriano N, Gonçalves-Pimentel C, Molnár I, Kalmár T, Mihály J. DAAM family members leading a novel path into formin research. Commun Integr Biol 2014. [DOI: 10.4161/cib.16511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
14
|
Veillard AC, Marks H, Bernardo AS, Jouneau L, Laloë D, Boulanger L, Kaan A, Brochard V, Tosolini M, Pedersen R, Stunnenberg H, Jouneau A. Stable methylation at promoters distinguishes epiblast stem cells from embryonic stem cells and the in vivo epiblasts. Stem Cells Dev 2014; 23:2014-29. [PMID: 24738887 DOI: 10.1089/scd.2013.0639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic Stem Cells (ESCs) and Epiblast Stem Cells (EpiSCs) are the in vitro representatives of naïve and primed pluripotency, respectively. It is currently unclear how their epigenomes underpin the phenotypic and molecular characteristics of these distinct pluripotent states. Here, we performed a genome-wide comparison of DNA methylation between ESCs and EpiSCs by MethylCap-Seq. We observe that promoters are preferential targets for methylation in EpiSC compared to ESCs, in particular high CpG island promoters. This is in line with upregulation of the de novo methyltransferases Dnmt3a1 and Dnmt3b in EpiSC, and downregulation of the demethylases Tet1 and Tet2. Remarkably, the observed DNA methylation signature is specific to EpiSCs and differs from that of their in vivo counterpart, the postimplantation epiblast. Using a subset of promoters that are differentially methylated, we show that DNA methylation is established within a few days during in vitro outgrowth of the epiblast, and also occurs when ESCs are converted to EpiSCs in vitro. Once established, this methylation is stable, as ES-like cells obtained by in vitro reversion of EpiSCs display an epigenetic memory that only extensive passaging and sub-cloning are able to almost completely erase.
Collapse
|
15
|
Krainer EC, Ouderkirk JL, Miller EW, Miller MR, Mersich AT, Blystone SD. The multiplicity of human formins: Expression patterns in cells and tissues. Cytoskeleton (Hoboken) 2013; 70:424-38. [PMID: 23629878 DOI: 10.1002/cm.21113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022]
Abstract
Formins are actin-binding proteins conserved across species from plants to humans. The formin family is defined by their common formin homology (FH2) domains. The 15 distinct human formins are involved in a broad range of cellular functions, including cell adhesion, cytokinesis, cell polarity, and cell morphogenesis. Their commonality is actin polymerization activity inherent to FH2 domains. Although still requiring much study, biochemical activity of formins has been carefully described. In contrast, much less is known of their activities in complex living systems. With the diversity of the formin family and the actin structures that they affect, an extensive future of study beckons. In this study, we report the expression level of all 15 formins in 22 different human cell and tissue types using quantitative real-time PCR. Identification of major themes in formin expression and documentation of expression profiles should facilitate the cellular study of formins.
Collapse
Affiliation(s)
- Elisabeth C Krainer
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | | | | | | | | | | |
Collapse
|
16
|
Saengsawang W, Taylor KL, Lumbard DC, Mitok K, Price A, Pietila L, Gomez TM, Dent EW. CIP4 coordinates with phospholipids and actin-associated proteins to localize to the protruding edge and produce actin ribs and veils. J Cell Sci 2013; 126:2411-23. [PMID: 23572514 DOI: 10.1242/jcs.117473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils). In neurons, CIP4 localizes specifically to extending protrusions and functions to limit neurite outgrowth early in development. The mechanism by which CIP4 localizes to the protruding edge membrane and induces lamellipodial/veil protrusion and actin rib formation is not known. Here, we show that CIP4 localization to the protruding edge of neurons is dependent on both the phospholipid content of the plasma membrane and the underlying organization of actin filaments. Inhibiting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production decreases CIP4 at the membrane. CIP4 localization to the protruding edge is also dependent on Rac1/WAVE1, rather than Cdc42/N-WASP. Capping actin filaments with low concentrations of cytochalasin D or by overexpressing capping protein dramatically decreases CIP4 at the protruding edge, whereas inactivating Arp2/3 drives CIP4 to the protruding edge. We also demonstrate that CIP4 dynamically colocalizes with Ena/VASP and DAAM1, two proteins known to induce unbranched actin filament arrays and play important roles in neuronal development. Together, this is the first study to show that the localization of an F-BAR protein depends on both actin filament architecture and phospholipids at the protruding edge of developing neurons.
Collapse
Affiliation(s)
- Witchuda Saengsawang
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hui L, Slonim DK, Wick HC, Johnson KL, Koide K, Bianchi DW. Novel neurodevelopmental information revealed in amniotic fluid supernatant transcripts from fetuses with trisomies 18 and 21. Hum Genet 2012; 131:1751-9. [PMID: 22752091 DOI: 10.1007/s00439-012-1195-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/19/2012] [Indexed: 01/15/2023]
Abstract
Trisomies 18 and 21 are the two most common live born autosomal aneuploidies in humans. While the anatomic abnormalities in affected fetuses are well documented, the dysregulated biological pathways associated with the development of the aneuploid phenotype are less clear. Amniotic fluid (AF) cell-free RNA is a valuable source of biological information obtainable from live fetuses. In this study, we mined gene expression data previously produced by our group from mid-trimester AF supernatant samples. We identified the euploid, trisomy 18 and trisomy 21 AF transcriptomes, and analyzed them with a particular focus on the nervous system. We used multiple bioinformatics resources, including DAVID, Ingenuity Pathway Analysis, and the BioGPS Gene Expression Atlas. Our analyses confirmed that AF supernatant from aneuploid fetuses is enriched for nervous system gene expression and neurological disease pathways. Tissue analysis showed that fetal brain cortex and Cajal-Retzius cells were significantly enriched for genes contained in the AF transcriptomes. We also examined AF transcripts known to be dysregulated in aneuploid fetuses compared with euploid controls and identified several brain-specific transcripts among them. Many of these genes play critical roles in nervous system development. NEUROD2, which was downregulated in trisomy 18, induces neurogenic differentiation. SOX11, downregulated in trisomy 21, is a transcription factor that is essential for pan-neuronal protein expression and axonal growth of sensory neurons. Our results show that whole transcriptome analysis of cell-free RNA in AF from live pregnancies permits discovery of biomarkers of abnormal human neurodevelopment and advances our understanding of the pathophysiology of aneuploidy.
Collapse
Affiliation(s)
- Lisa Hui
- Mother Infant Research Institute and the Division of Genetics, Department of Pediatrics, The Floating Hospital for Children at Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Lee HK, Deneen B. Daam2 is required for dorsal patterning via modulation of canonical Wnt signaling in the developing spinal cord. Dev Cell 2012; 22:183-96. [PMID: 22227309 DOI: 10.1016/j.devcel.2011.10.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/14/2011] [Accepted: 10/26/2011] [Indexed: 10/14/2022]
Abstract
The Daam family of proteins consists of Daam1 and Daam2. Although Daam1 participates in noncanonical Wnt signaling during gastrulation, Daam2 function remains completely uncharacterized. Here we describe the role of Daam2 in canonical Wnt signal transduction during spinal cord development. Loss-of-function studies revealed that Daam2 is required for dorsal progenitor identities and canonical Wnt signaling. These phenotypes are rescued by β-catenin, demonstrating that Daam2 functions in dorsal patterning through the canonical Wnt pathway. Complementary gain-of-function studies demonstrate that Daam2 amplifies Wnt signaling by potentiating ligand activation. Biochemical examination found that Daam2 association with Dvl3 is required for Wnt activity and dorsal patterning. Moreover, Daam2 stabilizes Dvl3/Axin2 binding, resulting in enhanced intracellular assembly of Dvl3/Axin2 complexes. These studies demonstrate that Daam2 modulates the formation of Wnt receptor complexes, revealing new insight into the functional diversity of Daam proteins and how canonical Wnt signaling contributes to pattern formation in the developing spinal cord.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Prokop A, Sánchez-Soriano N, Gonçalves-Pimentel C, Molnár I, Kalmár T, Mihály J. DAAM family members leading a novel path into formin research. Commun Integr Biol 2011; 4:538-42. [PMID: 22046456 DOI: 10.4161/cib.4.5.16511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/19/2022] Open
Abstract
Formins are an important and evolutionarily well conserved class of actin binding proteins with essential biological functions. Although their molecular roles in actin regulation have been clearly demonstrated in vitro, their functions at the cellular or organism levels are still poorly understood. To illustrate this problem, but also to demonstrate potential ways forward, we focus here on the DAAM group of formins. In vertebrates, DAAM group members have been demonstrated to be important regulators of cellular and tissue morphogenesis but, as for all formins, the molecular mechanisms underlying these morphogenetic functions remain to be uncovered. The genome of the fruitfly Drosophila encodes a single DAAM gene that is evolutionarily highly conserved. Recent work on dDAAM has already provided a unique combination of observations and experimental opportunities unrivalled by any other Drosophila formin. These comprise in vitro actin polymerisation assays, subcellular studies in culture and in vivo, and a range of developmental phenotypes revealing a role in tracheal morphogenesis, axonal growth and muscle organization. At all these levels, future work on dDAAM will capitalize on the power of fly genetics, raising unique opportunities to advance our understanding of dDAAM at the systems level, with obvious implications for other formins.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences; Wellcome Trust Centre for Cell-Matrix Research; Michael Smith Building; Manchester, UK
| | | | | | | | | | | |
Collapse
|
20
|
Morte B, Martínez T, Zambrano A, Pascual A. Monocyte-mediated regulation of genes by the amyloid and prion peptides in SH-SY5Y neuroblastoma cells. Neurochem Int 2011; 58:613-9. [PMID: 21303680 DOI: 10.1016/j.neuint.2011.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 12/14/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease as well as prion-related encephalopathies are neurodegenerative disorders of the central nervous system, which cause mental deterioration and progressive dementia. Both pathologies appear to be primarily associated with the pathological accumulation and deposit of β-amyloid or prion peptides in the brain, and it has been even suggested that neurotoxicity induced by these peptides would be associated to essentially similar pathogenic mechanisms, in particular to those that follow the activation of microglial cells. To probe whether the neurotoxic effects induced by the β-amyloid and prion peptides are actually mediated by similar glial-associated mechanisms, we have examined the differential expression of genes in SH-SY5Y neuroblastoma cells incubated with conditioned media from β-amyloid or prion-stimulated THP-1 monocytic cells. According to microarray analysis, not many coincidences are observed and only four genes (Hint3, Psph, Daam1 and c-Jun) appear to be commonly upregulated by both peptides. Furthermore, c-Jun appears to be involved in the cell death mediated by both peptides.
Collapse
Affiliation(s)
- Beatriz Morte
- Instituto de Investigaciones Biomédicas and Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Kessels MM, Schwintzer L, Schlobinski D, Qualmann B. Controlling actin cytoskeletal organization and dynamics during neuronal morphogenesis. Eur J Cell Biol 2010; 90:926-33. [PMID: 20965607 DOI: 10.1016/j.ejcb.2010.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 08/27/2010] [Accepted: 08/27/2010] [Indexed: 11/26/2022] Open
Abstract
Coordinated functions of the actin cytoskeleton and microtubules, which need to be carefully controlled in time and space, are required for the drastic alterations of neuronal morphology during neuromorphogenesis and neuronal network formation. A key process in neuronal actin dynamics is filament formation by actin nucleators, such as the Arp2/3 complex, formins and the brain-enriched, novel WH2 domain-based nucleators Spire and cordon-bleu (Cobl). We here discuss in detail the currently available data on the roles of these actin nucleators during neuromorphogenesis and highlight how their required control at the plasma membrane may be brought about. The Arp2/3 complex was found to be especially important for proper growth cone translocation and axon development. The underlying molecular mechanisms for Arp2/3 complex activation at the neuronal plasma membrane include a recruitment and an activation of N-WASP by lipid- and F-actin-binding adaptor proteins, Cdc42 and phosphatidyl-inositol-(4,5)-bisphosphate (PIP(2)). Together, these components upstream of N-WASP and the Arp2/3 complex ensure fine-control of N-WASP-mediated Arp2/3 complex activation and control distinct functions during axon development. They are counteracted by Arp2/3 complex inhibitors, such as PICK, which likewise play an important role in neuromorphogenesis. In contrast to the crucial role of the Arp2/3 complex in proper axon development, dendrite formation and dendritic arborization was revealed to critically involve the newly identified actin nucleator Cobl. Cobl is a brain-enriched protein and uses three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding and for promoting the formation of non-bundled, unbranched filaments. Thus, cells use different actin nucleators to steer the complex remodeling processes underlying cell morphogenesis, the formation of cellular networks and the development of complex body plans.
Collapse
Affiliation(s)
- Michael Manfred Kessels
- Institute for Biochemistry I, University Hospital Jena - Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
22
|
Barkó S, Bugyi B, Carlier MF, Gombos R, Matusek T, Mihály J, Nyitrai M. Characterization of the biochemical properties and biological function of the formin homology domains of Drosophila DAAM. J Biol Chem 2010; 285:13154-69. [PMID: 20177055 PMCID: PMC2857102 DOI: 10.1074/jbc.m109.093914] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/04/2010] [Indexed: 11/06/2022] Open
Abstract
We characterized the properties of Drosophila melanogaster DAAM-FH2 and DAAM-FH1-FH2 fragments and their interactions with actin and profilin by using various biophysical methods and in vivo experiments. The results show that although the DAAM-FH2 fragment does not have any conspicuous effect on actin assembly in vivo, in cells expressing the DAAM-FH1-FH2 fragment, a profilin-dependent increase in the formation of actin structures is observed. The trachea-specific expression of DAAM-FH1-FH2 also induces phenotypic effects, leading to the collapse of the tracheal tube and lethality in the larval stages. In vitro, both DAAM fragments catalyze actin nucleation but severely decrease both the elongation and depolymerization rate of the filaments. Profilin acts as a molecular switch in DAAM function. DAAM-FH1-FH2, remaining bound to barbed ends, drives processive assembly of profilin-actin, whereas DAAM-FH2 forms an abortive complex with barbed ends that does not support profilin-actin assembly. Both DAAM fragments also bind to the sides of the actin filaments and induce actin bundling. These observations show that the D. melanogaster DAAM formin represents an extreme class of barbed end regulators gated by profilin.
Collapse
Affiliation(s)
- Szilvia Barkó
- From the
Faculty of Medicine, Department of Biophysics, University of Pécs, Szigeti Str. 12, Pécs H-7624, Hungary
| | - Beáta Bugyi
- Cytoskeleton Dynamics and Motility, Laboratoire d'Enzymologie et Biochemie Structurales, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France, and
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Motility, Laboratoire d'Enzymologie et Biochemie Structurales, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France, and
| | - Rita Gombos
- the
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged H-6726, Hungary
| | - Tamás Matusek
- the
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged H-6726, Hungary
| | - József Mihály
- the
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged H-6726, Hungary
| | - Miklós Nyitrai
- From the
Faculty of Medicine, Department of Biophysics, University of Pécs, Szigeti Str. 12, Pécs H-7624, Hungary
| |
Collapse
|
23
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
24
|
Schönichen A, Geyer M. Fifteen formins for an actin filament: a molecular view on the regulation of human formins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:152-63. [PMID: 20102729 DOI: 10.1016/j.bbamcr.2010.01.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
The regulation of the actin cytoskeleton is a key process for the stability and motility of eukaryotic cells. Besides the Arp2/3 complex and its nucleation promoting factors, WH2 domain-containing proteins and a diverse family of formin proteins have recently been recognized as actin nucleators and potent polymerization factors of actin filaments. Formins are defined by the presence of a catalytic formin homology 2 (FH2) domain, yet, the modular domain architecture appears significantly different for the eight formin families identified in humans. A diverse picture of protein localization, interaction partners and cell specific regulation emerged, suggesting various functions of formins in the building and maintenance of actin filaments. This review focuses on the domain architecture of human formins, the regulation mechanisms of their activation and the diversity in formin cellular functions.
Collapse
Affiliation(s)
- André Schönichen
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | |
Collapse
|
25
|
Abstract
The insertional mouse mutation Adp (Acrodysplasia) confers a parent-of-origin developmental phenotype, with animals inheriting the mutation from their father showing skeletal abnormalities, whereas those inheriting the mutation from their mother are normal. This parental-specific phenotype, along with mapping of the insertion to a region of chromosome 12 proposed to contain imprinted genes, suggested that disruption of genomic imprinting might underlie the Adp phenotype. Genomic imprinting is the process by which autosomal genes are epigenetically silenced on one of the two parental alleles; imprinting mutation phenotypes manifest after inheritance from one parent but not the other. Imprinted genes typically occur in dense clusters that contain few non-imprinted genes and therefore representative genes from the Adp critical region could be assayed to identify any imprinted domains. None of the genes analysed were found to be imprinted, however, suggesting that other explanations for the Adp phenotype must be considered.
Collapse
|
26
|
Sonic hedgehog regulates integrin activity, cadherin contacts, and cell polarity to orchestrate neural tube morphogenesis. J Neurosci 2009; 29:12506-20. [PMID: 19812326 DOI: 10.1523/jneurosci.2003-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vertebrates, the embryonic nervous system is shaped and patterned by a series of temporally and spatially regulated cell divisions, cell specifications, and cell adhesions and movements. Morphogens of the Hedgehog, Wnt, and bone morphogenetic protein families have been shown to play a crucial role in the control of cell division and specification in the trunk neural tube, but their possible implication in the regulation of adhesive events has been poorly documented. In the present study, we demonstrate that Sonic hedgehog regulates neural epithelial cell adhesion and polarity through regulation of integrin activity, cadherin cell-cell contact, and cell polarity genes in immature neural epithelial cells before the specification of neuronal cells. We propose that Sonic hedgehog orchestrates neural tube morphogenesis by coordinating adhesive and motility events with cell proliferation and differentiation.
Collapse
|
27
|
Kuzman MR, Medved V, Terzic J, Krainc D. Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia. J Psychiatr Res 2009; 43:1073-7. [PMID: 19358997 DOI: 10.1016/j.jpsychires.2009.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/09/2009] [Accepted: 03/13/2009] [Indexed: 12/16/2022]
Abstract
The aim of this study was to analyze gene expression in blood of patients with newly-diagnosed schizophrenia during their first psychotic episode and subsequent remission. Whole blood samples were obtained from 32 untreated patients presenting with their first psychotic episode suggestive of schizophrenia and 32 age- and gender-matched controls. Using Affymetrix micoarrays, we identified significantly altered expression of 180 gene probes in psychotic patients compared to controls. A subset of four significantly changed genes was further confirmed with QRT-PCR. The following genes were significantly altered in patients: glucose transporter, SLC2A3 (p<0.001) and actin assembly factor DAAM2 (p<0.001) were increased, whereas translation, zinc metallopeptidase, neurolysin 1 and myosin C were significantly decreased (p<0.05). Expression of these candidate markers was also analyzed in a longitudinal study (12-24 months) in 12 patients who achieved full remission. Interestingly, expression of DAAM2 returned to control levels in patients who were in remission after their first psychotic episode, suggesting that its expression correlates with diseases progression and/or response to treatment. In summary, we identified changes of gene expression from peripheral blood which might help discriminate patients with schizophrenia from controls. While these results are promising, especially for DAAM2 whose polymorphic variants have been found significantly associated with schizophrenia, it will be important to analyze larger cohorts of patients in order to firmly establish changes in gene expression as blood markers of schizophrenia.
Collapse
Affiliation(s)
- Martina Rojnic Kuzman
- Department of Psychiatry, Zagreb University Hospital Centre and Zagreb School of Medicine, Zagreb, Croatia.
| | | | | | | |
Collapse
|
28
|
Abstract
The regulation of growth cone actin dynamics is a critical aspect of axonal growth control. Among the proteins that are directly involved in the regulation of actin dynamics, actin nucleation factors play a pivotal role by promoting the formation of novel actin filaments. However, the essential nucleation factors in developing neurons have so far not been clearly identified. Here, we show expression data, and use true loss-of-function analysis and targeted expression of activated constructs to demonstrate that the Drosophila formin DAAM plays a critical role in axonal morphogenesis. In agreement with this finding, we show that dDAAM is required for filopodia formation at axonal growth cones. Our genetic interaction, immunoprecipitation and protein localization studies argue that dDAAM acts in concert with Rac GTPases, Profilin and Enabled during axonal growth regulation. We also show that mouse Daam1 rescues the CNS defects observed in dDAAM mutant flies to a high degree, and vice versa, that Drosophila DAAM induces the formation of neurite-like protrusions when expressed in mouse P19 cells, strongly suggesting that the function of DAAM in developing neurons has been conserved during evolution.
Collapse
|
29
|
Kida YS, Sato T, Miyasaka KY, Suto A, Ogura T. Daam1 regulates the endocytosis of EphB during the convergent extension of the zebrafish notochord. Proc Natl Acad Sci U S A 2007; 104:6708-13. [PMID: 17412835 PMCID: PMC1871850 DOI: 10.1073/pnas.0608946104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Indexed: 11/18/2022] Open
Abstract
Convergent extension (CE) movement of cells is one of the fundamental processes that control the organized morphogenesis of tissues and organs. The molecular events connecting the noncanonical Wnt pathway and CE movement, however, are not well understood. We show that subcellular localization of Daam1, an essential component of noncanonical Wnt signaling, changes dynamically during notochord formation. In the early phases, Daam1 complexes with EphB receptors and Disheveled 2. This complex is incorporated into endocytic vesicles in a dynamin-dependent manner, thereby resulting in the removal of EphB from the cell surface with subsequent switching of cell adhesiveness. In the next step, Daam1 colocalizes with the actin cytoskeleton to induce morphological extension of cells. We elucidate the molecular mechanism underlying the CE movement of notochord cells with Daam1 as a dynamic coordinator of endocytosis and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Yasuyuki S Kida
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | |
Collapse
|